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Abstract: In recent years, antimicrobial peptides (AMPs) have enjoyed a renaissance, as the world is
currently facing an emergency in terms of severe infections that evade antibiotics’ treatment. This is
due to the increasing emergence and spread of resistance mechanisms. Covalent conjugation with
polymers is an interesting strategy to modulate the pharmacokinetic profile of AMPs and enhance
their biocompatibility profile. It can also be an effective approach to develop active coatings for
medical implants and devices, and to avoid biofilm formation on their surface. In this concise review,
we focus on the last 5 years’ progress in this area, pertaining in particular to AMPs that contain
D-amino acids, as well as their role, and the advantages that may arise from their introduction
into AMPs.
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1. Introduction

The vast majority of pharmaceutical companies have severely decreased their R&D
investment towards the development of new antimicrobial (AM) agents. This is due to the
poor economical returns for antibiotics that have been approved for market over the last
few decades [1]. Conversely, we are witnessing today a revival of research towards novel
AM agents, because of the global emergency that we are all facing in terms of antimicrobial
resistance (AMR), with the term AM referring to antibiotics, anti-viral and anti-malarial
agents. There are various causes for the spread of AMR, comprising first and foremost the
well-known misuse of AM agents to treat infections both in humans and animals, especially
in countries with a lack of regulations on their use, and where a medical prescription is not
required to access them. Furthermore, clear guidelines pertaining to the safe disposal of
expired and unused antibiotics are urgently needed. This aspect is crucial to reduce the
amount of AM drugs that are released into the environment, thus causing further AMR
spreading. Other important factors to counter infections are good hygiene and appropriate
sanitation programs. Overall, failing to address all these points leads to the concrete risk of
entering the so-called “post-antibiotic” era, where even simple infections may become a
significant cause of mortality worldwide [2].

Within pathogens, there are mainly four mechanisms (Figure 1) through which AMR
emerges:

1. Modification of the drug target site that leads to ineffective drug binding;
2. Drug inactivation through enzymatic hydrolysis or modification;
3. Reduced drug entrance because of low permeability;
4. Increased drug elimination through efflux pumping [3].
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relevant microbes often possess mobile genetic elements that facilitate the spread of re-
sistance and enable biofilm formation not only on host tissues, but also on surfaces [6]. 
The acronyms refer to their ability to escape the action of AM agents for which they are 
notorious culprits of nosocomial infections that are associated with the highest risks of 
mortality and healthcare elevated costs [7]. The World Health Organization (WHO) lists 
ESKAPE pathogens among those against which novel AMs are needed with urgency, and 
have further been classified into medium, high, and critical priority [8]. Therefore, it is 
not surprising that antimicrobial peptides (AMPs) are receiving increasing attention as 
alternatives to antibiotics to address these challenges, and the inclusion of D-aa is partic-
ularly relevant as an attractive strategy to overcome some of their existing limitations, as 
discussed further below. To the best of our knowledge, this is the first review that focuses 
on AMPs with D-aa that have been covalently conjugated to polymers, and it gathers the 
available information on the occurrence and role of D-aa to assist with the future design 
of enhanced AMPs, and related materials for their delivery. 

1.1. D-Amino Acids (D-aa) in Nature 
D-aa are non-proteogenic, yet they have been found to occur in bioactive peptides in 

a wide variety of organisms [9], where their presence is important to increase their po-
tency through the definition of specific conformations and increased resistance against 
enzymatic hydrolysis [10]. Their occurrence in metazoan organisms is well-documented, 
but it is anticipated that D-aa-containing peptides may have physiological effects within 
humans that are yet to be discovered [11]. In particular, D-Ser and D-Asp are the most 
abundant D-aa found in mammals, where they have physiological roles in neuromodu-
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The Centres for Disease Control and Prevention (CDC) 2019 Antibiotic-Resistance
Threats Report lists multi-drug resistant (MDR) pathogens, divided into groups based
on the decreasing level of emergency and severity of the required response, in the order:
urgent, serious, or concerning threats, followed by a watch list [4,5]. Useful acronyms that
include very dangerous MDR pathogens are ESKAPE (E. faecium, S. aureus, K. pneumoniae, A.
baumannii, P. aeruginosa and Enterobacteriaceae) and ESCAPE (E. faecium, S. aureus, C. difficile,
A. baumannii, P. aeruginosa and Enterobacter species). These clinically relevant microbes
often possess mobile genetic elements that facilitate the spread of resistance and enable
biofilm formation not only on host tissues, but also on surfaces [6]. The acronyms refer
to their ability to escape the action of AM agents for which they are notorious culprits of
nosocomial infections that are associated with the highest risks of mortality and healthcare
elevated costs [7]. The World Health Organization (WHO) lists ESKAPE pathogens among
those against which novel AMs are needed with urgency, and have further been classified
into medium, high, and critical priority [8]. Therefore, it is not surprising that antimicrobial
peptides (AMPs) are receiving increasing attention as alternatives to antibiotics to address
these challenges, and the inclusion of D-aa is particularly relevant as an attractive strategy
to overcome some of their existing limitations, as discussed further below. To the best of our
knowledge, this is the first review that focuses on AMPs with D-aa that have been covalently
conjugated to polymers, and it gathers the available information on the occurrence and
role of D-aa to assist with the future design of enhanced AMPs, and related materials for
their delivery.

1.1. D-Amino Acids (D-aa) in Nature

D-aa are non-proteogenic, yet they have been found to occur in bioactive peptides in a
wide variety of organisms [9], where their presence is important to increase their potency
through the definition of specific conformations and increased resistance against enzymatic
hydrolysis [10]. Their occurrence in metazoan organisms is well-documented, but it is
anticipated that D-aa-containing peptides may have physiological effects within humans
that are yet to be discovered [11]. In particular, D-Ser and D-Asp are the most abundant
D-aa found in mammals, where they have physiological roles in neuromodulation and
endocrine function [12]. D-aa are not genetically encoded and typically arise through
post-translational isomerization, as shown in the mechanism depicted in Scheme 1.
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Scheme 1. Mechanism of action of pyridoxal-5′-phosphate-dependent serine racemase. Reproduced
from [13] (The Royal Society of Chemistry, 2020) upon adaption from [12], Springer, 2017.

In terms of bioactivities, peptides with D-aa can exert neuroexcitatory [14,15] and
cardioexcitatory roles [16], but also opioid [17] and anti-hypertensive [18] activity, en-
docrine function [19], and AM roles [20]. Peptides with D-aa have been proposed for
cancer therapy [21] as adhesive biomaterials [22], vaccine adjuvants [23], and as inhibitors
of pathological amyloid fibrillization [24–28]. Furthermore, their occurrence in human
peptides within the context of disease states has been detected thanks to sensitive, modern,
analytical techniques (Figure 2) [11], and it has been proposed for biomarker detection
strategies for diagnostics [29–32]. The detection of D-aa nevertheless remains a challenging
task due to their lower occurrence relative to L-analogues in natural samples, for which
workflow optimized protocols and new methods continue to emerge [33–35].
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Figure 2. General workflow for D-aa containing peptides (DAACP). (A) extraction (B) LC-MS/MS
analysis and sequencing by database search to identify native peptides. (C) Identification of putative
isomeric peptides detected in LC-MS/MS analysis by analysing ion mobility migration, MS/MS,
protease stability, chromatographic retention, or homology. (D) DAACP confirmation by comparison
against the properties of native peptides and using synthetic standards. Reprinted with permission
from Ref. [11]. Copyright 2020 Elsevier.

How D-aa affect L-peptides is still to be fully clarified. It is well-known that they
may favour turn conformations [36], and to this end the inclusion of D-aa is a documented
strategy in their design [37]. However, exactly predicting which type of turn is obtained is
a different matter [36], one that is further complicated by the traditional turn assignment,
based also on dihedral angles as those found on L-peptides [38], and their associated
common conformations based on the Ramachandran plot [39,40]. It is worth noting that
even a single amino acid isomerization from L- to D- can lead to quite different physic-
ochemical properties [11]. One is increased hydrophobicity, which can be convenient to
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induce hydrophobically driven self-organization into nanostructured biomaterials, for
instance [26,41,42]. Remarkably, this effect is seen in sequences as short as unprotected
dipeptides [43,44] without further structural modifications [45,46].

1.2. D-aa in Bacteria

It is well-established that D-Ala and D-Glu are common amino acids that are present
in the peptidoglycan of bacterial cell walls. D-aa are well-known to be incorporated in the
peptidoglycan synthesis to build the bacterial cell wall, and their fluorescent derivatives
have been proposed for the visualization of the process (Figure 3) [47–49].
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RADA. (c) Confocal microscopy image of M. smegmatis stained with RADA. Adapted from [49] under
a Creative Commons license, Elife, 2018.

Interestingly, other D-amino acids can also be produced by bacteria, such as D-Met,
D-Leu, D-Phe and D-Tyr, and they have been hypothesized to downregulate peptidoglycan
synthesis in adaptation to changes in the surrounding environment [50]. Furthermore, the
incorporation of certain D-aa in their cell wall, such as D-Leu, D-Met, D-Trp, and D-Tyr, can
inhibit bacterial growth and biofilm formation [51].

2. Antimicrobial Peptides (AMPs) with D-Amino Acids

AMPs are the first line of defence of multi-cellular organisms against pathogenic
bacterial infections. They can also be produced by bacteria to gain advantage over other
strains that compete for resources in the same niche. AMPs can possess several different
conformations and structures, and they are typically amphipathic and often polycationic,
so they can electrostatically interact with the polyanionic bacterial membranes. Although
many different action mechanisms exist, a large portion of AMPs exert AM activity by
disrupting the bacterial cell membrane organization, through four common mechanisms
shown in Figure 4 [52].

The introduction of D-aa into the peptide sequence to increase AMP activity is a well-
known strategy [53] that helps to improve their pharmacokinetic profile and increases their
effectiveness, and it may provide further advantages that still need elucidation [54]. For
instance, there is the possibility to access conformational space that is underexplored by
natural peptides, which can be advantageous for AMP activity, as is the case of macrocyclic
structures, such as cyclosporin and its derivatives [55]. Furthermore, there is an increasing
body of evidence that supports the hypothesis that D-aa play an inter-kingdom recognition
role at the host–bacteria interface that regulates bacterial colonization and host immune
defence [56].
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The presence of D-aa in AMPs is attracting increasing interest, as recently reviewed [20].
The earliest findings of their presence in AMPs are as old as 1941, when they were detected
in gramicidin and tyrocidine [57], and many more followed, as summarized in Table 1.
Several groups arise from Bacillus [58] and Streptomyces strains [59], and it is well known
that Gram-positive bacteria use AMPs, termed bacteriocins [60], as a strategy to strive in
an ecological niche with competition from other micro-organisms [61]. Other important
sources of AMPs are fungi [62] and frog skin secretions [63]. Although the pursuit of the
therapeutic application of many of these peptides had been abandoned over the last decade
due to their inherent toxicity [53], we are now witnessing a revival of their use due to an
increase in MDR infection occurrence. Today, some AMPs play an important role in the
clinic, including colistin, which is considered the last resort against MDR pathogens [64].
In the following sub-sections, we briefly describe the main AMP classes from Table 1, and
we refer the readers to existing recent reviews for further details.

Table 1. Natural AMPs with D-aa.

Peptide Class Origin Type D-aa Ref.

Actinomycins Bacteria Cyclodepsipeptides D-Val [65]

Alternaramide Fungi Cyclodepsipeptide D-Phe [66]

Bacitracins Bacteria Cyclopeptides

D-Asp
D-Glu
D-Orn
D-Phe

[67]

Bassianolide Fungi Cyclodepsipeptide D-hydroxyvaleric acid [66]

Bombinins Frog α-helical linear peptides D-Ile
D-Leu [68]



Pharmaceutics 2022, 14, 446 6 of 20

Table 1. Cont.

Peptide Class Origin Type D-aa Ref.

Daptomycins Bacteria Cyclolipodepsipeptides
D-Ala
D-Asn
D-Ser

[69]

Etamycin-type, Fijimycins Bacteria Cyclopeptides

D-Ala
D-Leu
D-Hyp
D-Thr
D-Ser

[70,71]

Fengycin Bacteria Cyclolipopeptide

D-Ala
D-allo-Thr

D-Orn
D-Tyr

[72]

Fusaricidins Bacteria Cyclolipodepsipeptides D-Ala
D-allo-Thr [73]

Gramicidin D Bacteria Helical peptides D-Leu
D-Val [74]

Gramicidin S Bacteria Cyclopeptides D-Phe [75]

Hasadillins Bacteria Cycloglycolipopeptides

D-allo-Thr
D-Glu
D-Thr
D-Tyr

[76]

Himastatin Bacteria Cyclodepsipeptide D-Thr
D-Val [66,77]

Iturins Bacteria Cyclolipopeptides
D-Asn
D-Ser
D-Tyr

[78]

Lantibiotics Bacteria Linear/Cyclic peptides
D-Ala

D-aminobutyrate
S-[(Z)-2-aminovinyl]-D-Cys

[61]

Monamycins Bacteria Cyclodepsipeptides
D-Ile
D-Val

N-Methyl-D-Leu
[66,79]

Mycobacillin Bacteria Cyclopeptides D-Asp
D-Glu [80]

Peacilodepsipeptide A Fungi Cyclodepsipeptide D-Ala
D-Tyr [81]

Polymyxins Bacteria Cyclolipopeptides
D-Leu
D-Phe
D-Ser

[64]

Pullularins Fungi Cyclodepsipeptides D-3-phenyllactic acid [82]

Ramoplanins Bacteria Cyclodepsipeptides

D-Ala
D-allo-Thr

D-hydroxyphenyl-Gly
D-Orn

[73]

Streptogramins A Bacteria Cyclopeptides D-Pro [83]

Streptogramins B Bacteria Cyclodepsipeptides D-Aminobutyrric acid [84]

Surfactins Bacteria Cyclolipopeptides D-Leu [85]

Teicoplanin Bacteria Cycloglycopeptide D-m-chloro-β-hydroxy-Tyr
D-p-hydroxyphenyl-Gly [86]
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Table 1. Cont.

Peptide Class Origin Type D-aa Ref.

Tolaasins Bacteria Cyclolipodepsipeptides

D-allo-Thr
D-2,4-diaminobutyric acid

D-homoserine
D-Gln
D-Leu
D-Pro
D-Ser
D-Val

[87,88]

Tyrocidines Bacteria Cyclopeptides D-Phe
D-Trp [89]

Valinomycins Bacteria Cyclodepsipeptide D-Val
D-hydroxy-iso-Val [90]

Vancomycin Bacteria Cycloglycopeptide
D-m-chloro-β-hydroxy-Tyr

D-p-hydroxyphenyl-Gly
D-Leu

[91]

2.1. Bacitracin

Bacitracin is a natural mixture of cyclopeptides, of which bacitracin A is the most
active. This antibiotic displays potent activity on Gram-positive bacteria, which die as a
result of cell membrane disruption [92]. Recently, it was found also to be able to neutralize
bacterial exotoxins [93]. However, both the narrow spectrum of activity and the high level
of nephrotoxicity have significantly restricted its clinical use, so that it is considered as a
last-resort treatment [94].

2.2. Bombinins

Bombinins have been found only on the skin of the frog species called Bombina, from
which they derive the name. They are active against both Gram-positive and Gram-negative
bacteria, as well as fungi, and they do not lyse erythrocytes, which is a common side
effect of AMPs. Conversely, a specific subclass called bombinins H has lower bactericidal
activity and can be hemolytic. Interestingly, both L- and D-epimers at the second position
have been found in this group, with the latter ones being more active against Leishmania
parasites [68]. Bombinins’ adoption of amphipathic conformations that mimic the water-
membrane interface has been hypothesized to be key in their ability to interact with
membranes [95]. The presence of D-allo-Ile in bombinin H4 serves as a lipid anchor to
enable the formation of a pore in the bacterial membrane, leading to higher activity relative
to all L-aa bombinin H2 [96].

2.3. Daptomycin

Daptomycin comprises a class of lipid cyclopeptides derived from the soil filamentous
bacteria of the genus Streptomyces. It is capable of forming transient ionophores in the
membrane of target bacteria where it exerts its AMP action [97]. It is effective against
drug-resistant Gram-positive bacteria, and for this reason it is applied in the clinic to treat
infections of the skin, but also endocarditis associated with methicillin-resistant S. aureus.
A detailed structure–activity study has demonstrated the importance of several D-aa for
AMP activity [69].

2.4. Gramicidins

Gramicidin is one of the earliest AMPs to be discovered and its main components are
gramicidin D and S. The former is a linear peptide that forms homo and hetero dimeric
helices that constitute ionic channels in lipid membranes, through which they exert the
AM activity. The latter is a cyclopeptide with broader AM activity due to alteration of
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cell membrane organization. Both types are used to treat topical infections due to their
hemolytic effect that prevents systemic applications [98]. To design improved analogues
devoid of this side effect, a detailed structure–activity relationship has been delineated
throughout the years (Figure 5), from which it has become clear that the β-turn, based on
the D-Phe-L-Pro motif, is key for activity, and any modification there requires preservation
of the local geometry [75].
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2.5. Lantibiotics

Lantibiotics are a subclass of bacteriocins which are produced from lactic acid bacte-
ria. They have attracted interest mainly in the food industry as alternatives to synthetic
preservatives, which have raised safety concerns [99]. They have attracted interest also
as antibiotic substitutes for veterinary use, while their clinical use on humans has been
hampered by high production costs, limited stability, and insufficient toxicity studies [100].
However, it is envisaged that innovative formulations may provide a convenient strategy
to address at least some of these limitations, especially pertaining to their stability [101].
Furthermore, an attractive feature to pursue their clinical use is that bacteriocins are gener-
ally amenable to large-scale green production in bacteria—or even plants—through the use
of biotechnology [102].

2.6. Polymyxins

Polymyxins are amongst the earliest AMPs to be discovered in the 1940s. They were
approved for clinical use in late 1950s and abandoned soon after due to their nephrotoxicity.
Recently, their use has been revived as a last-resort treatment against MDR pathogens [103].
Elucidating their structure–activity relationship has thus become crucial to develop new
derivatives with improved safety profiles [64]. Polymyxins exert their primary AM activity
through direct interaction with the lipid A component of the lipopolysaccharide (LPS),
which then leads to the disruption of its function as a physical barrier. However, they also
have secondary modes of action that are under elucidation [104]. The recently discovered
resistance to polymyxins has prompted their use in combination therapy with antibiotics,
although this practice remains highly debated [105]. Their poor permeability and low
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absorption in the gastrointestinal tract have prompted research on innovative delivery
systems to overcome these limitations [106].

2.7. Streptogramins

Streptogramins comprise two compounds corresponding to type A and type B, which
inhibit bacterial protein synthesis and thus exert bactericidal action on Gram-positive bac-
teria, including MDR strains. Although various mechanisms of AMR have been identified
in cocci, its occurrence in clinical isolates fortunately remains very low. They are effec-
tive in treating severe infections caused by Gram-positive bacteria, however, their clinical
use remains limited, mainly due to adverse reactions [107]. Surprisingly, the complete
characterization of streptogramin B by 1H and 13C nuclear magnetic resonance (NMR)
spectroscopy was only recently reported [84], despite the fact that it has long been known
for its AMP activity. A modular and scalable synthesis of type A compounds was recently
reported to enable structural modifications that could address the poor physicochemical
properties that limit their clinical use [83].

2.8. Vancomycin

Vancomycin is a glycopeptide that for decades has been considered the last resort treat-
ment against infections determined by Gram-positive bacteria. However, the emergence of
vancomycin-resistant (VR) strains, especially S. aureus (VRSA), have raised great health
concerns, and the urgent search for new AMPs that can provide effective treatment [108] is
currently underway. Chemists have made great efforts to provide improved synthetic pro-
tocols to access vancomycin-related structures [91]. One promising approach to counteract
AMR is modification to include lipophilic membrane anchors and cell-penetrating cationic
peptides [109].

3. Polymer-Conjugates of AMPs with D-aa

The therapeutic application of AMPs poses many challenges, including high pro-
duction costs, the risk of adverse effects, and a typically short half-life due to rapid
enzymatic degradation. The mitigation of these risks is possible through the use of
polymers, for instance poly-(α-amino acid)-structures that mimic AMPs [110], or other
types of polymers with AM activity, which are highly researched [111–113], in addition
to dendrimers [114–116]. The AMP-mimetic design deserves a separate discussion and
interested readers can find further details in the recent literature [117–123]. More generally,
the development of advanced delivery systems has been proposed as a convenient strategy
to enable the therapeutic translation of AMPs (Figure 6), although the understanding of
AMP-carrier interactions and their effects on release and activity is a complex matter that
requires thorough elucidation [124]. Considering that AMPs often display a polycationic
nature, their complexation with polyelectrolytes is an attractive avenue for their formula-
tion [125]. In recent years, there has been increasing interest in the development of various
vehicles for AMP delivery [126], such as vesicles [127], microgels and hydrogels [128], nat-
ural fibres [129], and nanostructured systems [130], including electro-spun fibres [131,132],
in addition to many others [133–136]. Indeed, working on a nanoscale offers further advan-
tages in medicinal chemistry, both from a qualitative and a quantitative point of view [137].
In particular, the supramolecular assemblies of polymers and AMPs are a hot topic that has
been recently reviewed and, thus, will not be discussed here [138].

Here, the focus will be on recent examples of polymer-AMP covalent conjugates that
include D-aa. The synthetic approaches to obtain them will not be discussed, since they
have recently been reviewed elsewhere, in addition to the various types of polymeric
structures [139,140]. Instead, we will discuss the recent progress over the last five years
pertaining to polymer conjugates with the AMPs shown in Table 1.
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3.1. Bacitracin-Polymer Conjugates

The conjugation of bacitracin A with poly(D,L-lactic-co-glycolic acid) (PLGA) enables
self-assembly into nanosized micelles, which display broader and stronger activity, and
higher biocompatibility, especially with longer polymer chains, which have, unfortunately,
significantly limited water solubility [141]. The addition of more hydrophilic polyethylene
glycol (PEG) to yield PEG-PLGA-PEG triblock copolymers proved to be an effective strategy
to solve this issue, whilst preserving the ability to self-assemble into micelles (Figure 7). The
resulting nanoparticles displayed activity against both Gram-positive and Gram-negative
bacteria. In the latter case, interaction with lipopolysaccharide (LPS) is likely to lead to
membrane depolarization and subsequent disruption. Accumulation in inflammatory
tissue and long circulation times also enables the treatment of thigh infections in vivo in
mouse models [142]. These micelles were found to be effective against penicillin-resistant
S. pneumoniae strains [143]. Furthermore, the same type of approach was demonstrated
using Pluronic® polymers F127, P123 and P85, of which the latter was more efficient in vivo
too, without significant toxicity being noted in major organs [144].
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3.2. Daptomycin-Polymer Conjugates

Daptomycin has been linked to a poly-amine siderophore to enable activity against
carbapenem-resistant Gram-negatives, which use this type of compound to sequester
iron through an active transport process that is important for bacterial growth and viru-
lence [145]. Although the siderophore used in this study is not a polymer, the strategy to
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employ formation of an amide bond for conjugation could also be potentially applied to
macromolecules.

In another study, a mussel-inspired catechol-based adhesive polymer was envisaged
to coat titanium implants. Coupling of the macromolecule with tetrazine was then used
as a strategy to enable bio-orthogonal click chemistry for the anchoring of daptomycin
(Figure 8). In particular, this AMP was bound to trans-cyclooctene to obtain an inactive
prodrug that could undergo an inverse electron demand Diels–Alder reaction and allow
its conjugation as a prodrug, for the subsequent release upon hydrolysis of a carbamate
functionality [146].
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3.3. Gramicidins

In 2020, an innovative approach was reported for the rapid covalent binding—in water
and at room temperature—of biomolecules bearing primary amines, such as gramicidin
S on pre-formed polymers. The strategy could be applied both to reversible addition-
fragmentation chain transfer (RAFT) and to atom-transfer radical polymerization (ATRP),
which are modern methods to exert fine control over the final polymer molecular weight dis-
tribution. In particular, the use of a trifluoroborate iminium functionality on the monomers
enabled its quantitative conversion into potassium acyltrifluoroborates (KATs) after poly-
merization. KAT moieties then reacted with either one of two AMP analogues through
amide bond formation. In particular, the AMP was first derivatized on its ornithine amino
sidechain with either one of two hydroxylamine linkers, of which one was photocleavable.
The orthogonal ligation between hydroxylamines and KAT-modified polymers is highly
chemo-selective, and subsequent biological tests indeed confirmed that the AMP activity
could be restored through a UV-triggered release from the polymer [147].

3.4. Polymyxins

Colistin has been conjugated to dextran through the use of a linker to provide conju-
gates with tuneable molecular weight and physico-chemical properties, depending on the
type of dextran used, and on its chemical modifications. The conjugates can accumulate
in infected wounds where amylase is more abundant, relative to human serum, so that
enzymatic hydrolysis releases the active drug. However, this approach is not trivial, as
spectroscopic analysis revealed the presence of residual AMP bound to the linker, which
affects its bioactivity [148].

A different approach was used to link colistin to a poly(ethylene glycol) methyl ether
acrylate (PEGA) polymer, which has attracted attention as a preferable alternative to high
molecular weight PEG. In this case, colistin was first protected on its amino functions,
and then the hydroxyl groups of its two Thr sidechains were esterified with an acid
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linker, providing a hydrolytically labile α-halo ester moiety. Next, a “grafting from”
approach allowed the generation of the macromolecular product via copper-mediated
photoinduced living radical polymerization (CP-LRP). Subsequent experiments confirmed
that AMP activity was preserved, and the AMP structure did not undergo undesired
chemical modifications [149].

Finally, both dextran and PEG were employed to covalently bind polymyxin B and van-
comycin, so as to provide a wound-dressing hydrogel able to eradicate bacterial infections
and inhibit further microbial growth (Figure 9). In this case, amine groups of both AMPs
were reacted with the orthogonal BMPS linker, which features a N-hydroxysuccinimide
ester moiety on one end and a maleimido on the other. In this manner, the drug-linker
conjugates could be bound to 4-armed PEG chains ending with thiol groups. The unreacted
thiols were then bound to methacrylate-dextran to yield the final gel. Interestingly, both
AMPs’ activity was preserved and prevention of their release from the wound dressing
thanks to covalent binding to the dual polymer was envisaged as a convenient strategy to
avoid systemic side effects [150].
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3.5. Vancomycin

Vancomycin covalent conjugation to a polymer without significant loss of AM activity
is not at all trivial. Indeed, this was the case even when using cationic polymers with inher-
ent AM activity. The two components were bound to each other through a PEG diacrylate
linker to undergo a Michael addition to the AMP on one side, and cross-metathesis to the
cationic polymer on the other. The conjugates displayed significant loss of AM activity
relative to the AMP and the cationic polymer alone, although the presence of the PEG
linker appeared to enhance the biocompatibility profile in vitro [151].
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However, AM activity can be displayed after polymer conjugation. In one study that
aimed at addressing the problem of infections occurring on titanium-based orthopaedic
implants, azido-functionalized methacrylate chains were grafted from a titanium alloy to
enable subsequent orthogonal click chemistry with alkynylated vancomycin. The AMP-
coated surfaces were less susceptible to S. aureus adhesion and colonization, both in vitro
and in vivo [152].

Vancomycin-polymer conjugates have also been employed for diagnostics. In this case,
both branched and linear polymers were prepared from N-isopropyl acrylamide monomers,
various linkers, Nile Red dye for detection, and vancomycin to be conjugated through the
amino groups. Fluorescence and calorimetric data indicated that the branched polymer was
more effective in binding both D-Ala-D-Ala as a model target, and whole Gram-positive
bacteria [153]. These results confirmed earlier findings pertaining the better performance
of branched polymers relative to linear analogues, and the requirement of having the AMP
displayed at the chain ends for target recognition, and to enable the polymer coil-to-globule
transition in doing so for detection [154].

4. Conclusions and Future Perspectives

In recent years, we have witnessed a revival of AMPs for clinical use, although many
challenges in terms of side effects and resistance emergence are yet to be completely solved.
The introduction of D-aa in the AMPs sequence represents an attractive approach aimed
to improve both their activity and their metabolic stability. Non-proteogenic D-aa are
widespread throughout biological systems, including microbes and metazoan organisms,
where they make up the structural components and are involved in the regulation of
different functions. Furthermore, it is worth noting that using non-proteogenic D-aa often
raises toxicity concerns for clinical applications, despite the very promising results of
in vivo studies [142], with no significant toxicity being observed in major organs [144].

Covalent conjugation with polymers is an attractive approach to modulate the phar-
macokinetic profile of AMPs, especially, to provide AM coatings for medical implants and
devices, although their effective design is far more trivial, since AM activity loss may arise
from the covalent linkages to AMPs. Future opportunities may arise also from combina-
tion strategies that employ organic and inorganic components [155], especially if taking
advantage of nanotechnology [156,157].

In particular, there is an outstanding need for the development of AM coatings for
medical implants and devices [158]. To this end, a vivid research area concerns the develop-
ment of macromolecules that are capable of avoiding the formation of biofilms [159], which
are particularly challenging to eradicate [160]. Current antibiotic therapies are simply
insufficient to address the insurgence of local infections in their immediate surroundings,
especially in the long-term [161]. In addition to orthopaedics, dental healthcare [162],
cardiac [163] and urological applications [164] are highly sought after. Another growing
area of research involves food active packaging [165].

An alternative approach is the use of supramolecular polymers that are dynamic
in nature and could thus respond to various stimuli as needed [166–168]. In particular,
self-assembling short peptides with inherent AM activity residing only in their assemblies
are particularly attractive as economical smart materials, enabling the switching on/off
of AMP activity through assembly/disassembly cycles as desired [169,170]. Molecules as
simple as amino acids [171–173] or dipeptides [174] were modified to display hydrophobic
groups facilitating self-association in water to form AM hydrogels, demonstrating that
this approach, in line of principle, is feasible. Clearly, mastering the behaviour of dynamic
supramolecular systems in vivo poses an additional level of challenges to overcome, but
also the potential to provide innovative solutions to unsolved clinical problems.
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