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Abstract: The use of natural compounds is becoming increasingly popular among patients, and
there is a renewed interest among scientists in nature-based bioactive agents. Traditionally, herbal
drugs can be taken directly in the form of teas/decoctions/infusions or as standardized extracts.
However, the disadvantages of natural compounds, especially essential oils, are their instability,
limited bioavailability, volatility, and often irritant/allergenic potential. However, these active
substances can be stabilized by encapsulation and administered in the form of nanoparticles. This
brief overview summarizes the latest results of the application of nanoemulsions, liposomes, solid
lipid nanoparticles, and nanostructured lipid carriers used as drug delivery systems of herbal essential
oils or used directly for their individual secondary metabolites applicable in cancer therapy. Although
the discussed bioactive agents are not typical compounds used as anticancer agents, after inclusion
into the aforesaid formulations improving their stability and bioavailability and /or therapeutic profile,
they indicated anti-tumor activity and became interesting agents with cancer treatment potential. In
addition, co-encapsulation of essential oils with synthetic anticancer drugs into nanoformulations
with the aim to achieve synergistic effect in chemotherapy is discussed.
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1. Introduction

Drug design and discovery are a very complicated process [1-5] with an uncertain
result of a successful drug launch in the market [1,6-8]. Beyond the pharmacological
aspect, the pharmacokinetic behavior of the molecules must also be taken into account for
successful development [1,2,7,9,10]. In addition to synthetic molecules, another way to
“invent” new drugs is inspiration from nature, in particular, secondary metabolites of living
organisms. Their mixtures or isolated components/entities can be tested, and initially
natural substances can be subsequently modified by chemical [1,2,9,11-21] or technological
(galenical) [9,22-24] methods. One of the important sources of secondary plant metabolites
are essential oils (EOs), which play a key role in plant protection and occupy a prominent
place in folk medicine worldwide with their diverse biological activities, including an-
tibacterial, antiviral, antioxidant, and anticancer properties, which predestine them to be
used alone or in combination with synthetic drugs against numerous diseases, including
cancer, or in aromatherapy. Thus, EOs represent an important group of substances with a
long history of traditional applications that are widely used in the food, pharmaceutical,
agricultural, and cosmetic industries [25-29].

Recently, the application of nanotechnologies has become very popular in medicinal
products used in therapy and diagnostics [22,30-35]. According to physical sizes, any
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particles < 1000 nm are considered nanoparticles (NPs) [30]; industrially, NPs are parti-
cles < 100 nm [36,37], while in drug technology, submicron-size particles, i.e., sized in
the range of 100-500 nm (most often 100-200 nm), are considered NPs [38-41]. There
are many types of nanosystems used in biomedicine based on the materials they are pro-
duced from. Generally, they can be divided into inorganic, organic, and mixed or into
degradable and stable/non-metabolizable in biological systems. There are a great many
described preparation methods. Historically, nanoparticles were actually colloids prepared
by precipitation. At the beginning of the new millennium, NPs could also be prepared
by nanomilling in special nanomills in pilot and operation terms [42-56]. At present,
lipid-based NPs are prepared by, e.g., homogenization, extrusion, cross flow injection, or
microfluidic technologies [22,30,46,47,57-65].

The incorporation of bioactive compounds into nanosized matrices has a positive
influence on their chemical stability. Moreover, surface modification allows one to en-
gineer nanosystems with a defined time of circulation in the circulatory system or spe-
cific (passive, active) uptake in certain organs or only in damaged tissues. Thus, sys-
temic drug toxicity is reduced. Lastly, drug-stabilizing matrices themselves can potentiate
drug activity and modify it, thereby increasing its efficacy or overcoming cell resistance
mechanisms [38,41,44,46,47,54-56,66—71]. These additional benefits of nanoformulations
are used especially in formulations of anti-infective and anticancer drugs, and technologi-
cally, new generations of old molecules with improved therapeutic and safety profiles are
entering the market [40,71-74].

The authors consider it needless to discuss further general issues/knowledge related
to nanoparticles/nanoformulations (such as preparation, targeting, mechanisms of per-
meations into cells, etc.), because a lot of papers and books were written all over in this
regard (see Refs. [30-35,38-41,43-65,67-71,75]); therefore, all respective information can be
found in any available literature and is outside the scope of this review. By contrast, this
brief overview summarizes the latest results of the application of nanoemulsions (NEs),
liposomes, solid lipid nanoparticles (SLNPs), and nanostructured lipid carriers (NLCs)
used as drug delivery systems of herbal essential oils (EOs) or directly for their individual
secondary metabolites. Although the discussed bioactive agents are not typical compounds
used as anticancer agents, after inclusion into the aforesaid formulations improving their
stability and bioavailability and/or therapeutic profile, they demonstrated anti-tumor
activity and became interesting agents with cancer treatment potential.

2. Herbal Medicinal Compounds

Herbal drugs or medicinal plants have been used in traditional folk medicine for
thousands of years [11-13]. Therapeutically, certain parts of plants are used, or they
are extracted and complex extracts are used, or individual components are subsequently
isolated. Effective compounds arise as a result of specific metabolism and belong to the
so-called secondary metabolites, of which saccharides and their derivatives glycosides, EOs,
steroids, lipids, bitters, alkaloids, tannins, flavonoids, pigments, compounds with hormonal
action, proteins, peptides, and vitamins are used. This is a wide range of structurally
variable molecules with various biogeneses, mechanisms of action, and activities [20,76-78].
The contribution discusses different terpenoids shown in Figures 1 and 2, whose unifying
element is their anticancer activity confirmed on a nanoscale. Classical nature-based
anticancer drugs, which or whose semi-synthetic modifications have been used in cancer
treatment for a long time—e.g., taxanes, vinca alkaloids, camptothecin-based derivatives,
podophyllotoxin, colchicine, and anthracyclines—will not be presented.



Pharmaceutics 2022, 14, 2681 30f 22

HiG OH  HyC o—/< CHs CHs
; cH, M€Y

H3C CHs H3C CHs H3C CH3 H3C CH2 H5;C CHjy 3C
linalool linalyl acetate geranyl acetate D-limonene y-terpinene o-phellandrene a—terpmeol

CH3 CH3
@ @ L
o - i)
I =/ HsC 0
H;C

H3C H,C CH HsC CH3 H3C™ "CHj
terpinen- 4 01 trans-p- mentha 2 8 dlenol menthol menthone iso-menthone menthofuran cis-jasmone

?@@?é%

CHs HsC” “CH; HzC” “CH3 HsC”~ “CHs HsC~ “CH; HsC

cH p cymene B-cymene thymol carvacrol cuminaldehyde thymoqumone
3
CH3
Hj
B \\OH
: HsC H3C HsC H3C+ H3C
HsC” “CHs  H,C H,C H3C HsC
trans-(x-thujene o-pinene trans pmocarveol pinocarvone  camphane borneol camphor eucalyptol
(bornane)
Figure 1. Structures of individual discussed monoterpenes.
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Figure 2. Structures of individual discussed sesquiterpenes.

EQOs contain terpenoids, which are small fat-soluble organic molecules that can be
absorbed through the skin or nasal mucosa into the systemic circulation and cross the blood-
brain barrier. Therefore, topical application or inhalation of EO can also produce a systemic
effect. They are volatile and not sufficiently stable in light and ambient temperature. They
can be used directly with the whole plant or extracted from plants/plant parts, and then
these concentrated extracts are used for healing purposes. EOs occupy a prominent place in
traditional and folk medicine around the world. Due to a high content of volatile aromatic
compounds, they smell great, are used in aromatherapy to reduce stress and anxiety, have
powerful antimicrobial properties, help induce sleep and improve sleep quality, improve
cognitive function, and have the ability to lower blood sugar. EOs are also powerful
antioxidants that help prevent free radical damage to cells, hence they can contribute
to cancer prevention [79,80]. Their cytotoxicity preventing tumor growth is manifested
by a wide spectrum of mechanisms of action. Essential oils have been shown to have
cancer cell-targeting activity and are able to enhance the effectiveness of commonly used



Pharmaceutics 2022, 14, 2681

4 0f22

chemotherapy drugs while demonstrating pro-immune functions when administered to a
cancer patient [81,82].

Although the use of nature-based drugs has many disadvantages, society considers it
more favorably than the consumption/application of synthetic drugs. There are certainly
differences between the use of a dried plant drug in the form of tea/decoction/infusion, a
standardized extract, EO, and isolated secondary metabolites. The disadvantages of nature-
based drugs are illustrated in Figure 3. Nevertheless, a standardized plant extract/EO or an
isolated secondary metabolite can be formulated to various sophisticated drug formulations,
similarly as synthetic drugs, or can be co-formulated with them. Natural molecules that are
adjusted technologically in such a way to achieve increased stability, bioavailability, and
improved activity can be successfully applied in anticancer indications [83-86].
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Figure 3. Limitation of herbal medicines. Adapted from [85].

The advantages of microemulsions, NEs, liposomes, microparticles, SLNPs, and
self nanoemulsified drug delivery systems as delivery systems of herbal materials were
overviewed by Severino et al. [84] and Baena-Aristizabal [87]. The use of liposomes, NEs,
ethosomes, phytosomes, and lipid NPs as delivery systems of encapsulated plant natu-
ral extracts or their secondary metabolites with pharmaceutical activity, which exhibit a
sustained release, improved stability, and ameliorated therapeutic effect and can ensure
protection from toxicity, was discussed by Verma et al. [88] and Mahomoodally et al. [89].

3. Nanoemulsions of Essential Oils

Nanoemulsion (NE) is defined as a heterogeneous system consisting of two immiscible
liquids dispersed in one another, where the emulsion particle size is less than 1000 nm [90];
however, the average particle size is usually within 100-500 nm. In practice, the particle
size of NEs ranges from 20 to 200 nm and is characterized by a narrow particle size
distribution [91,92]. In principle, two types of nanoemulsions are distinguished: the
type of oil dispersed in water (0o/w) and the inverse type (w/o0) [93]. NEs are often
referred to as translucent or transparent, while classic emulsions are characterized as non-
transparent or milky [94]. Schematic illustrations of emulsions are shown in Figure 4 [95].
Due to the attractive properties of NEs, such as small sizes, high surface area, improved
dispersion of hydrophobic active ingredients, enhanced absorption, and ability for site-
specific or targeted delivery, NEs have become widely used as delivery systems for drugs
and dietary supplements, and also in cosmetics [49-51,53-56,75,94,96-99]. High- and
low-energy methods are used to prepare NEs, including high-pressure homogenization,
ultrasound, phase inversion temperature, and emulsion inversion point [51,54-56,75,84].
Contributions describing in detail the physical characteristics, composition, and methods
of preparations of NEs were published recently [94,100].
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Figure 4. Schematic illustrations of oil-in-water (O/W) (A) and water-in-oil (W/O) (B) emulsions,
representing micelle structure dispersed in continuous phase for each system. Adapted from [95].

Recent progress in the use of NEs as delivery systems contributing to the improved
efficacy of EOs and antimicrobials used in the treatment of infectious diseases via antimicro-
bial therapy was presented by Garcia et al. [101]. The advantage of herbal nanoformulations
over conventional anticancer drugs is their lower toxicity, as well as their improved bioavail-
ability and therapeutic efficacy [102]. Recent findings related to NEs as delivery systems for
bioactive compounds, originating from fruit and vegetable waste and showing numerous
biological properties, including anticancer activity, were summarized by Saini et al. [103].

3.1. Isolated Components of Essential Oils

A NE of carvacrol, a monoterpenoid phenol occurring in Thymus spp., with mean
droplet size 105.5-169.8 nm caused reactive oxygen species (ROS) production in adeno-
carcinoma human alveolar basal epithelial cells A549, resulting in the activation of crucial
apoptosis regulators (p-JNK, BAX, and BCL2), release of cytochrome c, and activation
of the caspase cascade, whereby mitochondrial ROS were involved in the cell death; the
powerful antitumor activity of the NEs was also observed in vivo using an athymic nude
mice model [104]. Another carvacrol NE prepared using Tween 80 with average particle
size 14-30 nm was reported to exhibit cytoprotective effect against cisplatin (CDDP)-
induced nephrotoxicity in albino rats [105]. Another carvacrol NE with mean particle size
99.1 nm and zeta potential —29.89 mV induced an increased expression of apoptotic pro-
teins in doxorubicin (DOX)-resistant A549 lung carcinoma cells, resulting in apoptosis, and
caused cell cycle arrest via reducing the expression of CDK2, CDK4, CDKS, cyclin E, and
cyclin D1 proteins and enhancing the expression of p21 protein; it also inhibited autophagy
via down-regulating autophagy markers ATG5 and ATG7 and upregulating p62 [106]. A
review article discussing nanocarriers used as a delivery system for D-limonene, one of the
main bioactive ingredients in citrus peels, showing anticancer activity, was published by
Akhavan-Mahdavi et al. [107]. A NE stabilized by in situ self-assembled natural oil/native
cyclodextrin complexes encapsulating costunolide (CTD), a metabolite extracted from
plant species Saussurea, Aucklandia, and Inula showing excellent anticancer activity with
mean particle size 199.56 nm was found to exhibit considerably higher anticancer activity
against A549 lung cells than non-encapsulated CTD, causing pronounced cell cycle arrest
at the S phase; a remarkably higher expression of caspase-3, BAX, and BCL-2, and p53
mRNA expression; and reduced activity of tumor necrosis factor alpha (TNF-«) and nuclear
factor-kappa B (NF-kB) compared to free CTD [108].
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By loading bleomycin, an antibiotic, in a cinnamon oil NE with average particle size
119.60 £ 1.20 nm and zeta potential —0.913 £ 0.001 mV, the resulting NE particle size in-
creased to 524.33 £ 1.10 nm and zeta potential achieved 0.537 £ 0.002 mV; such NE showed
a higher apoptotic effect on HeLa cervical cancer cells than free bleomycin [109]. Similarly,
an ifosfamide-loaded camphor EO NE (96.235 & 9.00 nm; zeta potential —22.00 £ 0.49 mV)
showed a higher cytotoxic effect on MCF-7 breast cancer cells and HeLa cervical cancer
cells than a camphor EO NE (34.975 +£ 9.35 nm; zeta potential —13.75 & 1.06 mV) and free
ifosfamide [110].

3.2. Essential Oils and Plant Extracts

A NE of Carum carvi EO exhibited apoptotic and cytotoxic effects on colon cancer cells
(HT-29); it reduced more effectively the viability of HT-29 cancer cells (ICsp: 12.5 ug/mL)
compared to HUVEC normal cells (50 ug/mL), considerably upregulated caspase-3 gene
expression, and did not show undesirable side effects. The strong apoptotic activity of
Carum carvi EO NE predestines it to be applied as food supplement also [111]. A NE of
Cuminum cyminum seed EO with average droplet size 10.4 &= 0.5 nm reduced the viability of
a tongue carcinoma cell line (SAS; ICsp: 1.5 uL/mL), causing early induction of apoptosis,
and diminished colony formation; the NE also showed superb antibacterial activity [112].
NEs fabricated using Cuminum cyminum L. tinctures with mean particle size 24 nm and
zeta potential —26.43 £ 9.87 mV showed a dose-dependent inhibition of angiogenesis via
reducing the number and length of blood vessels, presumably by inhibiting the expression
of vascular endothelial growth factor (VEGF) and VEGF receptor (VEGF-R) genes, along
with superb antibacterial and antioxidant activity [113]. Anethum graveolens EO NEs were
reported to reduce the viability of A549 cells and could be considered as an exclusive
apoptotic inducer in these lung cancer cells [114]. A Coriandrum sativum EO nanoemulgel
prepared using a self-nanoemulsifying technique showed better anticancer activity than the
crude EO achieving ICs values of 28.84 ug/mL, 28.18 ug/mL, and 24.54 ug/mL against
breast cancer cells (MCF-7), hepatocellular carcinoma cells (Hep3B), and human cervical
epithelioid carcinoma cells (HeLa), respectively [115]. A Ferula assa-foetida EO NE exhibited
remarkable cytotoxic, apoptotic, and anti-angiogenic impacts on MCF-7 cancer cells and
caused increasing destruction of the murine mammary glands’ cancer tissue, suggesting
that it might be used as an effective agent to treat breast cancer [116]. A Ferula gummosa
EO NE with spherical droplets of 24.6 nm and zeta potential of —28.5 mV synthesized at
a concentration of 2.9 ug/mL exhibited approximately 50% inhibition of HT-29 cells, but
did not inhibit normal cells up to a concentration of 4 ug/mL. The NE increased caspase-
3, caspase-9, and BAX and decreased BCL-2 gene expression and induced apoptosis,
inhibited angiogenesis and showed an additive effect on the expression of antioxidant
genes. Moreover, the NE was able to reduce tumor volume by 69.72% in 14 days in
the in vivo murine colon cancer model [117]. A Heracleum persicum EO NE inhibited the
proliferation of MDA-MB-231 breast cancer cells (ICsp: 2.32 ug/mL), and the application of
1.5 uL/mL considerably suppressed cell migration, while doses of 1.5, 2.5, and 3.5 ng/mL
pronouncedly upregulated caspase-3, suggesting that the NE was able to induce apoptosis
death in MDA-MB-231 cells and did not exhibit cytotoxic effects in the liver, kidney, and
jejunum of mice. Mice fed with 10 and 20 mg NE/kg body weight were characterized
with a pronouncedly upregulated expression of superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GPx) genes in the liver, but showed ameliorated villus
height, villus width, crypt depth, and goblet cells [118]. A NE of Apium graveolens seed oil
with droplet diameter 23.4 £ 1.80 nm showed cytotoxic effect against oral squamous cell
carcinoma cells (ICsp: 1.4 pL/mL) and pronouncedly reduced the proliferation of cancer
cells via suppressing anchorage-independent cell growth, disrupting colony formation, and
inducing apoptosis of cancer cells. Moreover, the NE also exhibited antibacterial activity
against Staphylococcus aureus, causing lipid membrane fusion and cytoplasmic leakage,
resulting in complete destruction of pathogen [119].
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An Origanum vulgare EO NE showed anticancer effects against prostate cancer cell
lines (PC3), reduced the density and shape of cells, and caused cell shrinkage. More-
over, it considerably diminished the accumulation of lipid droplets, fatty acid synthase,
and sterol regulatory element-binding protein; remarkably upregulated BAX (B-cell lym-
phoma 2 (BCL2) associated X) and caspase-3 expression; and reduced the transcript level
of BCL2 leading to apoptosis [120]. A NE of Origanum glandulosum Desf. EO fabricated
by high-pressure homogenization (HPH) exhibited a lower cytotoxic effect on the liver
cancer cell line HepG2 than the free EO, which was reflected in ICs( values of 131.6 pg/mL
and 73.13 ug/mL, respectively, suggesting that HPH adversely affected the content of
carvacrol, thymol, and other active compounds, thereby altering the content of volatile
compounds [121]. A NE of Mentha piperita EO containing menthol (31.0%), menthone
(22.1%), camphane (7.0%), menthofuran (6.0%), and iso-menthone (5.8%), with average
particle size of 136 £ 2 nm as major constituents, exhibited anticancer effects against
MCEF-7, MDA-MB-231, and MDA-MB-468 breast cancer cells, and after 24-h exposure
to the NE formulation, the observed effect was considerably higher than that after 72 h
exposure to the free EO. Moreover, M. piperita possesses an antiemetic effect, which is bene-
ficial for breast cancer chemotherapy that is frequently accompanied with vomiting [122].
A Mentha arvensis EO NE induced early apoptosis in the anaplastic/aggressive thyroid can-
cer cell line (HTh-7) and exhibited antibacterial activity against S. aureus, causing structural
changes in the lipid cell membrane of pathogen, with subsequent leakage of cytoplasmic
contents [123]. NEs of Mentha spicata oil and virgin Cocos nucifera oil, in which the ratio
of applied oils ranged from 40:60 to 80:20 and which were prepared using Cremophor
RH 40 surfactant, showed a strong cytotoxic effect against the oral carcinoma (KON) cell
line and have potential to be used as carriers for oral cancer therapy [124]. Lavandin EO
obtained from Lavandula angustifolia x L. latifolia plants containing linalool, eucalyptol,
a-pinene, camphor, and linalyl acetate as major components, as well as its NE, exhib-
ited pronounced cytotoxic effects on human neuroblastoma cells (SH-S5Y5Y) and human
lymphoblastic leukemia cells (CCRF-CEM), while human colorectal adenocarcinoma cells
(Caco-2), human breast adenocarcinoma cells (MCF-7), and normal breast epithelial cell
(MCF1) were more resistant to the treatment; the application of the nanoscale formulation
was more effective compared to the free oil, mainly for the treatment of Caco-2 cells [125].
A pectin NE of Zataria EO triggered the apoptosis of drug-resistant MDA-MB-231 breast
cancer cells and spheroids via rising ROS, loss of mitochondrial membrane potential, and
DNA damage, as well as by G, and S-phase arrest, and has potential to be used as an
antiproliferative and therapeutic agent in breast cancer therapy [126]. Salehi et al. [127] also
reported that an apple pectin-based Zataria multiflora essential oil (ZEO) NE considerably
suppressed the viability of MDA-MB-231, T47D, and MCF-7 breast cancer cells and greatly
induced apoptotic morphological alterations and DNA fragmentation, as well as apoptosis
in MDA-MB-231 cells, via loss of mitochondrial membrane potential due to increased ROS
accumulation. Moreover, this NE caused G, /M cell cycle arrest, DNA strand breakage, and
DNA oxidation and interacted with genomic DNA in a minor groove/partial intercalation-
binding mode. This NE was recommended for metastatic breast cancer therapy. A NE
of Saccocalyx satureioides Coss. et Durieu EO having carvacrol, thymol, and y-terpinene
as major constituents showed higher cytotoxicity on liver cancer cells (HepG2) compared
to the free EO (106 ng/mL vs 274.8 pug/mL), but lower antioxidant activity, which can
be associated with differences in total flavonoid and phenolic content and volatiles in
the NE and the free EO. Major constituents of the free EO were borneol, x-terpineol, and
thymol [128]. The size of a Teucrium polium L. EO NE (12.90 + 0.04 nm) after loading
with oxaliplatin (OXA) increased to 14.47 £ 0.53 nm, and the OXA-loaded NE exhibited
synergetic effects in HCT 116 wild-type and HT-29 mutant p53 colon cancer cells, achieving
the combination index of 0.94 and 0.88, respectively, and caused a higher percentage of
cell apoptosis via mechanism involving ROS-mediated mitochondrial apoptosis compared
to the application of monotherapy [129]. An o/w NE prepared using Tectona grandis leaf
extract with particle size approximately 20 nm showed photodynamic effects, reflected in
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increased toxicity against melanoma B16 F10 cells under illumination with red light, and
showed considerably lower toxicity against normal cells in the dark compared to the free
plant extract [130].

A NE of Jasminum humile EO containing 24 compounds and Jasminum grandiflorum EO
containing 17 compounds exhibited anticancer activity and showed lower ICsj against
HepG2 (26.65 and 22.58 vs 33.96 ug/mlL, respectively) and MCEF-7 cancer cells
(36.09 and 36.19 vs 52.73 pg/mL, respectively) than DOX and was not toxic to normal Vero
cells [131]. An optimized NE of Santolina chamaecyparissus EO having trans-p-mentha-2,8-
dienol (54.00%), -cymene (10.16%), trans-pinocarveol (6.22%), «-phellandrene (3.74%),
pinocarvone (2.86%), borneol (2.09%), and cis-jasmone (2.02%) as major components,
which showed minimum globule size of 15.98 nm, exhibited stronger anticancer activ-
ity against MCF-7 and HepG2 cancer cells and a comparable effect on Caco-2 cells than
gemcitabine [132]. The droplet size of an optimized Pulicaria crispa EO NE increased after
loading with gemcitabine from 9.93 £ 0.53 nm to 11.36 & 0.0.21 nm, and the gemcitabine-
loaded NE showed hundred times higher anticancer activity against MCF-7 and HepG2
cancer cells than the bare drug; synergistic effect observed using a ratio NE:gemcitabine
of 1:1 was reflected in 4.48-fold and 2.95-fold increases in apoptosis in MCF-7 and HepG2
cells, respectively, compared to gemcitabine. The drug-loaded NE increased the activa-
tion of the intrinsic apoptosis pathway via the upregulation of the expressions of p53
and caspase-3 and the downregulation of BCL-2 expression in MCF-7 cells, whereas the
expressions of caspase-3, BAX, and p53 were upregulated in HepG2 cells. The loading of
gemcitabine into the P. crispa EO NE can reduce the drug dose and eliminate side effects of
chemotherapy [133].

A NE of Linum usitatissimum seed EO showed considerable cytotoxic effect against
human ovarian cancer cells without impacting normal human foreskin fibroblasts (HFF)
and caused apoptosis. In addition, the NE showed anti-angiogenic activity reflected
in the reduced length and number of blood vessels observed in CAM assay [134]. An
Artemisia vulgaris EO NE exhibited remarkable cell-selective cytotoxic, apoptotic, and
antioxidant activities against MCF-7 cancer cells via upregulating caspase-9, CAT, and
SOD gene expression, restrained angiogenesis in MCF-7 breast cancer cells via down-
regulating VEGF gene expression, and reduced the number and length of chick CAM blood
vessels, suggesting its anti-angiogenic activity [135]. NEs with encapsulated n-hexane or
methanol extracts of Artemisia cina plant with particle sizes 15-16 nm and neutral surface
charge exhibited excellent antiproliferative activity against A549 cells (ICsp: 12.59 &= 0.7 and
5.6 0.4 ng/mL) compared to free plant extracts (ICsp: 35.96 & 1.7 and 41.6 £ 2.8 ug/mL) [136].

A NE encapsulating EO of the medicinal plant Myrtus communis, containing «-pinene,
eucalyptol, linalyl, linalool acetate, and geranyl acetate as major constituents, with mean
droplet size 179 £ 7 nm, which was gelified using carboxymethyl cellulose, exhibited
anticancer activity against A-375 melanoma cells with ICsp: 132.6 pg/mL, whereby the
nanogel was 4-folds more effective compared to the bulk EO; the nanogel also exhib-
ited pronouncedly better antimicrobial and antioxidant activity than the bulk EO [137].
A Syzygium aromaticum L. EO NE with mean particle size 131.2 nm induced apoptosis
of human HT-29 colon cancer cells, and in an in vivo experiment, it exhibited cytopro-
tective properties on the mice liver, increasing the gene expression of antioxidant en-
zymes and reducing lipid peroxidation; this NE has potential to be used in colon cancer
treatment [138]. A NE of Syzygium aromaticum bud EO caused apoptosis and reduced the
proliferation of thyroid cancer cells (HTh-7) and exhibited antibacterial activity against
Staphylococcus aureus, resulting in the leakage of cytoplasmic contents through the destroyed
bacterial cell membrane [139]. A NE of frankincense (an aromatic resin obtained from trees
of the genus Boswellia containing x-pinene as a major volatile compound) with average
particle diameter < 20.0 nm prepared with propylene glycol (PG) as a co-surfactant exhib-
ited improved cytotoxic activity against lung cancer A549 cells compared to a PG-free NE,
a-pinene, and DOX, being more effective in inducing apoptosis than other formulations
and the free EO. The PG-containing frankincense EO NE upregulated the pro-apoptotic
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genes (DR5, FAAD, caspase-8, p53, and BAX) and downregulated the anti-apoptotic and
reoccurrence genes (BCL-2, NF-kB, and STAT-3), whereby it was less cytotoxic to nor-
mal WI-38 lung cells [140]. Zingiber ottensii EO having zerumbone (25.21%), sabinene
(23.35%), and terpinen-4-ol (15.97%) as major constituents was found to be cytotoxic to
A549, MCF-7, HeLa, and K562 cells with ICsg of 43.37 £ 6.69, 9.77 4 1.61, 23.25 + 7.73, and
60.49 £ 9.41 png/mL, respectively, and induced apoptosis at exposure to 2, 3, and 10 pg
EO/mL. The anticancer activity against MCF-7 cells increased after loading the EO in
nanoscale formulations, such as NE, ME, nanoemulgel, and microemulgel, and achieved
ICsp values (expressed in ng of the EO) of 1.08 £ 2.58, 0.74 £ 0.45, 4.31 + 0.91, and
6.45 + 5.84 ng/mlL, respectively, suggesting a remarkable increase in the efficiency to
deliver the EO into MCEF-7 cells [141]. Stable NEs fabricated using Amomum kravanh EO
and olive oil as a fixed oil (an Ostwald ripening inhibitor) applied at a ratio of 80:20 showed
a remarkable cytotoxic impact on oral cancer cells, achieving 99.68 £ 0.56% inhibition,
and were able to suppress metastasis, causing death of oral cancer cells via the intrinsic
apoptosis pathway [142].

A NE of Nigella sativa L. EO with particle sizes 20-50 nm pronouncedly reduced the
viability and induced apoptosis of MCF-7 breast cancer cells. The treated cancer cells
were characterized with membrane blebbing, cytoplasmic vacuolation, marginalization
of chromatin, and fragmentation of the nucleus [143]. The pure EO of Nigella sativa seeds
containing p-cymene (40.0%), thymoquinone (31.2%), and trans-x-thujene (12.8%) as major
constituents and its NE formulations showing particle sizes ranging from 9.4 to 119.7 nm
exhibited dose-dependent antiproliferative activity against hepatocellular carcinoma (HCC)
cells HepG2 and Huh-7. An optimized NE fabricated using a single surfactant Tween 80
was the most effective, achieving 78.1% and 90.8% inhibition of HepG2 and Huh-7 cells,
respectively, and the estimated respective ICsy values of 55.7 and 35.5 ug/mL were lower
compared to 100 ng/mL observed with DOX. The apoptotic activity of this NE was higher
compared to the pure EO, and the NE also showed a greater upregulation of pro-apoptotic
BAX and down-regulation of anti-apoptotic BCL-2 markers with the highest BAX/BCL-2
ratio of 69 against Huh-7 cells, while practically no cytotoxicity against normal WI-38
cells was shown by it, suggesting its potential to be used as an adjuvant liver anticancer
agent [144]. An optimized NE of 5" day sprout extract of N. sativa L. with average particle
size 37.47 nm, which released 98.2% of cargo in 24 h, reduced the viability of hepatocellular
carcinoma cells and enhanced the formation and intensity of ROS production and chromatin
condensation [145]. A NE fabricated using an N. sativa tincture pronouncedly diminished
the bioavailability of A2780 ovarian cancer cells, whereby the estimated ICsy of 0.72 pug/mL
was 34.7-folds lower than that observed against normal umbilical vein endothelial cells
(HUVEC) (ICs9 > 25 ug/mL); the pro-apoptotic effect of the NE was confirmed by acridine
orange and propidium iodide staining [146].

A Pistacia atlantica fruit EO NE with mean particle size 35.8 nm and zeta potential
—32 mV, containing 9% Tween 80 exhibited cytotoxic effects against skin, lung, and prostate
cancer (ICsp < 10 ug/mL) without adverse impact on normal cells; it enhanced intracellular
ROS, caused an increase in the expression of caspase-3, ad caspase-8, and IL-10 genes,
and inhibited vessel length and number, as well as cell migration. This EO NE can be
considered as an effective therapeutic agent against lung cancer [147]. NEs prepared from
Pinus morrisonicola needle EO with mean particle size 41.16 nm exhibited a higher inhibition
of HT-29 cancer cells compared to normal HFF cells, pronouncedly upregulated caspase-3,
caspase-9, VEGF/VEGF-R, CAT, and SOD genes, and caused the apoptotic death of cancer
cells, which was reflected in increased sub-G1 peaks [148]. A NE of Citrus aurantium bloom
EO containing linalyl acetate, limonene, and x-terpineol as major constituents with average
particle size 76.9 & 6.11 nm and zeta potential —43.5 mV exhibited cytotoxic impact on A549
cells (ICsp: 152 pg/mL), induced the overexpression of caspase-3, and triggered apoptosis.
Moreover, the NE practically did not show remarkable histopathological alteration in the
liver and kidney but enhanced the jejunum morpho-structural architecture and hepatic
antioxidant redox potential in mice receiving daily NE doses of 10 and 20 mg/kg body
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weight via gavage for 30 days. It was assumed that this NE could be used as an alternative
to prevent lung cancer progression [149]. A NE of Drimys brasiliensis EO containing bicy-
clogermacrene (19.6%) and cyclocolorenone (18.2%) as major constituents with particle size
168 nm and zeta potential ca. =34 mV reduced the viability of human glioblastoma U-138
MG and human bladder carcinoma T24 cells and caused the late apoptosis of the cancer
cells [150]. A NE of Ricinus communis EO showing droplets of 81.4 nm and exhibiting superb
antioxidant activity considerably reduced the viability of HepG2 cells after incubation for
48 h, and with increasing NE doses, an upregulation of the expression of caspase-3 and an
increase in sub-G1 peaks in treated cancer cells were observed. The impact of the NE was
cell-specific; normal L1929 cells were not affected [151].

4. Essential Oils Encapsulated in Liposomes

Liposomes are small artificial spherical vesicles formed mostly by a lipid bilayer
and an inner compartment isolated from the environment. Taking into account their size,
biocompatibility, and hydrophobic and hydrophilic properties, liposomes are ideal as drug
delivery systems. They are mostly prepared from natural or synthetic phospholipids, often
with the addition of cholesterol to strengthen the membrane, most commonly by extrusion,
injection, or microfluidic methods. From the chemical point of view, liposomes are formed
by phospholipids enriched with phosphatidylcholine. On their external surface, there can
also be ‘ligands required for the recognition and acceptance of the liposome by a particular
tissue. Main types of liposomes include multilamellar vesicles, small unilamellar vesicles,
and large unilamellar vesicles. The number of concentric membranes in the liposome
depends on the conditions of its formation. However, bilayer or single-layer membranes
are most common [152-154]. Schematic illustrations of lipid-based nanosystems including
liposomes, SLNPs, and nanostructured lipid carriers (NLCs) are shown in Figure 5 [67].
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Figure 5. Schematic illustrations of lipid-based nanosystems: liposome (A), drug-loaded liposome
(B), targeted liposome (C), PEGylated liposome (D), solid lipid nanoparticle (E), and nanostructured
lipid carrier (F). Adapted from [67].

An improvement of the bioavailability of phenolic compounds applied as antidia-
betic, anti-inflammatory, and anticancer agents by their encapsulation into liposomes was
overviewed by Tatipamula and Kukavica [155]. Progress in anticancer phytochemical-
loaded liposomal formulations with improved therapeutic effectiveness due to enhanced
entry across cell barriers and cancer-specific targeting capabilities was comprehensively
reviewed by Chavda et al. [156]. Benefits of plant-derived compounds encapsulated in lipo-
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somes and nanoliposomes ensuring their improved stability and bioavailability while used
in the pharmaceutical and nutraceutical industry were summarized by Jahadi et al. [157].

4.1. Isolated Components of Essential Oils

Liposomes of furanodiene, a primary sesquiterpene extracted from the rhizome EO
of Curcuma wenyujin, inhibited the in vitro proliferation of twelve tested cancer cell lines,
including HeLa, Hep-2, HL-60, and U251 cells, as well as the proliferation of uterine cervix
(U14) tumor induced in mice in vivo, where tumor inhibition rates achieved even 58.29%
after intraperitoneal administration of a dose 80 mg/kg [158]. Long-circulating liposomes
co-encapsulating 3-elemene (a volatile compound of Rhizoma curcumae EO) and IR780
photosensitizer with mean particle size 130 nm and high encapsulation efficiency (EE) for
both encapsulated compounds showed a superb photothermal conversion efficiency upon
near infrared (NIR) light irradiation and, after i.v. administration, gradually accumulated in
the tumor area, causing an increase in tumor temperature by 20 °C under irradiation with
an 808 nm laser. At exposure to NIR light, the liposomal formulation with co-encapsulated
[3-elemene and IR780 generated remarkable ROS amounts and exhibited improved cytotox-
icity against Lewis lung cancer cells compared to the non-irradiated nanoformulation or
laser-irradiated IR780-encapsulating liposomes [159].

4.2. Essential Oils and Plant Extracts

A liposomal formulation of bergamot EO increased the anticancer activity of the
free EO in vitro against human SH-SY5Y neuroblastoma cells [160]. The comparison
of nanosized liposomes and nanoniosomes with a negative charge that encapsulated
Achillea millefolium EOs showed that the nanoliposomes were able to encapsulate a higher
percentage of EOs than the nanoniosomes, although the nanoniosomes demonstrated a
smaller size and slower release than the nanoliposomes. The nanoformulations showed
excellent antimicrobial effect exceeding that of the free EO and have potential to be used in
the treatment of breast cancer [161]. Based on the investigation of the viability of MCF-7
cancer cells, the 24-h ICsg of 25 ug/mL was estimated for free Origanum vulgare L. EO, while
by encapsulation of the EO into Phospholipon® 90H liposomes, the cytotoxic activity was
considerably enhanced and the reduction of cell viability to 25.89% was observed compared
to 50.10% reduction determined for the free EO. On the other hand, the reduction of cell
viability observed with the application of O. vulgare EO-loaded Phospholipon® 85G or
O. vulgare EO-loaded Lipoid 5100 liposomes (51.22% and 40.41%, respectively) was compa-
rable with that of the free EO [162]. The improved anticancer properties of a nanoliposomal
system containing Rosmarinus officinalis EO against MCEF-7 cells compared to the free EO
described by Salari and Salari [163] were achieved due to ameliorated drug delivery. A
nanoliposomal formulation of the aqueous extract of Agrostemma githago seeds with mean
particle size 171.5 nm showed considerably higher cytotoxicity against the AGS human gas-
tric cancer cell line than the free extract (ICsy: 4.43 £ 1.49 pug/mL vs 13.02 £ 0.95 pg/mL).
Considering that agrostin and saponin are the most important compounds in the extract
showing cytotoxic effect, it can be supposed that the ability of saponin to increase the entry
of agrostin into target cancer cells was escalated due to encapsulation into liposomes [164].

Nanoliposomes prepared using dipalmitoylphosphatidylcholine (DPPC), polyethy-
lene glycol (PEG) 2000, 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine (DSPE), and
cholesterol, which encapsulated raw extract of Bistorta amplexicaulis and had particle sizes
140-155 nm, zeta potential from —16.9 to —19.8 mV, and 81% EE, exhibited pronouncedly
higher uptake and cytotoxicity against MCF-7 breast cancer cells and HepG2 hepatocel-
lular carcinoma cells in vitro compared to the free extract and reduced toxicity against
human umbilical vein endothelial cells (HUVEC) [165]. Brucea javanica oil-loaded lipo-
somes inhibited the proliferation of HepG2 cells in a dose-dependent manner via inducing
apoptosis [166]. The intravenous administration of progesterone-like compounds from the
leaf extract of Dendrophthoe pentandra L. encapsulated in 10% liposomal small unilamellar
vesicles using doses 3, 5, and 7 mg liposomal formulation per 100 g body weight of rats
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resulted in 1.20-2.40 fold higher plasma concentration of the active compounds compared
to the control [167].

5. Essential Oils Encapsulated in Solid Lipid Nanoparticles

Solid lipid nanoparticles (SLNPs) are similar to oil in water emulsions, but at room
temperature, the liquid emulsion part is replaced by a solid lipid part, which allows loading
both hydrophilic and hydrophobic molecules [168-170]. Elkordy et al. [83] comprehensively
overviewed pharmaceutical formulations prepared from therapeutically active extracts
of natural products. Phytonanoformulations exhibiting the controlled release of active
constituents and ensuring their enhanced absorption at pancreatic cancer sites resulting in
improved therapeutic effects on cancer cells were discussed by Gupta et al. [171]. Nanofor-
mulations containing vegetable oil-based bioactive compounds showing nutraceutical
and human health-supporting properties showed ameliorated uptake, absorption, and
bioavailability of these compounds in the body and can contribute to the prevention and
management of diseases [172]. In addition, the drug delivery of natural products, includ-
ing extracts/EOs of nine medicinal plants and nine natural bioactive compounds using
nanocarriers, which were designed for powerful breast cancer treatment, was overviewed
by Yap et al. [173].

5.1. Isolated Components of Essential Oils

Cuminaldehyde-loaded gelled SLNPs prepared using a hot emulsification process with
monoglyceride as a lipid gelator and showing particle sizes 117-138 nm exhibited a stronger
cytotoxic impact on human lung and colorectal cancer cells than free cuminaldehyde, and
the formulation showed minor toxicity against normal peripheral blood mononuclear
cells [174]. Linalool-loaded SLNPs consisting of myristyl myristate, cetyl esters, and cetyl
palmitate, which were fabricated by sonication in the presence of Pluronic®, with particle
sizes 90-130 nm, zeta potential approx. —4.0 mV and >80% EE exhibited the controlled
release of linalool for 72 h and more effectively inhibited proliferation of hepatocarcinoma
HepG2 and lung adenocarcinoma A549 cells than free linalool [175].

5.2. Essential Oils and Plant Extracts

Sharifalhoseini et al. [176] prepared SLNPs encapsulating Foeniculum vulgare EO with
mean particle size 55.43 nm and zeta potential —29.54 £ 11.67 mV, which exhibited strong
toxicity against MCF-7 cells and induced apoptosis in cancer cells, while their toxicity
against normal HUVECs cells was low. SLNPs loaded with Ferula assa foetida seed oil
pronouncedly suppressed the growth of human NTERA-2 embryocarcinoma cells; induced
apoptotic death via upregulating the expression of TNF-«, P21, and caspase-3 genes; and
inhibited angiogenesis in chorioallantoic membrane (CAM) tissue via reducing the length
and number of its blood vessels [177].

While with the application of 1200 pg/mL of Mentha longifolia and Metha pulegium
EOs, the viability of a melanoma cell line (A-375) and breast cancer cells MDA-MB-468 and
MCE-7 achieved > 55%, after the encapsulation of the EOs into SLNPs with mean particle
sizes 107 £ 9 and 191 & 8 nm and zeta potentials —7.10 and —4.81 mV, respectively, a dose
of 600 ng/mL reduced the viability of the tested cell lines approximately to 10% [178].
SLNPs encapsulating Zataria multiflora EO with mean particle size 176 £+ 8 nm and
67 + 5% EE showed antiproliferative effect on MDA-MB-468 and A-375 cancer cells in a
dose-dependent manner, where a dose of 75 pug/mL reduced their viabilities to <13% [179].
Satureja khuzistanica EO-loaded SLNPs, the surface of which was modified with folate-
bound chitosan, exhibited selective toxicity against MCF-7 cells with ICsq 88 pug/mL, and it
was found that these SLNPs inhibited cancer cells via activating the internal pathway of
apoptosis, as well as cell cycle disruption [180].

SLNPs encapsulating Pistacia atlantica EO with particle sizes ranging from 92.20 & 2.1 nm
to 334.5 & 3.2 nm, negative zeta potential values, 97.3% EE, and 9.6% loading capacity
not only inhibited the proliferation of MDA-MB-231 cells, but also stimulated apoptosis
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in these breast cancer cells, and, in contrast to control or placebo groups, considerably
reduced the number of cells in the G, /M phase [181].

6. Essential Oils Encapsulated in Nanostructured Lipid Carriers

Nanostructured lipid carriers (NLCs) are systems for drug administration consisting
of solid and liquid biocompatible and biodegradable lipids forming a basic matrix, sur-
face active substances, and co-surfactants [182-185]. NLCs can be understood as a next
generation of SLNP carriers. Their properties and production are described in detail by
Chauhan, Elmowafy, and Fang [184-186]. Innovative NLC drug delivery systems suitable
to be loaded with natural plant extracts and their possible biomedical applications were
discussed by Rahman, et al. [187].

6.1. Isolated Components of Essential Oils

Eucalyptol encapsulating NLCs fabricated using the high pressure homogenization
technique with average particle size 71.8 &£ 2.1 nm and zeta potential —2.927 + 0.163 mV
exhibited cytotoxic effects on human (MDA-MB-231) and murine (4 T1) breast cancer cells
in vitro (72-h ICsq values of 10.00 & 4.81 ug/mL and 17.70 = 0.57 pg/mL, respectively) and
induced apoptosis in the MDA-MB-231 cells. In an in vivo sub-chronic toxicity study using
a BALB/c mice model, the eucalyptol-containing nanoformulation did not cause toxicity or
mortality to animals, and changes observed in the mice body weight, hepatic, and renal
histopathology, as well as NO and malondialdehyde contents were negligible [188].

6.2. Essential Oils

NLCs encapsulating either lavender or melaleuca EO and bupivacaine (S(-)75:R(+)25)
showed cytotoxic effects on mice (B16-F10) and human (SK-MEL-25) melanoma cells
and reduced the relative IC5y values by 80% and 62% at application of the lavender EO
and by 80% and 25% using the melaleuca EO compared to free bupivacaine; moreover,
the anesthesia time of encapsulated bupivacaine was doubled [189]. NLCs loaded with
Pistacia atlantica Desf EO showing spherical shape with size 151 nm and negative zeta
potential -29.1 &+ 1.4 mV reduced the viability of SK-BR-3 breast cancer cells via cell cycle
arrest and apoptosis and may be used for breast cancer therapy [190].

7. Essential Oils and Their Components with Anticancer Activity

Within this contribution, EOs and their components incorporated into various lipid-
based delivery nanosystems are described. Table 1 summarizes the discussed EOs and
individual secondary metabolites isolated from EOs or herbal extracts that have been
observed to have in vitro anticancer activity when incorporated into nanosystems.

Table 1. In vitro anticancer effects of nanoformulated EOs and individual secondary metabolites
isolated from EOs or herbal extracts.

Formulation Plant EO or Constituent of EO Tested Human Cancer Cell Lines Refs.
NEs carvacrol lung adenocarcinoma A549 cells [104]
carvacrol doxorubicin resistant-A549 cells [106]
Carum carvi EO HT-29 colorectal adenocarcinoma cells [111]
Cuminum cyminum seed EO SAS tongue carcinoma cells [112]
Anethum graveolens EO lung adenocarcinoma A549 cells [114]
Ferula assa-foetida EO MCEF-7 breast cancer cells, mammary cancer tissue [116]
Ferula gummosa EO HT-29 colorectal adenocarcinoma cells [117]
Heracleum persicum EO MDA-MB-231 breast cancer cells [118]
Apium graveolens EO SAS tongue carcinoma cells [119]
Origanum vulgare EO PC3 prostate cancer cells [120]
Origanum glandulosum Desf. EO HepG2 liver cancer cells [121]
Mentha piperita EO MCEF-7, MDA-MB-231, MDA-MB-468 breast cancer cells [122]
Mentha arvensis EO HTh-7 thyroid cancer cells [123]
Mentha spicata EO KON oral squamous carcinoma cells [124]

L . MCEF-7 breast cancer cells, CCRF-CEM lymphoblastic leukemia cells, Caco-2
avandin EO . [125]

colorectal adenocarcinoma cells

Zataria EO MCF-7, MDA-MB-231 breast cancer cells [126]
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Table 1. Cont.

Formulation Plant EO or Constituent of EO Tested Human Cancer Cell Lines Refs
Zataria multiflora EO MCEF-7, MDA-MB-231 and T47D breast cancer cells [127]
Saccocalyx satureioides Coss. et Durieu EO HepG2 liver cancer cells [128]
Teucrium polium L. EO HCT 116 and HT-29 colorectal adenocarcinoma cells [129]
Jasminum humile EO HepG2 liver cancer cells, MCF-7 breast cancer cells [131]
Jasminum grandiflorum EO HepG2 liver cancer cells, MCF-7 breast cancer cells [131]

S . . MCF-7 breast cancer cells, HepG2 liver cancer cells, Caco-2 colorectal
antolina chamaecyparissus EO . [132]

adenocarcinoma cells
Pulicaria crispa EO MCE-7 breast cancer cells, HepG2 liver cancer cells [133]
Linum usitatissimum seed EO A2780 ovarian cancer cells [134]
Artemisia vulgaris EO MCEF-7 breast cancer cells [135]
Artemisia cina EO lung adenocarcinoma A549 cells [136]
Muyrtus communis EO A-375 melanoma cells [137]
Syzygium aromaticum EO HT-29 colorectal adenocarcinoma cells [138]
Syzygium aromaticum buds EO HTh-7 thyroid cancer cells [139]
frankincense resin lung adenocarcinoma A549 cells [140]
Zingiber ottensi EO MCEF-7 breast cancer cells [141]
Nigella sativa EO MCF-7 breast cancer cells. [143]
Nigella sativa EO HepG2 and Huh-7 liver cancer cells [144]
Pistacia atlantica EO lung adenocarcinoma A549 cells [147]
Pinus morrisonicola needle EO HT-29 colorectal adenocarcinoma cells [148]
Citrus aurantium bloom EO lung adenocarcinoma A549 cells [149]
Drimys angustifolia EO U-138 MG glioblastoma cells, T24 bladder carcinoma cells [150]
Ricinus communis EO HepG2 liver cancer cells [151]
. .. HelLa cervical cancer cells, laryngocarcinoma Hep-2 cells, HL-60 promyelocytic

Liposomes Curcuma wenyujin EO leukemia cells, U251 human g}{io%na cells P promyeiosy [158]
Curcuma longa EO Lewis lung cancer cells [159]
Citrus bergamia EO SH-SY5Y neuroblastoma cells [160]
Achillea millefolium EOs MCEF-7 breast cancer cells [161]
Origanum vulgare L. EO MCF-7 breast cancer cells [162]
Rosmarinus officinalis EO MCEF-7 breast cancer cells [163]
Brucea javanica EO HepG2 liver cancer cells [166]
SLNPs cuminaldehyde lung adenocarcinoma A549 cells, HCT 116 colorectal adenocarcinoma cells [174]
linalool HepG2 liver cancer cells, lung adenocarcinoma A549 cells [175]
Foeniculum vulgare EO MCF-7 breast cancer cells [176]
Ferula assa-foetida seed EO NTERA-2 embryocarcinoma cells [177]
Mentha longifolia EO MDA-MB-468 and MCF-7 breast cancer cells [178]
Mentha pulegium EO MDA-MB-468 and MCF-7 breast cancer cells [178]
Zataria multiflora EO MDA-MB-468 breast cancer cells, A-375 melanoma cells [179]
Satureja khuzistanica EO MCEF-7 breast cancer cells [180]
Pistacia atlantica EO MDA-MB-231 breast cancer cells [181]
NLCs eucalyptol MDA MB-231 breast cancer cells [188]
lavender EOs SK-MEL-25 melanoma cells [189]
Pistacia atlantica Desf EO SK-BR-3 breast cancer cells [190]

8. Conclusions

Natural compounds are once again becoming an important source of inspiration for
scientists to design new anti-invasive drugs. The natural compounds themselves often
have a complex structure or disadvantageous properties (bioavailability, stability), so
they are predominantly considered as lead compounds only. However, small molecules
such as essential oils found in many plants are not only a frequent source of inspiration,
but also a commonly used therapeutic agent. Traditionally, various EOs are used as
antimicrobial compounds or antioxidants, but due to their disadvantageous properties,
such as volatility, irritation, and limited bioavailability, they are rarely used as real drugs
and only as supplements in the treatment. However, these compounds have also been found
to have therapeutic efficacy for difficult-to-treat diseases, such as cancer. They can reduce
the unwanted side effects of treatment, and their use with other chemotherapeutics can
prevent the selection of cancer cells resistant to treatment. A secondary benefit associated
with the use of natural compounds is the possibility to reduce the use of substances harmful
to health and the environment, such as toxic reagents or harmful solvents. The application
of innovative technologies and advanced drug forms, i.e., the incorporation of bioactive
agents of natural origin into nanoformulations, preferably with targeted biodistribution,
makes it possible to overcome some of the physicochemical limitations of these drugs and
enables their evaluation in terms of their anticancer activity in vitro and in vivo, thus far
mainly in animal models. As already mentioned, many nanoformulations of EOs have
demonstrated in vitro potential as anticancer agents, but there is still a long way to go
before successful registration and application of these traditional compounds from folk
medicine as anticancer drugs.
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