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Abstract: Background: With the Coronavirus becoming a new reality of our world, global efforts
continue to seek answers to many questions regarding the spread, variants, vaccinations, and
medications. Particularly, with the emergence of several strains (e.g., Delta, Omicron), vaccines
will need further development to offer complete protection against the new variants. It is critical
to identify antiviral treatments while the development of vaccines continues. In this regard, the
repurposing of already FDA-approved drugs remains a major effort. In this paper, we investigate the
hypothesis that a combination of FDA-approved drugs may be considered as a candidate for COVID-
19 treatment if (1) there exists an evidence in the COVID-19 biomedical literature that suggests such a
combination, and (2) there is match in the clinical trials space that validates this drug combination.
Methods: We present a computational framework that is designed for detecting drug combinations,
using the following components (a) a Text-mining module: to extract drug names from the abstract
section of the biomedical publications and the intervention/treatment sections of clinical trial records.
(b) a network model constructed from the drug names and their associations, (c) a clique similarity
algorithm to identify candidate drug treatments. Result and Conclusions: Our framework has
identified treatments in the form of two, three, or four drug combinations (e.g., hydroxychloroquine,
doxycycline, and azithromycin). The identifications of the various treatment candidates provided
sufficient evidence that supports the trustworthiness of our hypothesis

Keywords: Coronavirus pandemic; COVID-19 treatment; drug repurposing; adjuvant treatment;
clinical trials ground-truth; drug association maps; literature mining; clique identification

1. Introduction
1.1. Significance Statement

Though several COVID-19 vaccines are available, there is no guarantee that everyone
will choose to be vaccinated. Moreover, with the virus constantly mutating and new strains
are emerging (e.g., Delta [1], Omicron [2]), much research is needed to decide the efficay
of the available vaccines against the new variants. There is a critical need for effective
treatment, beyond prevention. Drug repurposing has already provided a clear path to
COVID-19 antiviral treatment. For instance, the oral antiviral molnupiravir, which was
originally FDA-approved for SARS-COV, now shows to reduce the risk of hospitalization
or death by approximatly 50% in COVID-19 patients [3]. Recently, the ritonavir-boosted
nirmatrelvir has been investigated as an antiviral treatment [4]. A recent clinical trial
concluded that the two drugs combined have reduced the risk of hospitalization or death
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by 89% in COVID-19 patients, when compared to other treatments [5]. Ritonavir drug
was among the top-five drugs from a list of 30 drug candidates we recommended as a
coronaviruses treatment [6].

These previous findings have shown the significance of drug repurposing for identify-
ing potential COVID-19 treatments. The evidence underpinning this was derived from a
small set of publications that were originally published about the coronavirus that caused
the Severe acute respiratory syndrome (SARS). SARS is an illness known to be caused by
the SARS-associated coronavirus (SARS-CoV) that broke out prior to the SARS-CoV-2 [7].
Now that the scientific community has gained significant knowledge specficially about the
COVID-19 disease, vaccines, and drug treatments, this creates an opportunity to directly
investigate the massive (and growing) COVID-19 biomedical literature as a resource for
identifying potential new opportunities for treatment. More interestingly, our previous
research illuminated the importance of identifying drug combinations by means of text
mining to identify such a treatment [6]. Here, we further argue that such a treatment may
be identified from drugs that are highly associated, as long as the same associations hold in
clinical trials.

1.2. Computational Drug Repurposing Background

There is no doubt that our world has never seen a greater public health ordeal in
recent times than the Coronavirus pandemic. Such desperate times called for accelerated
processes to avoid millions of infections and to help save the lives of those who were
infected. While the process of vaccine development typically takes years to fully mature,
its timeline was significantly compressed [8]. In parallel, the promise of drug repurposing
was immediately investigated in hundreds of clinical trials. Drug repurposing enables
acceleration of treatment development through identification of a new indication for an
existing FDA-approved drug(s) [9–11].

Here, we motivate our work by listing and presenting the various computational
approaches that have addressed drug repurposing: artificial intelligence (AI) including
machine learning [12], biomedical literature mining and semantic knowledge representa-
tion, network-based drug repositioning, clinical analysis, signature matching, molecular
docking, and experimental phenotypic screening [13]. One that stands out among many
is AI. Various models particularly highlighted how to use AI for accelerating COVID-19
drug repurposing [14,15]. A recent review by Wang and Guan [16] grouped drug repur-
posing methods into three categories (computational research, clinical trials, and in vitro
experimental studies). The study highlighted certain computational methods including
network-based algorithms and expression-based algorithms. Wang [17] used another com-
putational method to address the drug repurposing using a virtual docking screening of
approved drugs, which was followed by a molecular dynamics simulations to find rational
drug design targeting SARS-CoV-2. Gysi et al. [18] used anther rather complex method that
combined AI, network diffusion, and proximity networks to investigate 6340 drugs to treat;
the study concluded that 76 drugs have reduced viral infection that cannot be identified
using docking-based strategies. Computational drug repurposing investigation also uses
statistical analysis [19–21]. Further, clinical trials also have shown promise in providing
insights into untested drugs [22].

Text mining is a computational method commonly used and frequently investigated for
drug repositioning [23], as well as for more general applications relevant to COVID-19 [24].
Li et al. [25] constructed a molecular network that was seeded by features extracted from
the biomedical abstracts published prior to the COVID-10 pandemic. This study resulted
in the identification of 30 candidate drugs that are potentially repurposeable for COVID-19
treatment. The promise of biochemical knowledge for drug repurposing inspired the
construction of COVID-19 ontology [26], capturing properties of chemical entities as well
as virological, epidemiological, and clinical aspects of COVID-19. Another study by
Kuusisto et al. [27] found that mining a large collection of biomedical publications using
a word-embedding approach around FDA-approved drugs shows promise. Due to the
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similarity between SARS-CoV-2 and SARS-CoV, the study claimed that the treatments of
SARS may also then be appropriate for COVID-19 (to the Coronaviridae family of the
Nidovirales order [28]). At the early phase of the global pandemic, Baker et al. [29] investi-
gated the potential repurposing of quaternary ammonium compounds. Text mining the
biomedical literature was the tool of choice to investigate whether such a treatment would
be appropriate for the coronavirus. In a more recent study, Muramatsu and Tanokura [30]
presented a novel tool that investigated candidate COVID-19 drugs which was based on
the relationships obtained from text mining of the vast literature in the form of biomedical
abstracts. Tworowski el al. [31] combined features from publication references and clini-
cal trials to develop a searchable COVID-19 drug repository that enables users to search
for general information about FDA-approved drugs, recipes, and the drugs’ mechanisms
of action.

Machine learning (ML) has also played a significant role in the identification of virus
targets and molecular docking in COVID-19. Deep learning and deep docking were
amnong the methods have been heavily investigated [32]. Artificial neural network (ANN)
models are particularly useful to train with virus protein sequences as inputs and antiviral
agents are deemed safe in humans as outputs [33]. ML methods also reveal the relationship
between viral, drug and the host proteins [34]. Traditional ML approaches also played an
important role in the COVID-19 drug repurposing. A supervised model (linear support
vector machine) was used to classify COVID-19 patients into two categories: (1) those with
non-severe COVID-19 symptoms, and (2) those with severe symptoms. The model used
a number of candidate proteins and linked them to two FDA-approved drugs, namely,
ponatinib and selinexor for potential repositioning [35]. Both unsupervised and supervised
ML can be used to cluster and classify FDA-approved drugs based on their mechanism
of action (MoA). This approach established the foundations of drug repurposing and also
provided insights to discovery of MoAs of new drugs in COVID-19 [36].

The significance of computational methods in COVID-19 drug repurposing is undeni-
able. Our previous work on this subject is based on similar foundations, in terms of both the
data and methods. Specifically, our previous work examined the SARS-CoV-2 biomedical
literature [6] to identify both drugs and protein targets. Further, a map was constructed
and used as a computational data model for further investigations. The study illuminated
an important finding that in some cases it may be necessary to use more than one drug in
the course of COVID-19 treatment. This insight has inspired the further investigation in
this current work.

There are substantial differences in this work from our previous work. First, due to
the novelty of COVID-19 at the time of the previous work and the availaibility of only a
small number of publications, the similarity between SARS-CoV and SAR-CoV-2 suggested
the investigation of SARS-CoV biomedical literature to gain insights. Now, due to the
abundance of SAR-CoV-2 research publications and the wealth of knowledge within, we
directly investigate them for further insights. Second, this work is focused only on the
identification of drug names as possible treatments. No other entity or target (e.g., gene
or protein) is the concern of this work. Particularly, we study strongly-associated drugs
that were mentioned in the biomedical literature. We further validate such associations
from evidence extracted from clinical trials that are designed to study the same drugs.
The evidences from the two sources are compared for similarity using a novel algorithm,
which we present here. The intersection of the two results presents possible candidates
for COVID-19 treatment. In our approach, we focus exclusively on associations forming
a special map structure know as a “clique”. This ensures that the drugs identified from
both sources are strongly connected within the source literature; this may be conceived as
reliable evidence for further testing.

The rest of this paper discusses the following steps of our method: (1) how the drug
names were identified from both publications and clinical trials using the Chemical Entities
of Biological Interest (ChEBI) ontology, (2) how the drug maps are constructed from the
biomedical literature and the clinical trials, respectively, (3) how the maps are pruned to
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remove weak associations, and (4) how strongly-connected drugs are identified in the map
and tested for similarities until COVID-19 treatment candidates emerge.

2. Materials and Methods
2.1. Datasets and Resources

The experiments and findings of this work were derived from two distinct datasets
extracted from the PubMed and ClinicalTrials.gov web portals, respectively, using the
search query “COVID-19”. The cutoff date was 25 June 2021. Any publication past this date
is not part of this study. As a result, a set of 110,000 COVID-19 related publications and a
set of COVID-19 clinical trial records were extracted. The publications were analyzed for
drug names and drug associations; and the clinical trial records (intervention and treatment
sections) were used to validate the drug associations identified in the publications.

2.2. Computational Approaches

The methods of this work require the following steps: (1) drug name extraction, (2) as-
sociation analysis and network construction, (3) clique detection, and (4) validation against
clinical trials. Figure 1 shows the workflow steps to generate the candidate treatments.

2.2.1. Drug Name Extraction

The biomedical publications dataset we used for the analysis is composed of a set of
text documents. Each document is described using two key fields: ID and abstract. The
ID captures the identification of the publication in the digital repository. This identifier
is necessary to link back to the original publication during the validation process. The
abstract is a plain text describing the research and findings of each publication, and contains
the names of such entities as diseases, symptoms, drugs, and any others relevant to
the study topic of the publication. Identifying such entities in an abstract requires text
processing, which includes parsing text, removing noise words, and the actual indentation
of entities. Here, we use a dictionary-based drug name extraction, using the chemical terms in
the ChEBI [37] ontology. This approach has demonstrated efficacy for identifying ChEBI
terms [38]. The abstract text is checked against the ontology terms. When there is a match
between a token and a ChEBI drug name, we extract the term and store it with its ontology
term ID. This contributes a record that links the drug name and the ChEBI term ID to the
publication. This also guarantees that the terms co-occurring within the same publication
are linked together. This sets the stage to analyze the association among the drugs that are
mentioned in the same publication, and across the entire dataset.

2.2.2. Association Analysis and Network Construction

The identification of drug names and the co-occurrences in publications naturally
provide a rich map that can be used for further investigations. However, the identification
of every chemical entity (that is not a drug) may become a source of noise. For this reason,
we have applied an association analysis algorithm that filters out the noise. Apriori [39] is
one of the most prominent algorithms and also well-known for association rule learning.
The algorithm must be configured using a “support” parameter as a base threshold, and,
therefore, provides a certain level of noise-removal to keep only the associations that meet
the threshold.

Since the drug co-occurrence records (from the biomedical literature datasets) are
typically too many, we chunk the dataset into subsets of 7000 publications. This helps
to speed up the Apriori algorithm to compute associations between the drugs. Such
associations present important links since they lend themselves to a network model, a map
that we use in the next step. When the drug links are combined based their associations
they naturally form an undirected network model. The outcome is a map that provides the
foundation for further discovery.
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Figure 1. Workflow of the framework starting with the raw inputs (biomedical publications and
clinical trial intervention and medication recrods). There are three steps: (1) ChEBI ontology term
extraction, (2) Network construction from the associated drugs, and (3) applying a clique finding
algorithm to detect the cliques. The final step is the discovery of comparing and matching cliques
found in the two sources and compared for similarities. The intersection consititutes a candidate
COVID-19 treatment.

2.2.3. Clique Detection

As stated above, the ultimate purpose of this research is to identify communities of
drugs that are working together to provide COVID-19 treatment. In the graph theory,
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a clique is a small set of nodes in a network such that every two distinct nodes in the
clique are adjacent, hence, directly connected via a link. Therefore, a clique guarantees the
interaction among all constituents and corresponds directly to the notion of community
that we are after.

After the network construction step above is completed, we load it into the net-
workX [40] framework and then apply the maximal clique algorithm [41] to identify the
cliques. Various experiments we conduted identified cliques of size two, three, and four.
This step marks the end of the literature mining phase.

2.2.4. Clinical Trials Analysis

We apply the same steps (drug name extraction, association analysis and network
construction, and clique detection) to texts in the intervention and treatment sections of the
collected COVID-19 clinical trial records (Section 2.1). This results in clinical trial cliques
that we used to validate the literature cliques.

2.2.5. Validation and Discovery

We use the clinical trials as a validating tool to the findings from the medical publica-
tions. The intuition underlying this approach is that clinical trials contain drug combina-
tions that are already under investigation and, therefore, represent combinations with a
strong underpinning hypothesis that their combination is meaningful and effective. We
therefore compare the emergence of the same size cliques (and their constituents) in the
network constructed from the drugs mentioned in the literature, with those identified in
clinical trials.

Methodologically, the map of drugs extracted from medical publications and the
combination of drugs identified from the literature are validated against the corresponding
information extracted from the clinical trial records. We compared cliques detected from
publications with cliques detected from clinical trials under the condition of being of the
same size. If a match is found (i.e., a clique is supported by both the clinical trials and the
publications) then we consider it a possible candidate for further investigations, otherwise,
it is ignored.

The steps of this algorithm, called Search-n-Match, are defined in Algorithm 1. The
algorithm is executed in a step-by-step fashion for each clique in the literature-derived set,
until all candidate drug combinations are produced.

Algorithm 1 Search-n-Match.

1. Let P and Q be two cliques detected from biomedical publications and clinical trial
records, respectively.

2. The condition that both cliques must have the same length is checked before the
search begins.

3. If not of the same length, the process is rejected, otherwise it continues.
4. The components of the clique P are compared one at a time with each of the compo-

nents in the clique Q.
5. If there is a match, the matching components are stored in the result set.
6. The process is repeated until all components of the clique P are compared with all

components of the clique Q.
7. The similarty score is calculated using a modified version on Jaquard’s similarity [42]

index, which calculates the size of the intersection divided by the size of of the union.
Because we apply the restriction of comparing cliques that have the same size, we
divide intersection by the size of either clique.

8. Upon completion, the algorithm terminates and intersection of the two cliques is
returned along with the similarity score.
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3. Results

Due to the large number of publications analyzed, the drug-mention cardinality was
also high. The association analysis step pruned some association links. Cliques of size two
to six were observed in the network constructed from the medical publications dataset. On
the other hand, in the network derived from the clinical trials, only cliques of size two to
four were observed. Applying the constraint of investigating only cliques of the same size
in the two networks, cliques of size five to six derived from the literature dataset were not
investigated. Table 1 shows the statistics of analyzing the biomedical publication networks
for cliques. The rows shows the clique size for each fold of 10 folds. The colums show
the numbers of cliques generated from each fold. We compared the cliques of the same
size with the cliques resulting from the clinical trial records. The clinical trials were much
smaller in size (5578 records), and was analyzed in its entirety as one fold. The cliques
returned for each size are as follows: 78 clques of size two, 10 cliques of size three, and
6 cliques of size four. Clearly, the very small number of cliques found in the network
contructed from the clinical trial records (92 cliques) eliminated 3551 cliques detected
from the publications. This shows the significance of using the clinical trials records as a
validation mechanism. The comparison identified the matches of maximum three of the
four components that constructed each clique. This analysis suggested that the COVID-19
treatment candidates can be made of at most three different drugs.

Table 1. The raw result of analyzing the networks constructed from the biomedical publications for
clique. The columns show the 10-folds that made up the dataset and the score. The rows show the
size of the cliques. The last row shows the total number of cliques detected from each fold. Overall,
the total number of all cliques detected from the publication is 3643.

– F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Clique size: 2 120 135 118 296 139 132 126 126 141 126
Clique size: 3 101 134 169 163 137 136 132 132 45 43
Clique size: 4 68 81 97 130 86 53 67 67 0 9
Clique size: 5 32 27 78 108 54 0 16 16 1 2

Total 321 377 462 697 416 321 341 341 187 180

Tables 2–4 present the drug cliques identified in the clinical trials data. Figure 2 shows
the chemical entities and drugs extracted from the publications on one hand and clinical
trials on the other. Clearly there is an overlap between the results from the two sources,
which supports the validation methods we are presenting here.

Table 2. Cliques of size two (drugs qualified with their ChEBI ID) detected from clinical trials
association network.

Drug 1 Drug 2

ChEBI:63608_maraviroc ChEBI:134722_favipiravir
ChEBI:6970_mometasone ChEBI:50858_corticosteroid
ChEBI:72291_cobicistat ChEBI:367163_darunavir
ChEBI:28775_hesperidin ChEBI:4631_diosmin
ChEBI:85973_edoxaban ChEBI:28304_heparin
ChEBI:85973_edoxaban ChEBI23359_colchicine
ChEBI:85089_ledipasvir ChEBI:85083_sofosbuvir
ChEBI:23965_estradiol ChEBI:17026_progesterone
ChEBI:23965_estradiol ChEBI:50114_estrogen
ChEBI:6015_isoflurane ChEBI:9130_sevoflurane
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(a)

(b)

Figure 2. (a) Drugs and chemical entities extracted from the abstracts of the biomedical publications
studying COVID-19. (b) Drugs and chemical entities extracted from the intervention and treatment
sections of clinical trials investigating COVID-19. The list of drugs extracted from the biomedical
publication (a) and the clinical trial records (b). Overlap of key drugs (ritonavir, lopinavir, favipi-
ravir, hydroxychloroquine, chloroquine, and azithromycin) between the two affirms the validity of
our hypothesis.

Table 3. Cliques of size three detected from clinical trials association network.

Drug 1 Drug 2 Drug 3

peroxide cetylpyridinium chlorhexidine
l-arginine atorvastatin nicorandil
hydroxychloroquine azithromycin mefloquine
hydroxychloroquine azithromycin favipiravir
hydroxychloroquine azithromycin glucose
hydroxychloroquine azithromycin sirolimus
hydroxychloroquine azithromycin levamisole
hydroxychloroquine chloroquine favipiravir
paracetamol ivermectin azithromycin
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Table 4. Cliques of size four detected from clinical trials association network.

Drug 1 Drug 2 Drug 3 Drug 4

omeprazole rivaroxaban clopidogrel atorvastatin
hydroxychloroquine lopinavir ritonavir favipiravir
hydroxychloroquine azithromycin doxycycline ivermectin
hydroxychloroquine azithromycin doxycycline rivaroxaban

4. Discussion
4.1. Two-Drug Combinations

We discuss the various findings of this work starting with two-drug combinations.
Table 5 lists drug pairs resulting running the algorithm and validating the literature finding
against clinical trials. This result constitues grounds for whether such a combination is
possible to combine. Note that being possible does not mean recommended until validated
by human experts. The “combineability” of each pair listed in Table 5—the plausibility of the
combination based on biochemical and pharmacological properties—is discussed below.

Table 5. Two-drug combinations of COVID-19 treatment candidates identified for further investigation.

Drug 1 Drug 2 Combineability

Estrogen (ChEBI:50114) Estradiol (ChEBI:23965) No
Hydroxyethylidene(ChEBI:5801) Azithromycin (ChEBI:2955) Possible
Lopinavir (ChEBI:31781) Ritonavir (ChEBI:45409) Yes
Ruxolitinib(ChEBI:66919) Colchicine (ChEBI:23359) Possible
Hydroxychloroquine (ChEBI:5801) Favipiravir ChEBI:134722 Possible
Hydroxychloroquine (ChEBI:5801) Chloroquine ChEBI:3638 No
Azithromycin (ChEBI:2955) Ivermectin ChEBI:6078 Possible
Hydroxychloroquine (ChEBI:5801) Lopinavir(ChEBI:31781) Probably not
Hydroxychloroquine (ChEBI:5801) Doxycycline(ChEBI:50845) Possible
Daclatasvir (ChEBI:82977) Sofosbuvir(ChEBI:85083) Yes

• Estrogen (hormone) and estradiol (hormone) are not possible to combine. Estradiol is
structurally identical (bioidentical) to estrogen produced in ovaries. Estradiol is one
form of estrogen—there are others, too—and may be administered by a number of
routes (e.g., by mouth, through the skin). It would not make sense to combine these
two drugs together [43–49].

• Hydroxyethylidene, is etidronic acid, known as a drug its generic name is etidronate
and azithromycin (macrolide antibiotic) are possible to combine. Azithromycin is
an antibiotic (working against bacterial infections) that also has antiviral and anti-
inflammatory properties. We found 1-hydroxyethylidene-1 listed as a synonym for
Etidronic acid [50], the first generation bisphosphonate. Etidronate has been discon-
tinued in the US though there are no drug interactions [51–53].

• Lopinavir (protease inhibitor) and ritonavir (protease inhibitor) are possible to com-
bine. In fact, this combination already exists as an FDA-approved medication under
the brand name Kaletra [54–58].

• Ruxolitinib (janus kinase inhibitor) and Colchicine (anti-gout) are possible to com-
bine. Ruxolitinib (as the systemic treatment) is used for myelofibrosis (bone marrow
cancer), polycythemia vera (a type of blood cancer), and graft-versus-host disease
(a complication of bone marrow transplant). Colchicine is a medication to prevent
and treat gout (too much uric acid). There are no reported drug interactions with this
combination [59–62].

• Hydroxychloroquine (antimalarial) and favipiravir (antiviral) are possible to combine.
Hydroxychloroquine is a medication used to treat malaria. Favipiravir is an antiviral
developed for treating influenza [63]. It is not commercially available in the US. There
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are apparent drug interactions with this combination, although data are limited as
favipiravir is not available [64–67].

• Hydroxychloroquine (antimalarial) and chloroquine (antimalarial) are not possible
to combine. There is a known major drug interaction between them—increases QT-
interval prolongation (causing irregular heartbeats). Hydroxychloroquine is an analog
to chloroquine. They are different drugs, but essentially do the same thing. Clinically
it would not make sense to combine them.

• Azithromycin (macrolide antibiotic) and ivermectin (anthelmintic) are possible to
combine. Azithromycin is an antibiotic (working against bacterial infections) that
also has antiviral and anti-inflammatory properties. Ivermectin is an antiparasitic
(working against parasite infections). There are no known drug interactions with
this combination.

• Hydroxychloroquine (antimalarial) and lopinavir (protease inhibitor) are probably
not possible to combine. Hydroxychloroquine is a medication used to treat malaria.
Lopinavir is a protease inhibitor used in the management of HIV. the UpToDate
database [68] does not list major drug interactions. Unon searching Micromedex
database [69] it indicated that there is a drug-drug interaction – the combination leads
to a prolongation of QT interval.

• Hydroxychloroquine (antimalarial) and doxycycline (tetracycline antibiotic) are pos-
sible to combine. Hydroxychloroquine is a medication used to treat malaria. Doxy-
cycline is an antibiotic used to treat bacterial infections. There are no reported drug
interactions with this combination.

• Daclatasvir (antihepaciviral) and sofosbuvir (nonstructural protein 5B (NS5B) nucleo-
side polymerase inhibitor) are possible to combine, and their combination is already
used in the treatment of hepatitis C. Daclatasvir is not available in the US, but the
combination is marketed under the brand name Darvoni in other countries. There is a
minor drug interaction; Daclatasvir may increase the concentration (the level in the
body) of sofosbuvir.

4.2. Three or More Drugs Combination

As indicated in the results in Section 3, combinations of three and four drugs have also
emerged. To identify a possible treatment, we ran the Match-n-Search algorithm against
those combinations, identified their similarities, and extracted the common combinations.
To demonstrate this step, we depicted a network in Figure 3 that displays two sample cliques
of size four: (1) a clique extracted from literature, color-coded in green; and comprised of
(hydroxychloroquine, darunavir, lopinavir, and favipiravir), (2) a clique extracted from the
clinical trial records, color-coded in red; and comprised of (hydroxychloroquine, lopinavir,
ritonavir, and favipiravir). By applying the Search-n-Match algorithm it produced the
following three-drugs combination: (hydroxychloroquine, lopinavir, and favipiravir). This
combination among many others are the final step of this computational work, before they
are presented to domain experts for interpretation.

The depiction of Figure 3 explains the general idea with an example of two cliques,
each consisting of four components. Here, we fully discuss all the cliques resulted from
this analysis, which we also list in the Results Section 3 above (Table 4). The main purpose
of this step is to validate the drug combination extracted from the biomedical literataure.
We start by listing the findings in groups of three rows: (a) findings from the publications,
(b) findings from clincal trai records, and (3) the matching components. Table 6 presents
ten groups of cliques and a match of three-drug combinations to be discusse onward.
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Figure 3. A map of size-four literature cliques and clinical trial cliques resulting from the workflow.
The green nodes are the components of cliques detected from the biomedcial publications; they are
prefixed with “pm”. The red nodes are the matching counterparts extracted from the clincical trial
datasets; they are prefixed with “ct”. The lightblue nodes are part of the clique but do not have a
match and, therefore, cannot be part of the result.

From the ten groups of cliques listed in Table 6, we observed four unique matching
combinations. Here, we discuss each of those four and provide further insights.

• The three components hydroxychloroquine, azithromycin, and doxycycline match be-
tween four pairs of size-four cliques. This is due to the fact that the combination
of hydroxychloroquine and azithromycin is possible and also the combination of
hydroxychloroquine and doxycycline is possible, as indicated in Table 5. The evi-
dence of using hydroxychloroquine and azithromycin is reported from the clinical
trials [70–73]. Moreover, both hydroxychloroquine and ciprofloxacin doxycycline were
commonly studied in clinical trials [74], where the results did not seem impressive and
further investigations were recommended. There is no evidence that a combination
of azithromycin and doxycycline has been investigated for COVID-19 treatment, al-
though azithromycin may be used as an alternative to doxycycline for other infections
(e.g., urogenital Chlamydia trachomatis infection) [75].

• The three components hydroxychloroquine, ritonavir, and favipiravir match between two
pairs of size-four cliques. In Table 2 we reported the combination of hydroxychloro-
quine and favipiravir. This combination is particularly used as a home treatment of
older people who are COVID-19 symptomatic. This recommendation for treatment is
based on clinical trials that are still recruiting participants [76]. There was no evidence
of combining ritonavir with favipiravir. There was, however, a comparison of efficacy
between the two drugs, and the study concluded that “Favipiravir does not reduce the
number of ICU admissions or intubations or in-hospital mortality” [77]. It is important
to note that both lopinavir and ritonavir are used interchangeably due to the fact
that they are both sold under the brand name Kaletra and, therefore the cliques that
contain one also contain the other.

• The three components hydroxychloroquine, azithromycin, and ivermectin match between
two pairs of size-four cliques. A combination of hydroxychloroquine and azithromycin
was discussed above. Azithromycin and ivermectin are new components in these
cliques. Both are co-administered for other conditions (scabies and impetigo) [78].
Recently, a study recommended adding ivermectin as a solution to the COVID-19 treat-
ment protocol that combines hydroxychloroquine, favipiravir, and azithromycin [79].
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• The three components hydroxychloroquine, lopinavir, and ritonavir. Both hydroxy-
chloroquine and lopinavir have been explained in the second item of this list. As for
lopinavir and ritonavir, they both explained earlier and commercialized under the
brand name Kaltera.

Table 6. Cliques of size four from the biomedical publications and clinical trial records that have
three components in common.

Source Clique Components

Biomed pub hydroxychloroquine, chloroquine, azithromycin, doxycycline
Clinical trial hydroxychloroquine, azithromycin, doxycycline, ivermectin
Match hydroxychloroquine, azithromycin, doxycycline

Biomed pub hydroxychloroquine, mycophenolate, azithromycin, doxycycline
Clinical trial hydroxychloroquine, azithromycin, doxycycline, ivermectin
Match hydroxychloroquine, azithromycin, doxycycline

Biomed pub hydroxychloroquine, chloroquine, azithromycin, doxycycline
Clinical trial hydroxychloroquine, azithromycin, doxycycline, rivaroxaban
Match hydroxychloroquine, azithromycin, doxycycline

Biomed pub hydroxychloroquine, mycophenolate, azithromycin, doxycycline
Clinical trial hydroxychloroquine, azithromycin, doxycycline, rivaroxaban
Match hydroxychloroquine, azithromycin, doxycycline

Biomed pub hydroxychloroquine,oseltamivir, ritonavir, favipiravir
Clinical trial hydroxychloroquine, lopinavir, ritonavir,favipiravir
Match hydroxychloroquine, ritonavir, favipiravir

Biomed pub hydroxychloroquine, ribavirin, ritonavir, favipiravir
Clinical trial hydroxychloroquine, lopinavir, ritonavir, favipiravir
Match hydroxychloroquine, ritonavir, favipiravir

Biomed pub hydroxychloroquine, azithromycin, macrolide, ivermectin
Clinical trial hydroxychloroquine, azithromycin, doxycycline, ivermectin
Match hydroxychloroquine, azithromycin, ivermectin

Biomed pub hydroxychloroquine, azithromycin, ivermectin, ritonavir
Clinical trial hydroxychloroquine, azithromycin, doxycycline, ivermectin
Match hydroxychloroquine, azithromycin, ivermectin

Biomed pub hydroxychloroquine, darunavir, lopinavir, favipiravir
Clinical trial hydroxychloroquine, lopinavir, ritonavir, favipiravir
Match hydroxychloroquine, lopinavir, favipiravir

Biomed pub hydroxychloroquine, ligand, lopinavir, ritonavir
Clinical trial hydroxychloroquine, lopinavir, ritonavir, favipiravir
Match hydroxychloroquine, lopinavir, ritonavir

The discussion above showed an itemized list of the drug combinations extracted
fom the biomedical literature, the overlapping combination found in clinical trials, and
the individual matching drugs. Specifically, it included two-drug combination in Table 5
indicated that seven drug pairs are possibe to combine without significant clinical imped-
iments. Among these, two are already in use. For the three or more drug combinations
(Table 4), several three-way combinations could be identified as potentially worthwhile
to investigate.

4.3. Clinical Trials Supporting Evidence and Stats

Here, we provide more supporting evidence to the finding of this work. Here, we
list the up-to-date statistics gathered from the clinical trials that investigting the drug
combinations, as predicted ealier in this paper. The columns of Table 7 show drug ombina-
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tions, in pairs and triples, their current clinical trial status, and the number of trials study
each pair or triple. The table captures the follows (recruiting, completed, active and not
recruiting, not recruiting yet) whenever available. Two specific pairs are worthy noting:
(1) the most studied combinations is ritonavir and lopinavir (which is another supporting
evidence of the significance of ritonavir). Retonavir remains among the most promising
component among the emerging treatments e.g., (Kaltera or Paxlovid). (2) The least studied
combination is ruxolitinib and colchicine despite that both studies are still recruiting. It is
unclear whether the low frequencey is due to novelty of this treatment or any other factor.

Table 7. Two or three drug combinations in clinical trials that confirm the findings from the
biomedical literature.

Drug Combination Clinical Trial Status # Trials

ritonavir and lopinavir Recruiting 20
ritonavir and lopinavir Completed 15
ritonavir and lopinavir Active, not recruiting 7

ruxolitinib and colchicine Recruiting 2

hydroxychloroquine and favipiravir Completed 13
hydroxychloroquine and favipiravir Recruiting 2
hydroxychloroquine and favipiravir Active, not recruiting 3

azithromycin and ivermectin Completed 6
azithromycin and ivermectin Recruiting 6

hydroxychloroquine and lopinavir Recruiting 18
hydroxychloroquine and lopinavir Completed 12
hydroxychloroquine and lopinavir Active, not recruiting 5

hydroxychloroquine and doxycycline Completed 4
hydroxychloroquine and doxycycline Recruiting 1

daclatasvir and sofosbuvir Recruiting 5
daclatasvir and sofosbuvir Completed 3
daclatasvir and sofosbuvir Not recruiting yet 1

hydroxychloroquine and chloroquine Recruiting 8
hydroxychloroquine and chloroquine Completed 16
hydroxychloroquine and chloroquine Active, not recruiting 5

hydroxychloroquine, lopinavir, ritonavir Recruiting 3
hydroxychloroquine, lopinavir, ritonavir Recruiting 9
hydroxychloroquine, lopinavir, ritonavir Active, not recruiting 3
hydroxychloroquine, lopinavir, ritonavir Not recruiting yet 3

hydroxychloroquine, lopinavir, favipiravir Recruiting 1
hydroxychloroquine, lopinavir, favipiravir Completed 5
hydroxychloroquine, lopinavir, favipiravir Active, not recruiting 1

hydroxychloroquine, azithromycin, ivermectin Completed 4
hydroxychloroquine, azithromycin, ivermectin Active, not recruiting 1

hydroxychloroquine, ritonavir, favipiravir Recruiting 1
hydroxychloroquine, ritonavir, favipiravir Completed 5
hydroxychloroquine, ritonavir, favipiravir Active, not recruiting 1

hydroxychloroquine, azithromycin, doxycycline Recruiting 1
hydroxychloroquine, azithromycin, doxycycline Completed 3
hydroxychloroquine, azithromycin, doxycycline Not recruiting yet 1
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Limitations

Our analysis hinges on the literature collection that is used as the basis for inferring
co-occurrences of drug mentions. In this work, we adopted a simple strategy for collecting
COVID-19 related literature. Other datasets with more comprehensive coverage are now
available, including the CORD-19 dataset [80] or LitCovid [81]. More comprehensive lists
for COVID search terms are now available [82]. We leave exploration of the use of these
resources for future work. Another limitation is that this analysis did not predict the
potential therapy for severe versus non-severe COVID cases.

5. Conclusions

In this paper, we tested the hypothesis that a combination of FDA-approved drugs
may be considered as a COVID-19 candidate treatment if there exists (1) evidence in the
COVID-19-related biomedical literature suggesting the combination and (2) an evidence
from clinical trials that provides grounds for this combination. We also introduced our
computational framework for COVID-19 drug repurposing, which is centered around
analyzing literature-based networks for clique patterns. The findings were compared
with evidence mined from clinial for validation. Indeed, the hypothesis was validated
algorithmically and it has proven to be not only valid hypothesis but also a promising drug
repurposing prediction tool. We further validated the clique pattens by domain experts and
classified into different combineability categories. The investigation provided adequate
explanations based on the publicly available data. We believe the reported FDA-approved
drug combinations (either in pairs or triples) are convincing and promising as COVID-19
treatments, especially those already commercialized (e.g., ritonavir-boosted nirmatrelvir).

Notably, the potential COVID-19 treatments reported in this paper are entirely based
on the COVID-19 biomedical publications and ongoing COVID-19 clinical trials. Thus, the
findings are subject to further investigations, unless already commercialized as in the case
for kaletra. Specifically, the authors will identify additional validation sources to advance
the understandings of the cliques that did not have coverage from the clinical trials records.
Additionally, the investigations will pay a special focus on how such drug combination
may affect the treatment of patients with preexisting conditions like asthma, depression,
diabetes, hypertension, etc.

Author Contributions: Conceptualization, A.A.H. and B.S.L.; methodology, A.A.H., K.L.T. and K.V.;
software, A.A.H.; validation, T.E.F. and K.V.; formal analysis, A.A.H., K.V., K.L.T. and B.S.L.; resources,
A.A.H.; data curation, T.E.F.; writing—original draft preparation, A.A.H.; First review, A.A.H., K.V.,
B.S.L. and T.E.F. All authors have read and agreed to the published version of the manuscript.

Funding: This publication is supported by the European Union’s Horizon 2020 research and innova-
tion programme under grant agreement Sano No 857533 and carried out within the International
Research Agendas programme of the Foundation for Polish Science, co-financed by the European
Union under the European Regional Development Fund.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The results of this paper is entirely documented in the Tables of this paper.

Acknowledgments: The authors thanks both Amanda Kennedy and Marci Wood for their valuable
expertise in interpreting the results. The authors would also like to acknowledge Zuzana Mikulecka
and Yomna Gohar for the valuable discussions.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: The entire code, input data, and intermediate results of this paper are available
upon request from the first author. We encourage those who are interested in future studies to
contact him.



Pharmaceutics 2022, 14, 567 15 of 18

Abbreviations
The following abbreviations are used in this manuscript:

COVID-19 Coronavirus disease of 2019
SARS Severe acute respiratory syndrome
ChEBI Chemical Entities of Biological Interest
FDA Food and Drug Administration
AI Artificial intelligence
ML Machine learning
NCT National Clinical Trial
ANN Artificial neural networks

References
1. Melo-González, F.; Soto, J.A.; González, L.A.; Fernández, J.; Duarte, L.F.; Schultz, B.M.; Gálvez, N.M.; Pacheco, G.A.; Ríos, M.;

Vázquez, Y.; et al. Recognition of Variants of Concern by Antibodies and T Cells Induced by a SARS-CoV-2 Inactivated Vaccine.
Front. Immunol. 2021, 12, 747830. [CrossRef] [PubMed]

2. Dyer, O. COVID-19: South Africa’s surge in cases deepens alarm over omicron variant. BMJ 2021, 375, n3013. [CrossRef]
[PubMed]

3. Jayk Bernal, A.; Gomes da Silva, M.M.; Musungaie, D.B.; Kovalchuk, E.; Gonzalez, A.; Delos Reyes, V.; Martín-Quirós, A.; Caraco,
Y.; Williams-Diaz, A.; Brown, M.L.; et al. Molnupiravir for oral treatment of COVID-19 in nonhospitalized patients. N. Engl. J.
Med. 2022, 386, 509–520. [CrossRef] [PubMed]

4. Pavan, M.; Bolcato, G.; Bassani, D.; Sturlese, M.; Moro, S. Supervised Molecular Dynamics (SuMD) Insights into the mechanism
of action of SARS-CoV-2 main protease inhibitor PF-07321332. J. Enzym. Inhib. Med. Chem. 2021, 36, 1645–1649. [CrossRef]
[PubMed]

5. Couzin-Frankel, J. Pfizer Antiviral Slashes COVID-19 Hospitalizations. 2021. Available online: https://www.science.org/toc/
science/374/6569 (accessed on 1 March 2022). [CrossRef]

6. Gates, L.E.; Hamed, A.A. The anatomy of the SARS-CoV-2 biomedical literature: Introducing the CovidX network algorithm for
drug repurposing recommendation. J. Med. Internet Res. 2020, 22, e21169. [CrossRef]

7. Zumla, A.; Chan, J.F.; Azhar, E.I.; Hui, D.S.; Yuen, K.Y. Coronaviruses—drug discovery and therapeutic options. Nat. Rev. Drug
Discov. 2016, 15, 327–347. [CrossRef]

8. Carvalho, T.; Krammer, F.; Iwasaki, A. The first 12 months of COVID-19: A timeline of immunological insights. Nat. Rev. Immunol.
2021, 21, 245–256. [CrossRef]

9. Farha, M.A.; Brown, E.D. Drug repurposing for antimicrobial discovery. Nat. Microbiol. 2019, 4, 565–577. [CrossRef]
10. Langedijk, J.; Mantel-Teeuwisse, A.K.; Slijkerman, D.S.; Schutjens, M.H.D. Drug repositioning and repurposing: Terminology and

definitions in literature. Drug Discov. Today 2015, 20, 1027–1034. [CrossRef]
11. Tobinick, E.L. The value of drug repositioning in the current pharmaceutical market. Drug News Perspect 2009, 22, 119–125.

[CrossRef]
12. Hameed, P.N.; Verspoor, K.; Kusljic, S.; Halgamuge, S. A two-tiered unsupervised clustering approach for drug repositioning

through heterogeneous data integration. BMC Bioinform. 2018, 19, 1–18. [CrossRef] [PubMed]
13. Usha, T.; Middha, S.K.; Kukanur, A.A.; Shravani, R.V.; Anupama, M.N.; Harshitha, N.; Rahamath, A.; Kulkarni, S.S.; Goyal, A.K.

Drug Repurposing Approaches: Existing Leads for Novel Threats and Drug Targets. Curr. Protein Pept. Sci. 2021, 22, 251–271.
[CrossRef] [PubMed]

14. Zhou, Y.; Wang, F.; Tang, J.; Nussinov, R.; Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health
2020, 2, e667–e676. [CrossRef]

15. Levin, J.M.; Oprea, T.I.; Davidovich, S.; Clozel, T.; Overington, J.P.; Vanhaelen, Q.; Cantor, C.R.; Bischof, E.; Zhavoronkov, A.
Artificial intelligence, drug repurposing and peer review. Nat. Biotechnol. 2020, 38, 1127–1131. [CrossRef] [PubMed]

16. Wang, X.; Guan, Y. COVID-19 drug repurposing: A review of computational screening methods, clinical trials, and protein
interaction assays. Med. Res. Rev. 2021, 41, 5–28. [CrossRef]

17. Wang, J. Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug
repurposing study. J. Chem. Inf. Model. 2020, 60, 3277–3286. [CrossRef]

18. Gysi, D.M.; Do Valle, Í.; Zitnik, M.; Ameli, A.; Gan, X.; Varol, O.; Ghiassian, S.D.; Patten, J.; Davey, R.A.; Loscalzo, J.; et al.
Network medicine framework for identifying drug-repurposing opportunities for COVID-19. Proc. Natl. Acad. Sci. USA 2021,
118, e2025581118. [CrossRef]

19. Karaman, B.; Sippl, W. Computational drug repurposing: Current trends. Curr. Med. Chem. 2019, 26, 5389–5409. [CrossRef]
20. Karatzas, E.; Kolios, G.; Spyrou, G.M. An application of computational drug repurposing based on transcriptomic signatures. In

Computational Methods for Drug Repurposing; Springer: New York, NY, USA, 2019; pp. 149–177.
21. Loging, W.; Rodriguez-Esteban, R.; Hill, J.; Freeman, T.; Miglietta, J. Cheminformatic/bioinformatic analysis of large corporate

databases: Application to drug repurposing. Drug Discov. Today Ther. Strateg. 2011, 8, 109–116. [CrossRef]

http://doi.org/10.3389/fimmu.2021.747830
http://www.ncbi.nlm.nih.gov/pubmed/34858404
http://dx.doi.org/10.1136/bmj.n3013
http://www.ncbi.nlm.nih.gov/pubmed/34862184
http://dx.doi.org/10.1056/NEJMoa2116044
http://www.ncbi.nlm.nih.gov/pubmed/34914868
http://dx.doi.org/10.1080/14756366.2021.1954919
http://www.ncbi.nlm.nih.gov/pubmed/34289752
https://www.science.org/toc/science/374/6569
https://www.science.org/toc/science/374/6569
http://dx.doi.org/10.1126/science.acx9590
http://dx.doi.org/10.2196/21169
http://dx.doi.org/10.1038/nrd.2015.37
http://dx.doi.org/10.1038/s41577-021-00522-1
http://dx.doi.org/10.1038/s41564-019-0357-1
http://dx.doi.org/10.1016/j.drudis.2015.05.001
http://dx.doi.org/10.1358/dnp.2009.22.2.1303818
http://dx.doi.org/10.1186/s12859-018-2123-4
http://www.ncbi.nlm.nih.gov/pubmed/29642848
http://dx.doi.org/10.2174/1389203721666200921152853
http://www.ncbi.nlm.nih.gov/pubmed/32957901
http://dx.doi.org/10.1016/S2589-7500(20)30192-8
http://dx.doi.org/10.1038/s41587-020-0686-x
http://www.ncbi.nlm.nih.gov/pubmed/32929264
http://dx.doi.org/10.1002/med.21728
http://dx.doi.org/10.1021/acs.jcim.0c00179
http://dx.doi.org/10.1073/pnas.2025581118
http://dx.doi.org/10.2174/0929867325666180530100332
http://dx.doi.org/10.1016/j.ddstr.2011.06.004


Pharmaceutics 2022, 14, 567 16 of 18

22. Ulm, J.W.; Nelson, S.F. COVID-19 drug repurposing: Summary statistics on current clinical trials and promising untested
candidates. Transbound. Emerg. Dis. 2021, 68, 313–317. [CrossRef]

23. Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of drug repositioning approaches and resources. Int. J. Biol. Sci. 2018, 14, 1232. [CrossRef]
[PubMed]

24. Wang, L.L.; Lo, K. Text mining approaches for dealing with the rapidly expanding literature on COVID-19. Briefings Bioinform.
2021, 22, 781–799. [CrossRef] [PubMed]

25. Li, X.; Yu, J.; Zhang, Z.; Ren, J.; Peluffo, A.E.; Zhang, W.; Zhao, Y.; Wu, J.; Yan, K.; Cohen, D.; et al. Network bioinformatics
analysis provides insight into drug repurposing for COVID-19. Med. Drug Discov. 2021, 10, 100090. [CrossRef] [PubMed]

26. Sargsyan, A.; Kodamullil, A.T.; Baksi, S.; Darms, J.; Madan, S.; Gebel, S.; Keminer, O.; Jose, G.M.; Balabin, H.; DeLong, L.N.; et al.
The COVID-19 ontology. Bioinformatics 2020, 36, 5703–5705. [CrossRef] [PubMed]

27. Kuusisto, F.; Page, D.; Stewart, R. Word embedding mining for SARS-CoV-2 and COVID-19 drug repurposing. F1000Research
2020, 9, 585. [CrossRef]

28. Zhou, Z.; Qiu, Y.; Ge, X. The taxonomy, host range and pathogenicity of coronaviruses and other viruses in the Nidovirales order.
Anim. Dis. 2021, 1, 1–28. [CrossRef]

29. Baker, N.; Williams, A.J.; Tropsha, A.; Ekins, S. Repurposing quaternary ammonium compounds as potential treatments for
COVID-19. Pharm. Res. 2020, 37, 1–4. [CrossRef]

30. Muramatsu, T.; Tanokura, M. A novel method of literature mining to identify candidate COVID-19 drugs. Bioinform. Adv. 2021,
1, vbab013. [CrossRef]

31. Tworowski, D.; Gorohovski, A.; Mukherjee, S.; Carmi, G.; Levy, E.; Detroja, R.; Mukherjee, S.B.; Frenkel-Morgenstern, M.
COVID19 Drug Repository: Text-mining the literature in search of putative COVID19 therapeutics. Nucleic Acids Res. 2021,
49, D1113–D1121. [CrossRef]

32. Galindez, G.; Matschinske, J.; Rose, T.D.; Sadegh, S.; Salgado-Albarrán, M.; Späth, J.; Baumbach, J.; Pauling, J.K. Lessons from the
COVID-19 pandemic for advancing computational drug repurposing strategies. Nat. Comput. Sci. 2021, 1, 33–41. [CrossRef]

33. Cantürk, S.; Singh, A.; St-Amant, P.; Behrmann, J. Machine-learning driven drug repurposing for COVID-19. arXiv 2020,
arXiv:2006.14707.

34. Aghdam, R.; Habibi, M.; Taheri, G. Using informative features in machine learning based method for COVID-19 drug repurposing.
J. Cheminform. 2021, 13, 1–14. [CrossRef]

35. Suvarna, K.; Biswas, D.; Pai, M.G.J.; Acharjee, A.; Bankar, R.; Palanivel, V.; Salkar, A.; Verma, A.; Mukherjee, A.; Choudhury,
M.; et al. Proteomics and machine learning approaches reveal a set of prognostic markers for COVID-19 severity With drug
repurposing potential. Front. Physiol. 2021, 12, 432. [CrossRef] [PubMed]

36. Han, L.; Shan, G.; Chu, B.; Wang, H.; Wang, Z.; Gao, S.; Zhou, W. Accelerating drug repurposing for COVID-19 treatment by
modeling mechanisms of action using cell image features and machine learning. Cogn. Neurodynamics 2021. [CrossRef]

37. Hastings, J.; de Matos, P.; Dekker, A.; Ennis, M.; Harsha, B.; Kale, N.; Muthukrishnan, V.; Owen, G.; Turner, S.; Williams, M.; et al.
The ChEBI reference database and ontology for biologically relevant chemistry: Enhancements for 2013. Nucleic Acids Res. 2012,
41, D456–D463. [CrossRef] [PubMed]

38. Funk, C.; Baumgartner, W.; Garcia, B.; Roeder, C.; Bada, M.; Cohen, K.B.; Hunter, L.E.; Verspoor, K. Large-scale biomedical concept
recognition: An evaluation of current automatic annotators and their parameters. BMC Bioinform. 2014, 15, 1–29. [CrossRef]
[PubMed]

39. Agrawal, R.; Srikant, R. Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on Very
Large Data Bases, San Francisco, CA, USA, 12–15 September 1994; Volume 1215, pp. 487–499.

40. Hagberg, A.; Conway, D. NetworkX: Network Analysis with Python. Available online: https://networkx.org/ (accessed on 1
March 2022).

41. Ouyang, Q.; Kaplan, P.D.; Liu, S.; Libchaber, A. DNA solution of the maximal clique problem. Science 1997, 278, 446–449.
[CrossRef]

42. Jaccard, P. The distribution of the flora in the alpine zone. 1. New Phytol. 1912, 11, 37–50. [CrossRef]
43. Allegretti, M.; Cesta, M.C.; Zippoli, M.; Beccari, A.; Talarico, C.; Mantelli, F.; Bucci, E.M.; Scorzolini, L.; Nicastri, E. Repurposing

the estrogen receptor modulator raloxifene to treat SARS-CoV-2 infection. Cell Death Differ. 2022, 29, 156–166. [CrossRef]
44. Lovre, D.; Bateman, K.; Sherman, M.; Fonseca, V.A.; Lefante, J.; Mauvais-Jarvis, F. Acute estradiol and progesterone therapy in

hospitalised adults to reduce COVID-19 severity: A randomised control trial. BMJ Open 2021, 11, e053684. [CrossRef]
45. Youn, J.Y.; Zhang, Y.; Wu, Y.; Cannesson, M.; Cai, H. Therapeutic application of estrogen for COVID-19: Attenuation of

SARS-CoV-2 spike protein and il-6 stimulated, ACE2-dependent NOX2 activation, ROS production and MCP-1 upregulation in
endothelial cells. Redox Biol. 2021, 46, 102099. [CrossRef] [PubMed]

46. Seeland, U.; Coluzzi, F.; Simmaco, M.; Mura, C.; Bourne, P.E.; Heiland, M.; Preissner, R.; Preissner, S. Evidence for treatment with
estradiol for women with SARS-CoV-2 infection. BMC Med. 2020, 18, 369. [CrossRef] [PubMed]

47. Mauvais-Jarvis, F.; Klein, S.L.; Levin, E.R. Estradiol, progesterone, immunomodulation, and COVID-19 outcomes. Endocrinology
2020, 161, bqaa127. [CrossRef] [PubMed]

48. Breithaupt-Faloppa, A.C.; de Jesus Correia, C.; Prado, C.M.; Stilhano, R.S.; Ureshino, R.P.; Moreira, L.F.P. 17β-Estradiol, a potential
ally to alleviate SARS-CoV-2 infection. Clinics 2020, 75. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/tbed.13710
http://dx.doi.org/10.7150/ijbs.24612
http://www.ncbi.nlm.nih.gov/pubmed/30123072
http://dx.doi.org/10.1093/bib/bbaa296
http://www.ncbi.nlm.nih.gov/pubmed/33279995
http://dx.doi.org/10.1016/j.medidd.2021.100090
http://www.ncbi.nlm.nih.gov/pubmed/33817623
http://dx.doi.org/10.1093/bioinformatics/btaa1057
http://www.ncbi.nlm.nih.gov/pubmed/33346828
http://dx.doi.org/10.12688/f1000research.24271.1
http://dx.doi.org/10.1186/s44149-021-00005-9
http://dx.doi.org/10.1007/s11095-020-02842-8
http://dx.doi.org/10.1093/bioadv/vbab013
http://dx.doi.org/10.1093/nar/gkaa969
http://dx.doi.org/10.1038/s43588-020-00007-6
http://dx.doi.org/10.1186/s13321-021-00553-9
http://dx.doi.org/10.3389/fphys.2021.652799
http://www.ncbi.nlm.nih.gov/pubmed/33995121
http://dx.doi.org/10.1007/s11571-021-09727-5
http://dx.doi.org/10.1093/nar/gks1146
http://www.ncbi.nlm.nih.gov/pubmed/23180789
http://dx.doi.org/10.1186/1471-2105-15-59
http://www.ncbi.nlm.nih.gov/pubmed/24571547
https://networkx.org/
http://dx.doi.org/10.1126/science.278.5337.446
http://dx.doi.org/10.1111/j.1469-8137.1912.tb05611.x
http://dx.doi.org/10.1038/s41418-021-00844-6
http://dx.doi.org/10.1136/bmjopen-2021-053684
http://dx.doi.org/10.1016/j.redox.2021.102099
http://www.ncbi.nlm.nih.gov/pubmed/34509916
http://dx.doi.org/10.1186/s12916-020-01851-z
http://www.ncbi.nlm.nih.gov/pubmed/33234138
http://dx.doi.org/10.1210/endocr/bqaa127
http://www.ncbi.nlm.nih.gov/pubmed/32730568
http://dx.doi.org/10.6061/clinics/2020/e1980
http://www.ncbi.nlm.nih.gov/pubmed/32490931


Pharmaceutics 2022, 14, 567 17 of 18

49. Antonello, R.M.; Dal Bo, E.; De Cristofaro, P.; Luzzati, R.; Di Bella, S. The seXY side of COVID-19: What is behind female
protection. InfezMed 2020, 28, 288–289.

50. NCBI. PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Etidronic-acid (accessed on 1 March 2022).
51. Marti, J.L.G.; Brufsky, A.M. Considerations of the effects of commonly investigated drugs for COVID-19 in the cholesterol

synthesis pathway. Expert Opin. Pharmacother. 2021, 22, 947–952. [CrossRef]
52. Wang, H.L.; Weber, D.; McCauley, L.K. Effect of long-term oral bisphosphonates on implant wound healing: Literature review

and a case report. J. Periodontol. 2007, 78, 584–594. [CrossRef]
53. Aljuhani, F.; Tournadre, A.; Tatar, Z.; Couderc, M.; Mathieu, S.; Malochet-Guinamand, S.; Soubrier, M.; Dubost, J.J. The SAPHO

syndrome: A single-center study of 41 adult patients. J. Rheumatol. 2015, 42, 329–334. [CrossRef]
54. Hung, I.F.N.; Lung, K.C.; Tso, E.Y.K.; Liu, R.; Chung, T.W.H.; Chu, M.Y.; Ng, Y.Y.; Lo, J.; Chan, J.; Tam, A.R.; et al. Triple

combination of interferon beta-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with
COVID-19: An open-label, randomised, phase 2 trial. Lancet 2020, 395, 1695–1704. [CrossRef]

55. Uzunova, K.; Filipova, E.; Pavlova, V.; Vekov, T. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and
chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomed. Pharmacother. 2020, 131, 110668. [CrossRef]

56. Sheahan, T.P.; Sims, A.C.; Leist, S.R.; Schäfer, A.; Won, J.; Brown, A.J.; Montgomery, S.A.; Hogg, A.; Babusis, D.; Clarke, M.O.; et al.
Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat.
Commun. 2020, 11, 1–14. [CrossRef] [PubMed]

57. Siemieniuk, R.A.; Bartoszko, J.J.; Ge, L.; Zeraatkar, D.; Izcovich, A.; Kum, E.; Pardo-Hernandez, H.; Qasim, A.; Martinez, J.P.D.;
Rochwerg, B.; et al. Drug treatments for covid-19: Living systematic review and network meta-analysis. BMJ 2020, 370. [CrossRef]
[PubMed]

58. Zequn, Z.; Yujia, W.; Dingding, Q.; Jiangfang, L. Off-label use of chloroquine, hydroxychloroquine, azithromycin and
lopinavir/ritonavir in COVID-19 risks prolonging the QT interval by targeting the hERG channel. Eur. J. Pharmacol. 2021,
893, 173813. [CrossRef]

59. Rizk, J.G.; Kalantar-Zadeh, K.; Mehra, M.R.; Lavie, C.J.; Rizk, Y.; Forthal, D.N. Pharmaco-immunomodulatory therapy in
COVID-19. Drugs 2020, 80, 1267–1292. [CrossRef]

60. Mareev, V.Y.; Orlova, Y.A.; Pavlikova, E.; Akopyan, Z.; Matskeplishvili, S.; Plisyk, A.; Seredenina, E.; Potapenko, A.; Malakhov,
P.; Samokhodskaya, L.; et al. Proactive anti-inflammatory and anticoagulant therapy in the treatment of advanced stages of
novel coronavirus infection (COVID-19). Case Series and Study Design: COLchicine versus ruxolitinib and secukinumab in open
prospective randomIzed trial (COLORIT). Kardiologiia 2020, 60, 4–21. [CrossRef] [PubMed]

61. Hossen, M.S.; Barek, M.A.; Jahan, N.; Islam, M.S. A review on current repurposing drugs for the treatment of COVID-19: reality
and challenges. SN Compr. Clin. Med. 2020, 2, 1777–1789. [CrossRef]

62. Di Lorenzo, G.; Di Trolio, R.; Kozlakidis, Z.; Busto, G.; Ingenito, C.; Buonerba, L.; Ferrara, C.; Libroia, A.; Ragone, G.; dello Ioio,
C.; et al. COVID 19 therapies and anti-cancer drugs: A systematic review of recent literature. Crit. Rev. Oncol./Hematol. 2020,
152, 102991. [CrossRef] [PubMed]

63. Agrawal, U.; Raju, R.; Udwadia, Z.F. Favipiravir: A new and emerging antiviral option in COVID-19. Med. J. Armed Forces India
2020, 76, 370–376. [CrossRef]

64. Costanzo, M.; De Giglio, M.A.; Roviello, G.N. SARS-CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir,
darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus.
Curr. Med. Chem. 2020, 27, 4536–4541. [CrossRef]

65. Kaptein, S.J.; Jacobs, S.; Langendries, L.; Seldeslachts, L.; Ter Horst, S.; Liesenborghs, L.; Hens, B.; Vergote, V.; Heylen, E.;
Barthelemy, K.; et al. Favipiravir at high doses has potent antiviral activity in SARS-CoV-2- infected hamsters, whereas
hydroxychloroquine lacks activity. Proc. Natl. Acad. Sci. USA 2020, 117, 26955–26965. [CrossRef]

66. Habler, K.; Brügel, M.; Teupser, D.; Liebchen, U.; Scharf, C.; Schönermarck, U.; Vogeser, M.; Paal, M. Simultaneous quantification
of seven repurposed COVID-19 drugs remdesivir (plus metabolite GS-441524), chloroquine, hydroxychloroquine, lopinavir,
ritonavir, favipiravir and azithromycin by a two-dimensional isotope dilution LC–MS/MS method in human serum. J. Pharm.
Biomed. Anal. 2021, 196, 113935. [CrossRef] [PubMed]

67. Parlak, C.; Alver, Ö.; Ouma, C.N.M.; Rhyman, L.; Ramasami, P. Interaction between favipiravir and hydroxychloroquine and
their combined drug assessment: In silico investigations. Chem. Pap. 2022, 76, 1471–1478. [CrossRef] [PubMed]

68. Fox, G.N.; Moawad, N.S. UpToDate: A comprehensive clinical database. J. Fam. Pract. 2003, 52, 706–710. [PubMed]
69. Chatfield, A.J. Lexicomp online and Micromedex 2.0. J. Med. Libr. Assoc. JMLA 2015, 103, 112. [CrossRef]
70. Gautret, P.; Lagier, J.C.; Parola, P.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Dupont, H.T.;

et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial.
Int. J. Antimicrob. Agents 2020, 56, 105949. [CrossRef]

71. Fiolet, T.; Guihur, A.; Rebeaud, M.E.; Mulot, M.; Peiffer-Smadja, N.; Mahamat-Saleh, Y. Effect of hydroxychloroquine with or
without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: A systematic review and meta-analysis.
Clin. Microbiol. Infect. 2021, 27, 19–27. [CrossRef]

72. Bakadia, B.M.; He, F.; Souho, T.; Lamboni, L.; Ullah, M.W.; Boni, B.O.; Ahmed, A.A.Q.; Mukole, B.M.; Yang, G. Prevention and
treatment of COVID-19: Focus on interferons, chloroquine/hydroxychloroquine, azithromycin, and vaccine. Biomed. Pharmacother.
2021, 133, 111008. [CrossRef]

https://pubchem.ncbi.nlm.nih.gov/compound/Etidronic-acid
http://dx.doi.org/10.1080/14656566.2021.1897104
http://dx.doi.org/10.1902/jop.2007.060239
http://dx.doi.org/10.3899/jrheum.140342
http://dx.doi.org/10.1016/S0140-6736(20)31042-4
http://dx.doi.org/10.1016/j.biopha.2020.110668
http://dx.doi.org/10.1038/s41467-019-13940-6
http://www.ncbi.nlm.nih.gov/pubmed/31924756
http://dx.doi.org/10.1136/bmj.m2980
http://www.ncbi.nlm.nih.gov/pubmed/32732190
http://dx.doi.org/10.1016/j.ejphar.2020.173813
http://dx.doi.org/10.1007/s40265-020-01367-z
http://dx.doi.org/10.18087/cardio.2020.9.n1338
http://www.ncbi.nlm.nih.gov/pubmed/33487145
http://dx.doi.org/10.1007/s42399-020-00485-9
http://dx.doi.org/10.1016/j.critrevonc.2020.102991
http://www.ncbi.nlm.nih.gov/pubmed/32544802
http://dx.doi.org/10.1016/j.mjafi.2020.08.004
http://dx.doi.org/10.2174/0929867327666200416131117
http://dx.doi.org/10.1073/pnas.2014441117
http://dx.doi.org/10.1016/j.jpba.2021.113935
http://www.ncbi.nlm.nih.gov/pubmed/33548872
http://dx.doi.org/10.1007/s11696-021-01946-8
http://www.ncbi.nlm.nih.gov/pubmed/34744292
http://www.ncbi.nlm.nih.gov/pubmed/12967543
http://dx.doi.org/10.3163/1536-5050.103.2.016
http://dx.doi.org/10.1016/j.ijantimicag.2020.105949
http://dx.doi.org/10.1016/j.cmi.2020.08.022
http://dx.doi.org/10.1016/j.biopha.2020.111008


Pharmaceutics 2022, 14, 567 18 of 18

73. Castillo, M.E.; Costa, L.M.E.; Barrios, J.M.V.; Díaz, J.F.A.; Miranda, J.L.; Bouillon, R.; Gomez, J.M.Q. Effect of calcifediol
treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients
hospitalized for COVID-19: A pilot randomized clinical study. J. Steroid Biochem. Mol. Biol. 2020, 203, 105751. [CrossRef]

74. Rhodes, J.M.; Subramanian, S.; Flanagan, P.K.; Horgan, G.W.; Martin, K.; Mansfield, J.; Parkes, M.; Hart, A.; Dallal, H.; Iqbal, T.;
et al. Randomized Trial of Ciprofloxacin Doxycycline and Hydroxychloroquine Versus Budesonide in Active Crohn’s Disease.
Dig. Dis. Sci. 2021, 66, 2700–2711. [CrossRef]

75. Geisler, W.M.; Uniyal, A.; Lee, J.Y.; Lensing, S.Y.; Johnson, S.; Perry, R.C.; Kadrnka, C.M.; Kerndt, P.R. Azithromycin versus
doxycycline for urogenital Chlamydia trachomatis infection. N. Engl. J. Med. 2015, 373, 2512–2521. [CrossRef]

76. Duvignaud, A.; Lhomme, E.; Pistone, T.; Onaisi, R.; Sitta, R.; Journot, V.; Nguyen, D.; Peiffer-Smadja, N.; Crémer, A.; Bouchet, S.;
et al. Home treatment of older people with symptomatic SARS-CoV-2 infection (COVID-19): A structured summary of a study
protocol for a multi-arm multi-stage (mams) randomized trial to evaluate the efficacy and tolerability of several experimental
treatments to reduce the risk of hospitalisation or death in outpatients aged 65 years or older (coverage trial). Trials 2020, 21, 846.
[PubMed]

77. Solaymani-Dodaran, M.; Ghanei, M.; Bagheri, M.; Qazvini, A.; Vahedi, E.; Saadat, S.H.; Setarehdan, S.A.; Ansarifar, A.; Biganeh,
H.; Mohazzab, A.; et al. Safety and efficacy of Favipiravir in moderate to severe SARS-CoV-2 pneumonia. Int. Immunopharmacol.
2021, 95, 107522. [CrossRef] [PubMed]

78. Romani, L.; Marks, M.; Sokana, O.; Nasi, T.; Kamoriki, B.; Cordell, B.; Wand, H.; Whitfeld, M.J.; Engelman, D.; Solomon, A.W.; et al.
Efficacy of mass drug administration with ivermectin for control of scabies and impetigo, with coadministration of azithromycin:
A single-arm community intervention trial. Lancet Infect. Dis. 2019, 19, 510–518. [CrossRef]
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