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Abstract: Purpose: Mannitol is a hyperosmolar agent for reducing intracranial pressure and inducing
osmotic blood–brain barrier opening (OBBBO). There is a great clinical need for a non-invasive
method to optimize the safety of mannitol dosing. The aim of this study was to develop a label-free
Chemical Exchange Saturation Transfer (CEST)-based MRI approach for detecting intracranial accu-
mulation of mannitol following OBBBO. Methods: In vitro MRI was conducted to measure the CEST
properties of D-mannitol of different concentrations and pH. In vivo MRI and MRS measurements
were conducted on Sprague-Dawley rats using a Biospec 11.7T horizontal MRI scanner. Rats were
catheterized at the internal carotid artery (ICA) and randomly grouped to receive either 1 mL or 3 mL
D-mannitol. CEST MR images were acquired before and at 20 min after the infusion. Results: In vitro
MRI showed that mannitol has a strong, broad CEST contrast at around 0.8 ppm with a mM CEST
MRI detectability. In vivo studies showed that CEST MRI could effectively detect mannitol in the
brain. The low dose mannitol treatment led to OBBBO but no significant mannitol accumulation,
whereas the high dose regimen resulted in both OBBBO and mannitol accumulation. The CEST MRI
findings were consistent with 1H-MRS and Gd-enhanced MRI assessments. Conclusion: We demon-
strated that CEST MRI can be used for non-invasive, label-free detection of mannitol accumulation in
the brain following BBBO treatment. This method may be useful as a rapid imaging tool to optimize
the dosing of mannitol-based OBBBO and improve its safety and efficacy.

Keywords: CEST MRI; MRS; mannitol; BBBO treatment

1. Introduction

The blood-brain barrier (BBB) poses a major challenge in drug delivery into the central
nervous system. For example, the fact that less than 2% of FDA approved anticancer
drugs can pass the BBB is thought to be a major factor in the in the low success rate in
brain cancer clinical trials [1,2]. Thus, there has been a recently renewed clinical interest
in BBB opening methods to overcome these challenges. Mannitol is a sugar alcohol that
has been used widely in the clinic as an intravenous (IV) hyperosmotic diuretic agent
used for lowering intracranial and intraocular pressure (ICP) complicating traumatic brain
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injury [3], stroke [4], brain tumors [5], and other conditions [6,7]. Intra-arterial (IA) infusion
of mannitol results in local osmotic blood–brain barrier opening (OBBBO) in the cerebral
vascular territory supplied by the catheter [8,9]. Since the first Phase I clinical trial in
1979 [10], many clinical studies have shown that, combined with OBBBO, intra-arterial
(IA) drug infusion can effectively improve CNS delivery of chemotherapy drugs [11].
For example, Charest et al., showed that combined IA-drug infusion and mannitol-based
OBBBO generated an overall 2-fold higher carboplatin concentrations in brain tumors
compared to IA infusion alone [12]. Thus, for agents that cannot cross the BBB naturally,
such as antibodies or nanobodies, there is a great clinical demand for the development of
quantitative imaging biomarkers that could provide spatial information about the extent of
BBB opening and drug delivery [13,14].

While numerous new strategies to deliver drugs beyond the BBB have been ex-
plored to date, such as microbubble-based high-intensity focused ultrasound (HIFU) and
convection-enhanced delivery (CED), or receptor-mediated transcytosis (RMT), mannitol-
based OBBBO is still considered an effective and safe approach that is continuously used
in the clinic [15]. However, the current mainstay of X-ray guidance of OBBBO procedures
lacks spatial selectivity and may not detect off-target OBBBO and possible unwanted ad-
verse effects in normal brain parenchyma. To overcome this limitation, contrast-based MRI
methods are being developed to pre-determine the regions affected by IA-injected mannitol
and to provide image-guidance for fine-tuning key injection parameters to achieve precisely
controlled OBBBO in desired areas [16–19]. Real-time MRI has been also used to navigate
OBBBO in a patient with brain cancer [20,21].

A critical hindrance to the widespread use of IA-injection of mannitol in the brain is the
potential of mannitol deposition following OBBBO. It is well known that the accumulation
of mannitol in the brain interstitium can cause a “rebound” phenomenon, i.e., a secondary
reversal of the osmotic gradient and an increase in brain water content, followed by
increased ICP [22,23]. This can be caused by either prolonged or repeated dosing [24,25].
However, in infiltrative brain tumors, interstitial mannitol concentrations many folds higher
than in the plasma can be observed even after a single intravenous bolus injection [26].
Thus, the dose and frequency of mannitol administration need to be carefully planned
and monitored to avoid this potential side effect while maintaining treatment efficacy.
Clinically, either serum osmolarity or osmolar gap are used as surrogate measures of serum
mannitol concentration [7]. The osmolality is directly measured by the concentration of
solutes per kilogram of solvent (mOsm/kg), and the osmotic (osmole, or osmolal) gap is
calculated by the difference between osmolality and osmolarity, the calculated value of the
concentration of solutes per liter of solvent (mOsm/L). An osmolality of 320 mOsm/kg
and an osmolar gap of 20–55 mOsm/kg were suggested to be the highest safe serum
mannitol level [27]. However, neither of these surrogate measures reflect absolute values of
serum mannitol, making it difficult for clinicians to closely monitor intravascular volume
status and renal function during mannitol therapy. A few previous studies reported the
use of 1H magnetic resonance spectroscopy (MRS) and magnetic resonance spectroscopic
imaging (MRSI) for detecting mannitol [28–30]. However, a low spatial resolution and a
relatively long acquisition time hamper the clinical application of MRS/MRSI. Therefore,
a new non-invasive method that can reliably and rapidly assess the amount and spatial
distribution of mannitol accumulation in the brain is needed.

This study aimed to develop an MRI approach for detecting mannitol accumulated in
the brain following OBBBO. The mannitol molecule contains six hydroxyl(-OH) protons,
which can be directly detected by Chemical Exchange Saturation Transfer (CEST) without
the need for chemical labeling [31]. CEST MRI is an emerging technology wherein the MRI
contrast is generated by transferring the selectively saturated MR signal of exchangeable
protons to their surrounding water protons through the process of chemical exchange [32].
Mounting studies have shown the ability of CEST MRI to detect hydroxyl-protons containing
molecules such as glucose [33–35], 2-deoxy-D-glucose (2-DG) [36–38], 3-O-methyl-D-glucose
(3OMG) [39,40], glucosamine [41], dextrans [42–45], and many others [46,47]. Some of these
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methods have entered patient studies [48,49]. Herein, we investigated the ability of CEST MRI
to detect the tissue accumulation of mannitol at a high spatial resolution, which will provide
a valuable imaging tool for optimizing mannitol-based BBBO treatments by controlling the
dose of mannitol to prevent unintended mannitol leakage to the brain parenchyma.

2. Materials and Methods
2.1. Chemicals

Unless otherwise noted, all chemicals were purchased from Sigma Aldrich (St. Louis,
MO, USA). The D-mannitol (25% solution) used in animal studies was purchased from
Hospira Inc. (Hospira Inc., Lake Forest, IL, USA).

2.2. Animals

All animal protocols were approved by our Institutional Animal Care and Use Commit-
tee. Sprague-Dawley rats (male, 200–250 g) were purchased from Charles River (Watershed,
MA, USA). Catheterization was performed as previously described [16,50]. In brief, rats
were anesthetized under 2% isoflurane and fixed in the supine position, followed by dis-
section of the common carotid artery (CCA) bifurcation. The external carotid artery (ECA)
and pterygopalatine artery (PPA) were temporarily ligated with 4–0 silk sutures to permit
all the solutions to enter the cerebrum. A small arteriotomy in the CCA was made, and a
catheter (VAH-PU-C20, Instech Solomon Inc., Plymouth Meeting, PA USA) connected to
#30 PTFE tubing was introduced into the internal carotid artery (ICA). The intra-arterial
catheter was secured with the animal during MRI scans. Rats were randomly separated
into two groups (n = 3 each) to receive either 1 mL or 3 mL D-mannitol at a 0.6 mL/min
rate. The corresponding infusion time and total doses were 1.7 min (4 mL/kg or 1 g/kg)
and 5 min (12 mL/kg or 3 g/kg), respectively.

2.3. 1H-NMR

The 1H-NMR measurements of mannitol solutions (100 mM in D2O or a mixture of 90%
H2O and 10% D2O) were performed on a Bruker Avance III 500 MHz spectrometer (Bruker
Biosciences, Billerica, MA, USA) at room temperature (pH = 6.5). The 1H NMR spectra were
acquired using a standard one-dimensional pulse sequence (zg30) with 128 scans. A total
of 65,500 data points for each scan were acquired with a spectral width of 20.6 ppm and an
acquisition time of 3.18 s. The data were recorded and processed with TopSpin 4.0.1.

2.4. In Vitro MRI

In vitro MRI was conducted to measure the CEST properties and T1 and T2 relaxation
times of D-mannitol in PBS solution of different concentrations (5 to 100 mM) and pH (5.5 to
8.0) using a 11.7T Bruker Avance vertical bore MRI system equipped with a 15 mm saw-
tooth RF coil (Bruker Biosciences, Billerica, MA, USA). CEST MRI was conducted using
a modified rapid acquisition with relaxation enhancement (RARE) sequence as described
previously [44,51]. Z-spectral data were acquired by varying the offset of saturation pulses from
−4 ppm to 4 ppm with respect to the water resonance (0 ppm) using a increment of 0.2 ppm,
with the S0 image was acquired using B1 = 0 µT at −50 ppm. Unless otherwise noted, the pa-
rameters of the saturation RF pulses were continuous wave (CW), Tsat = 3000 ms, B1 = 1.8 µT
(150 Hz). Other imaging parameters were: TR/TE = 6.0 s/5 ms, RARE factor = 16, slice thick-
ness = 2 mm, matrix size = 64 × 64, FOV = 15 × 15 mm2, spatial resolution= 0.23 × 0.23 mm2,
number of averages (NA) = 2, total acquisition time = 16 min 48 s. The B0 inhomogeneity was
measured using the Water Saturation Shift Reference (WASSR) method [52] using the same pa-
rameters as those used in CEST imaging except TR = 1.5 s, Tsat = 500 ms, B1 = 0.5 µT (21.3 Hz)
and the saturation frequency swept from −1 ppm to 1 ppm (step size = 0.1 ppm). T1 and T2
maps were acquired as described previously [16,53] using a RARE-based saturation recovery
sequence with eight TR values ranging between 200 ms and 15,000 ms (TE = 4.3 ms and RARE
factor = 4, central encoding), and a modified RARE pulse sequence (TR/TE = 25,000/4.3 ms
and RARE factor = 16) with a Carr-Purcell-Meiboom-Gill (CPMG) T2 preparation module



Pharmaceutics 2022, 14, 2529 4 of 19

(tCPMG = 10 ms, the number of CPMG loops ranging from 2 to 1024, corresponding to echo
times = 20 ms to 10.24 s), respectively. During MRI scans, the temperature of the samples was
maintained at 37 ◦C.

2.5. In Vivo MRI

All in vivo studies were conducted on a Biospec 11.7T horizontal MRI scanner (Bruker
Biosciences, Billerica, MA, USA) equipped with a rat brain surface array RF coil (receiver) and a
72 mm volume coil (T11232V3, transmitter). All CEST MR images were acquired using the same
RARE-CEST sequence (CW saturation pulse: B1 = 1.8 µT, Tsat = 3 s, TR/TE = 5000/5 ms, RARE
factor = 23, matrix size = 64 × 64 (with partial FT acceleration to 64 × 23), FOV = 30 × 30 mm2,
spatial resolution = 0.47 × 0.47 mm2, slice thickness = 0.6 mm, number of averages NA = 2,
acquisition time = 8 m 40 s). Z-spectral acquisitions were acquired by sweeping saturation
offsets (CW pulse, B1 = 1.8 µT, Tsat = 3 s) from −5 to +5 ppm (step=0.2 ppm) before and at
20 min after the infusion of mannitol at the prescribed volumes. The time interval of 20 min
was chosen because the half-life of mannitol in rats was estimated to be 17–25 min using the
reported human values of 70–100 min [54,55] and a scaling method reported by Obach and
colleagues [56]. The WASSR method was also acquired to correct B0 inhomogeneity.

T1 and T2 maps were acquired using the same geometry as the CEST MRI. In brief, T1
maps were assessed using a RARE-based saturation recovery sequence with six TR values
ranging between 375 ms and 7,500 ms; TE = 11.3 ms and RARE factor = 4, central encoding,
acquisition time = 3 m 47 s. T2 maps were acquired using a multi-slice/multi-echo (MSME)
sequence (TR = 2200, 30 TE values ranging from 7.5 to 225 ms, acquisition time = 2 m 21 s).

Following the post-mannitol CEST acquisition, single-voxel localized 1H MRS spectra
(voxel size = 4 × 6 × 3 mm3) were acquired in the ipsilateral and contralateral hemispheres
using a stimulated echo acquisition mode (STEAM) sequence (TE = 4 ms, TM = 10 ms,
TR = 2.5 s, NA = 64, acquisition time = 2 m 40 s) with outer volume suppression (OVS) and
the variable power RF pulses and optimized relaxation delays (VAPOR) water suppression
scheme according to previously published procedure [57]. A field mapping method was
used to adjust the first-and second-order shims before MRS acquisition.

2.6. Data Processing

All MRI data processing was performed using custom-written scripts in MATLAB
(Mathworks, Waltham, MA, USA). For CEST MRI data, pixel-wise B0 correction was
conducted first. Then a region of interest (ROI) mask was placed over each sample, and
the mean value of water signal intensity (S∆ω) at each saturation offset relative to the
water protons (±∆ω) was calculated. The normalized S∆ω/S0, where S0 is the water signal
intensity without saturation, was plotted as a function of ∆ω, which is traditionally called
a Z-spectrum. To quantify the CEST effect, the magnetization transfer ratio asymmetry
(MTRasym) was calculated as MTRasym = (S−∆ω − S+∆ω)/S0. As the peak position of
MTRasym plots is dependent of the concentration of mannitol due to interference of the
direct saturation, we used numerically integrated area under the curve (AUC) [58] of
MTRasym plots between 0.2 and 2 ppm as an approximation of the signal integral. Because
AUC values are also dependent on the frequency range, we normalized the AUC values by
the spectral width (ppm) that used in the calculation. The resulting AUC values have a
unit of % per ppm (%/ppm).

To accurately quantify the CEST effect in the presence of substantial T1 changes, the
T1 compensated inverse Z-analysis (AREX), defined by (S0/S+∆ω − S0/S−∆ω)/T1, were
also calculated using the acquired T1 times [59–61]. Of note, because the AREX values were
calculated to quantify the asymmetry between the water signals at two offsets with respect
to water resonance, it actually should be called AREXasym.

To quantify the concentration of mannitol in different tissues, we also fitted the
Z-spectra using 6-pool Bloch equations as described previously [62–64]. To reduce the
computing time and increase the reliability of fitting, we performed Bloch fitting in two
steps. First, we fitted using the ROI values of ipsilateral and contralateral hemispheres,
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which had higher SNR compared to those of individual pixels. In the fitting, water R1A
(experimentally measured), the offsets of amide, amine, and magnetization transfer contrast
(MTC) pools, and the T2 times of all the exchangeable protons (except the NOE pool) were
fixed, with all other parameters set to fitting parameters. Table 1 lists the starting or fixed
values according to those reported in the literature [65]. Then, the fitted exchange rates of
all pools, T2 relaxation time of the NOE pool, and concentrations of amide and NOE from
the first step ROI fitting were fixed in the second step pixel-by-pixel fitting.

Table 1. List of the starting or fixed values of the parameters used in Bloch fitting.

Hydroxyl Amine/Guanidinium Amide NOE MTC

Proton concentration (mM) 45 100 72 100 5500
Exchange rate (Hz) 1400 1100 30 16 15

Offset (ppm) 0.9 2 3.5 −3.5 −2.3
T2 (ms) 55 170 100 5 9.1 × 10−3

T1 (s) 1 1 1 1 1
Italic/bold numbers indicate those values were fixed in the fitting.

In vivo 1H-MRS was processed according to a previously published procedure [66].
As a reference for chemical shifts, the N-acetyl-aspartate (NAA) resonance was set at
2.02 ppm. After local baseline flattening around the integration region using a second-order
polynomial baseline correction, the peaks at 3.03 ppm and 3.5–4 ppm (total creatine (tCr)
and mannitol, respectively), were quantified using their integrated peak areas.

2.7. Statistical Analysis

Data were expressed as mean ± SD. The comparison of two groups was conducted
using a two-tailed Student’s t-test.

3. Results
3.1. CEST Characteristics of mannitol

We first acquired and compared the NMR spectra of D-mannitol (100 mM, pH 6.5,
room temperature) in H2O/D2O and D2O. Mannitol contains six exchangeable protons
(red in Figure 1a) and eight non-exchangeable protons (blue in Figure 1a). As shown in
Figure 1b, both exchangeable and non-exchangeable protons appeared in the H2O NMR
spectrum, whereas only non-exchangeable protons were distinguishable in the D2O NMR
spectrum. A broad signal of hydroxyl protons could be observed between 5.1 and 5.7 ppm,
corresponding to offsets of 0.4 to 1.0 ppm with respect to the resonance of water (4.7 ppm).
Four distinct NMR signals of non-exchangeable protons with distinct scalar coupling
patterns were observed in both D2O and H2O NMR spectra, at approximately 3.65, 3.73,
3.77, and 3.84 ppm, in good agreement with previous reports [67]. Figure 1c shows a
merged peak of water and OH signal in the Z-spectrum of 20 mM mannitol and a broad
MTRasym peak between 0.2 and 2 ppm. It is be (in the intermediate to fast exchange regime),
leading to a distinct signal broadening especially at positive frequency and.
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Figure 1. NMR and CEST MRI signal of mannitol (a) Chemical structure of mannitol. Red: functional
groups containing exchangeable protons; blue: functional groups containing non-exchangeable
protons. (b) NMR spectra of 100 mM mannitol (pH 6.5) in D2O (bottom, blue line) and H2O (top,
red line, H2O: D2O = 90%:10%) at pH = 7.4 and room temperature. (c) Z-spectra and MTRasym plots
of 20 mM mannitol (PBS solution, pH 7.2, 37 ◦C) in PBS and blank PBS solution. CEST MRI was
acquired using a CW pulse (B1 = 1.8 µT and Tsat = 4 s).

Subsequently, we characterized the CEST contrast of mannitol as a function of con-
centration and pH. As shown in Figure 2a, the CEST contrast of mannitol increases with
concentration. The apparent peak position of the MTRasym curve is around 0.4 ppm
at 1 mM and shifts to higher offsets at higher concentrations, i.e., 0.6 ppm at 40 mM.
Quantified by the AUC (0.2–2 ppm) of the MTRasym plots, the mannitol CEST contrast is
linearly correlated with concentration (Figure 2b, R2 = 0.9927). Fitting the Z-spectra to
the Bloch equations allows more accurate estimation of the mannitol concentration for
the faster exchange rates (Figure 2c, R2 = 0.9976). Based on the curves in Figure 2b,c, the
detectability of CEST MRI for mannitol is estimated to be approximately 1 mM to generate
0.25 ± 0.01% per ppm CEST contrast (AUC (0.2–2 ppm)). Similar to D-glucose [34,35], the
mannitol has CEST contrast that is sensitive to pH (Figure 2d,e) and decreases markedly
with increasing pH for pH values above 6.5, attributed to the increased exchange rates
and the faster exchange regime at higher pH. The CEST contrast at pH 6.5 was ap-
proximately 1.6 times higher than that at pH 7.2, with AUC values of 10.4 ± 0.2 and
16.7 ± 0.1% per ppm, respectively. The CEST contrasts at pH 5.5 and 6.0 (AUC = 5.8 ± 0.1%
and 8.8 ± 0.2%/ppm, respectively) were smaller than that of pH 6.5, likely due to the shift
from base-catalyzed to acid-catalyzed exchange regime. Using Bloch equation fitting
of Z-spectra acquired at various B1 values (Figure S1), we estimated the exchange rates
(kex) of mannitol as a function of pH (Figure 2f), which showed that the exchange rate
increases gradually between pH 6.5 t and 8.0. Even at pH 6.5, the kex was estimated to
be 1167 s−1, which would still be considered intermediate, given the offset of 0.8 ppm
(∆ω = 0.8 ppm × 500 (s−1/ppm) × 2π (rad) ≈ 2500 rad/s).
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Figure 2. Concentration and pH dependence of the CEST MRI contrast of mannitol at 11.7T
(37 ◦C). (a) MTRasym plots of mannitol at concentrations ranging from 1 to 40 mM (pH 7.2 in PBS).
(b) Concentration dependence of mannitol CEST contrast as quantified by AUC (0.2–2 ppm).
(c) Linear correlation between the concentrations estimated using Bloch equation fitting and the
nominal concentrations. (d) MTRasym plots of mannitol solutions as a function of pH (20 mM in PBS).
(e) pH dependence of mannitol CEST contrast as quantified by AUC (0.2–2 ppm). (f) Exchange rates
of hydroxyl protons as a function of pH. Unless otherwise noted, all CEST experiments were acquired
using a RARE sequence (TR/TE = 6000/5 ms) and a CW saturation pulse (B1/Tsat = 1.8 µT/4 s).

The absolute CEST contrast is also impacted by the choice of acquisition parameters,
including Tsat and B1, which were also studied (Figure S2). It should be noted that, while
3.6 µT appeared to be the optimal B1 for in vitro detection, we used a lower B1 value later
in in vivo studies to reduce the MTC effect that may interfere with in vivo quantification.
Finally, we also measured the r1 and r2 relaxivities of mannitol, which were 2.3 × 10−5 s−1

mM−1 and 5.7 × 10−2 s−1 mM−1 (pH = 7.2 and 37 ◦C), respectively (Figure S3), suggesting
that mannitol causes a negligible T1 concentration effect and a noticeable T2 effect, similar
to D-glucose [68].

3.2. Mannitol Excess Causes Extravasation and Brain Accumulation of Mannitol

We first investigated whether IA infusion of an excess amount of mannitol (at the ICA as
illustrated in Figure 3a) could cause accumulation of mannitol in the injected hemisphere. We
intermittently injected different volumes of 1374 mM (25% mannitol solution) intra-arterially
and used 1H-MRS to detect brain uptake reflected in strongly increased aliphatic 1H signals
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in the range of 3.6–3.9 ppm (Figure 3b). Total mannitol concentration was estimated from the
ratio of the integral of these aliphatic protons of mannitol (3.6–3.9 ppm, eight protons) with
those of the integral total creatine at 3.03 ppm (assumed to be 9 mM [69], three protons). The
mannitol concentrations in the brain were then calculated using a 0.34/11.7 mL blood to the
total brain volume in the brain of rats [70] and a blood concentration of mannitol that was
calculated using the injection volume (0.5 to 5 mL) and an average whole-body blood volume
of 20.7 mL [70]. The quantitative MRS measures are shown in Figure 3c, which indicate a
two-phase increase in the concentration of mannitol in the brain: an initially slow and linear
increase phase in the injection volume range up to 2 mL, followed by a dramatic exponential
increase phase when injection volume exceeded 2 mL. The leaked mannitol concentration
reached a high level (>70 mM) when 5 mL mannitol was infused.
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Figure 3. MRS assessment of the brain accumulation of administered mannitol (25% w/w).
(a) Representative T2w anatomical image showing the location of intra-arterial (IA) infusion (white
arrow) of mannitol and the voxel (yellow dashed line) for 1H-MRS measurement. (b) 1H-MRS spectra
as a function of the injection volume of mannitol. (c) Calculated mannitol concentration (mM) in the
brain as a function of injection volume, where dash line is the linear regression of the first three data
points of low doses.

3.3. MRI Manifestations following Mannitol Accumulation in the Brain

We subsequently conducted a comprehensive MR assessment, including CEST, T1,
and T2 mapping, and 1H-MRS (Figure 4a), of rats receiving mannitol treatment at either low
or high dose, i.e., injection volumes = 1 and 3 mL, respectively. The blood concentrations
of mannitol were calculated to be 63 and 174 mM, respectively. At the end of each study,
Gd-based contrast-enhanced MRI was also conducted to assess the area of BBB breakdown.
Figure 4b shows the parametric maps of MRI contrast changes in representative rats from
the two groups. It can be seen that IA infusion of mannitol at a low dose (1 mL) did not
cause noticeable changes in CEST and T1 contrast. However, slightly increased R2 was
observed in some of the regions.

Conversely, injecting an excessive amount of mannitol (3 mL) resulted in marked
changes in CEST contrast, indicating the accumulation of mannitol at the injection site,
which was confirmed by 1H-MRS observation. There were also markedly decreased R1 and
R2 relaxation rates in the ipsilateral hemisphere, attributable to severe edema caused by the
tissue accumulation of mannitol. Finally, the regions undergoing BBBO were rendered by
Gd-based contrast-enhanced MRI, which revealed that, while both doses resulted in BBBO,
the higher dose produced a much larger area of BBBO. In the high dose group, the BBBO
regions appeared to be similar to those areas with increased mannitol-CEST contrast or
those of decreased ∆R1, but larger than those of decreased ∆R2. In both groups, mannitol
did not cause noticeable MRI contrast changes in the contralateral side, indicative of a
negligible impact of mannitol infusion on the ”off-target” regions.
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Figure 4. CEST, R1, R2, Gd-enhanced and MRS contrast changes caused by mannitol injected at low
(1 mL) and high (3 mL) of 25% mannitol solution. (a) Schematic of the timeline of MRI acquisitions.
(b) Representative images of the same slice showing (from left to right) T2-weighted anatomical
images, CEST contrast parametric maps as quantified by ∆AUC (0.2–2 ppm), ∆R1 contrast parametric
maps, ∆R2 contrast parametric maps; 1H MRS spectra, and Gd-based contrast-enhanced images of
rats receiving low and high dose mannitol injection.

3.4. CEST MRI Detection of Mannitol in the Brain

We performed a quantitative analysis of the change in CEST contrast in different
brain regions at about 20 min after mannitol infusion. As shown in Figure 5a, in rats that
received high dose (3 mL) mannitol, there was a dramatic change in the mean Z-spectra
of the ipsilateral hemisphere. No contrast change could be observed in the contralateral
hemisphere. A main change in post-mannitol Z-spectra in the ipsilateral hemisphere
was greatly reduced saturation transfer effect throughout the spectrum. On the contrary,
MTRasym analysis (Figure 5b) revealed a remarkable increase in CEST signal over the
broad offset range corresponding to the mannitol hydroxyl signals. The AUC (0.2–2 ppm)
parametric maps (Figure 5c) showed that the spatial distribution of increased CEST signal.
The pre- and post-mannitol AUC (0.2–2 ppm) values (for the rat shown in Figure 5) were
20.1 ± 4.1%/ppm and 28.6 ± 5.1%/ppm in the ipsilateral hemisphere (p = 0.0433) and
20.0 ± 2.4%/ppm and 18.7 ± 2.6%/ppm in the contralateral hemisphere (p = 0.3787),
respectively. In contrast, no significant change in CEST contrast was observed in the rats
infused with 1 mL of 25% mannitol solution (Figure 6).
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group). The histogram analysis shows that the CEST signals of the voxels in the high dose 
group were substantially increased, indicating mannitol accumulation. In addition, the 
mean ∆AUC (0.2–2.0 ppm) values were significantly higher in the ipsilateral hemisphere 
than contralaterally in rats that received 3 mL 25% mannitol (Figure 7b, 12.54 ± 4.23 vs. 
1.34 ± 6.12%/ppm, p = 0.0105), while there was no significant difference the in low dose 
group (Figure 7d, −3.88 ± 3.40 vs. −1.63 ± 3.95%/ppm, p = 0.3536). 

Figure 5. Quantitative analysis of CEST contrast in a representative rat infused with high dose (3 mL)
of 25% mannitol solution. (a) Z-spectra obtained pre- and post-mannitol infusion in the ipsilateral
(right) and contralateral (left) hemispheres. (b) MTRasym plots of pre- and post-mannitol infusion in
the ipsilateral (right) and contralateral (left) hemispheres. (c) AUC (0.2–2.0 ppm) maps before and
after the infusion of mannitol.
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Figure 6. Quantitative analysis of CEST contrast in a representative rat infused with low dose (1 mL)
of 25% mannitol solution. (a) Z-spectra of pre- and post-mannitol infusion in the ipsilateral (right)
and contralateral (left) hemispheres. (b) MTRasym plots of pre- and post-mannitol infusion in the
ipsilateral (right) and contralateral (left) hemispheres. (c) AUC (0.2–2.0 ppm) maps before and after
the infusion of mannitol.

Figure 7 compares the mean CEST contrast changes in the two cohorts (n = 3 in each
group). The histogram analysis shows that the CEST signals of the voxels in the high dose
group were substantially increased, indicating mannitol accumulation. In addition, the
mean ∆AUC (0.2–2.0 ppm) values were significantly higher in the ipsilateral hemisphere
than contralaterally in rats that received 3 mL 25% mannitol (Figure 7b, 12.54 ± 4.23 vs.
1.34 ± 6.12%/ppm, p = 0.0105), while there was no significant difference the in low dose
group (Figure 7d, −3.88 ± 3.40 vs. −1.63 ± 3.95%/ppm, p = 0.3536).
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trast), attributed to T1 “contamination” in the MTRasym method. 

Figure 7. Comparison of the change in CEST contrast (∆AUC (0.2–2.0 ppm)) in the ipsilateral and
contralateral hemispheres after the injection of different doses of mannitol. (a) Histogram and
(b) Mean values of three rats injected with 3 mL 25% mannitol. *: p < 0.05 (p = 0.0105, paired two-
tailed Student t-test, n = 3). (c) Histogram and (d) Mean values of three rats injected with 1 mL 25%
mannitol. N.S.: not significant (p = 0.3536, paired two-tailed Student t-test, n = 3).

To accurately quantify the CEST effect in the presence of substantial T1 changes, we
also attempted to quantify the CEST contrast enhancement by mannitol using the AREX
approach. Figure 8a,b show the AREX (or AREXasym) plots in the ipsilateral and contralateral
hemispheres in a rat receiving high dose mannitol. Comparing the ∆MTRasym (0.8 ppm)
maps (Figure 8c) and ∆AREX (0.8 ppm) map (Figure 8d) reveals good agreement between
the spatial distribution of ∆CEST signal by the two methods although the CEST contrast
enhancement calculated by the MTRasym method (i.e., 0.021 ± 0.003 vs. 0.054 ± 0.008 for
pre- and post-mannitol, respectively, corresponding to an increase of 157% in CEST contrast)
was higher than that by the AREX method (i.e., 0.318 ± 0.07 vs. 0.477 ± 0.05 for pre-
and post-mannitol, respectively, corresponding to an increase of 50% in CEST contrast),
attributed to T1 “contamination” in the MTRasym method.
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mannitol (Figure 9b, 0.147 ± 0.036 vs. −0.023 ± 0.015, p = 0.0237), while there was no signif-
icant difference the in low dose group (Figure 9d, −0.049 ± 0.032 vs. −0.037 ± 0.049, p = 
0.4297). 

 
Figure 9. Comparison of the change in CEST contrast (∆AREX) in the ipsilateral and contralateral 
hemispheres after the injection of mannitol at different doses. (a) Histogram and (b) Mean values of 
three rats injected with 3 mL 25% mannitol. *: p = 0.0237, paired two-tailed Student t-test, n = 3. (c) 
Histogram and (d) Mean values of three rats injected with 1 mL 25% mannitol. N.S.: p = 0.4297, 
paired two-tailed Student t-test, n = 3. 

Figure 8. AREX analysis of rats infused with high dose (3 mL 25%) mannitol solution. (a) AREX plots
of pre- and post-mannitol infusion in the ipsilateral hemisphere in a representative rat. (b) AREX
plots of pre- and post-mannitol infusion in the contralateral hemisphere of the same rat. (c) Overlay
image of T2w image and ∆MTRasym (0.8 ppm) parametric map (left) and the corresponding mean
MTRasym (0.8 ppm) in each hemisphere (right). (d) Overlay image of T2w image and ∆AREX (0.8 ppm)
parametric map (left) and the corresponding mean MTRasym (0.8 ppm) in each hemisphere (right).

The comparison of the mean ∆AREX values between the low and high dose groups
(n = 3 each) is shown in Figure 9. The histogram analysis shows that the CEST signals of the
voxels in the high dose group were substantially inclined, indicating mannitol accumulation.
In addition, the mean ∆AREX values were significantly higher in the ipsilateral hemispheres
than those in the contralateral hemisphere in rats that received 3 mL 25% mannitol (Figure 9b,
0.147 ± 0.036 vs. −0.023 ± 0.015, p = 0.0237), while there was no significant difference the in
low dose group (Figure 9d, −0.049 ± 0.032 vs. −0.037 ± 0.049, p = 0.4297).

Finally, we also attempted to quantify the CEST effect using Bloch fitting of the ac-
quired CEST Z-spectral data together with T1 and T2 data (Figure S4) to compute the average
concentration of mannitol in the two hemispheres. The average ipsilateral mannitol concen-
tration in the high dose group (n = 3) was estimated to be 23.8 ± 17.8 mM, which is in good
agreement with that measured by the MRS method (24.1 ± 4.9 mM), whereas the average
concentration of mannitol was estimated to be 4.5 ± 3.7 mM in the low dose group (n = 3).
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Figure 9. Comparison of the change in CEST contrast (∆AREX) in the ipsilateral and contralateral
hemispheres after the injection of mannitol at different doses. (a) Histogram and (b) Mean values
of three rats injected with 3 mL 25% mannitol. *: p = 0.0237, paired two-tailed Student t-test, n = 3.
(c) Histogram and (d) Mean values of three rats injected with 1 mL 25% mannitol. N.S.: p = 0.4297,
paired two-tailed Student t-test, n = 3.

4. Discussion

In the present study, we systematically characterized the inherent CEST MRI contrast
of mannitol in vitro and exploited it for non-invasive and label-free detection of mannitol
accumulated in the brain following intra-arterial infusion for OBBBO. While mannitol has
been used as a hyperosmotic agent for various medical applications, including OBBBO, it
can cause severe adverse events in some patients (especially those with renal dysfunction),
including electrolyte abnormalities, acidosis, hypotension, acute renal failure congestive,
and heart failure with pulmonary edema [71–74]. Mannitol has been widely used to reduce
ICP in the context of progressive symptomatic brain edema. Mounting evidence shows
the correlation between excessive use of mannitol and mannitol accumulation in the areas
of trauma, infarction, and tumors, where the BBB is disrupted [24–26]. Recently, there has
been a renewed interest in using mannitol as a hyperosmotic agent to selectively open BBB
near lesions in the central nervous system (CNS) through intra-arterial catheterization [75].
It was reported that a single injection of mannitol could result in an effective transient BBBO
for 30 to 60 min, which returned to baseline completely in 2 to 10 h [76]. Catheter position,
infusion speed, and infusion volume collectively determine the spatial distribution and ex-
tent of BBBO [16–18]. In an OBBBO treatment, if injected at an excessive amount, mannitol
tends to leak into the region via the opened BBB. Our study concurred with this knowledge
and showed as high as 70 mM mannitol could leaked to the brain parenchyma. Brain
accumulation of mannitol was shown to be associated with consequent increase in water
content or edema (indicated by increased regional T1 and T2 times). These findings are con-
sistent with previously reported mannitol accumulation in the acute cerebral ischemia [30]
or brain tumors and surrounding peritumoral edematous parenchyma [28,29]. In contrast,
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when the infusion volume was relatively small (i.e., 1 mL of 25% mannitol or less), the
leakage of mannitol into the interstitial space was found insignificant, correlating well with
CEST MRI observation. Yet this dose was still sufficient to open the BBB as evidenced
by gadolinium contrast. Therefore, CEST MRI provides a useful non-invasive imaging
tool to optimize a mannitol-based BBBO treatment in which efficacy and adverse effects
are properly balanced. Of note, the infusion time is also a critical factor, and extended
infusion time can lead to thrombus formation and thereby ischemia. In fact, our MRS result
(Figure 4b) revealed the augmented production and accumulation of lactate (1.3 ppm) in
the ipsilateral hemisphere in some rats receiving a high dose (3 mL) using a long infusion
time (5 min), indicative of ischemia.

CEST MRI provides an effective non-invasive imaging tool for specifically assessing the
amount of mannitol accumulated in tissues, which is of clinical significance. The methods
currently being used in the clinic, including serum osmolarity or osmolar gap, are invasive
and indirect. Only a few electrochemical-sensors-based [77] or enzyme-based (e.g., mannitol
dehydrogenase) [24] ex vivo methods have been developed to date, but none of them enters
clinical applications yet. Only few mannitol-detecting MRI methods have been reported
previously. For instance, chemical shift imaging has been demonstrated to detect the spatial
distribution of mannitol in acute cerebral ischemia [30] and meningioma [29]. However,
low spatial and temporal resolution hinders the widespread clinical use of the 1H-MRS/CSI
method. Compared to 1H MRS, CEST MRI has relatively higher sensitivity, higher spatial
resolution, and shorter acquisition time; hence it is more suitable for monitoring mannitol
distribution in vivo in a clinical setting. Spin-lock (CESL) MRI has also been used to
detect D-mannitol [36,78]. CEST and CESL MRI are inherently very similar, with both
methods detecting exchangeable protons. In the CESL studies by Jin [36,78], mannitol
was used as an osmolality control to investigate the contribution of altered tissue water
content to the apparent ∆R1ρ. Being used as an intravascular agent in those studies, no
quantitative detection of tissue mannitol was performed. Here, we applied CEST MRI for
detecting mannitol accumulated in the brain. Our study is the first attempt to perform
quantitative analyses of tissue-accumulated mannitol using label-free CEST MRI directly by
its hydroxyl protons. Further technical optimization is warranted to improve the accuracy
of quantification. For example, we observed relatively large variations using a 6-pool Bloch
fitting, likely due to low SNR of pixel-wise CEST data. We then demonstrated that AREX
(also called AREXasym) was helpful in reducing the influence of T1 and T2. Still, future
studies are needed to convert the measured AREX values into mannitol concentrations
and validate such quantitation. Another technical hurdle is the potentially low sensitivity
of CEST MRI detection at low field strengths, such as 3T. For example, the simulation
(Figure S5) showed that the sensitivity may be as much as three times lower at 3T than
at 9.4T. While previous studies on glucose-enhanced CEST MRI were successful at 3T
scanners, both preclinically [79] and clinically [49,80], it will require a higher concentration
to generate sufficiently high CEST MRI at 3T. One possible solution is to use advanced
CEST MRI methods, such as CESL and on-resonance variable delay multipulse (VDMP),
which may be more suitable for detecting fast exchangeable protons, such as hydroxyl
protons, at 3T [48,78].

Lastly, the present approach could be particularly useful when OBBBO is combined
with the delivery of chemotherapy agents that can be detected by MRI based on their
inherent CEST signatures, such as gemcitabine [81,82], pemetrexed [83], olsalazine [84],
and melphalan [85], just to name a few. The combined CEST could concurrently optimize
mannitol dosing, the timing and dosing of the anticancer agent to be delivered and assess
whether therapeutically desirable drug levels are achieved within the target volume. Gen-
erating such data is not only crucial for individualized medicine, but was also recently
recommended as one of the baseline requirements for novel agents to be considered for
phase II/III brain cancer efficacy trials [2].

It should be noted that accurate determination of the concentration of mannitol using
CEST MRI is not always straightforward because the CEST MRI signal is affected by a
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wide variety of factors. For example, T1 is known to strongly affect CEST quantification.
In our study, we found the tissue T1 and T2 relaxation times were markedly increased
in the high dose group, attributed to edema formation. In this context, T1-compensated
methods such as the T1 compensated inverse Z-analysis (AREX) can be used to reduce the
potential influence of tissue T1 changes [59–61]. Our results showed that in the regions with
strong T1 changes, the degree of ∆AREX increase was much smaller than that of ∆MTRasym,
indicative of an overestimation of mannitol accumulation when the non-T1-compensated
MTRasym was used. However, both methods show consistent spatial distribution of man-
nitol (Figure 8). The AREX-based analyses also showed significantly elevated CEST in
the ipsilateral hemispheres compared to the contralateral hemisphere in the high man-
nitol dosing group, suggesting the observed CEST signal change was mainly the result
of mannitol accumulation than tissue T1 changes. Moreover, we utilized Bloch equation
fitting to extract mannitol concentration in the tissue. This method takes all factors, such
as T1, T2, tissue water content, and other exchangeable protons, into consideration and
hence potentially provides more accurate quantification of mannitol concentration. Indeed,
the computed mannitol concentrations were in good agreement with MRS measurement.
Tissue pH might also affect the accuracy of quantification. While both intracellular and
extracellular pH values in the healthy brain are constant [24], pathological changes such as
acute ischemia can cause tissue pH to vary significantly [86]. Hence, caution has to be taken
to quantify the mannitol concentration in different compartments. Injecting a relatively
large volume of mannitol solution may also cause a transient change in the blood pH (nor-
mal range ~7.4) because the solution has a relatively acidic pH of 5.9 (4.5 to 7.0). However,
the CEST MRI detection was performed 20 min later; hence, this transient pH change is
unlikely to impact our CEST MRI measurement significantly. All those factors should be
considered when converting the measured CEST signal to mannitol concentration. Given
that the NMR signals of non-exchangeable protons acquired by 1H-MRS are not prone to
these factors, combining CEST and MRS can achieve both quantification accuracy and high
spatial/temporal resolution for detecting mannitol.

5. Conclusions

We characterized the CEST MRI contrast of mannitol and demonstrated that CEST
MRI could be used for non-invasive, label-free detection of mannitol accumulated in the
brain parenchyma following OBBBO. Thus, the present CEST MRI method provides a
tool for monitoring the brain uptake of mannitol and adjusting the dose in mannitol-
based treatments to obtain optimized efficacy and safety. Furthermore, there is traction
to move guidance of IA infusions to cerebral vasculature from the current X-ray routine
toward real-time MRI guidance. In this new environment, the reported MRI method has
potential for improving the safety profile of OBBBO by continuously monitoring mannitol
accumulation in the brain. It could be combined with previously described, drug-detecting
CEST techniques to confirm adequate drug delivery after OBBBO.
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R1 and R2 relaxation rates of mannitol at different concentrations at pH 7.2 (37 ◦C, PBS). Figure S4.
Estimation of the change in hydroxyl proton concentration due to mannitol accumulation in the brain
by Bloch fitting of Z-spectral data. Figure S5. Comparison of the CEST signal at 3T and 9.4T.
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