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Abstract: The aim of this study was to develop a new drug nanocrystals self-stabilized Pickering
emulsion (NSSPE) for improving oral bioavailability of quercetin (QT). Quercetin nanocrystal (QT–
NC) was fabricated by high pressure homogenization method, and QT–NSSPE was then prepared by
ultrasound method with QT–NC as solid particle stabilizer and optimized by Box-Behnken design.
The optimized QT–NSSPE was characterized by fluorescence microscope (FM), scanning electron
micrograph (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The stability,
in vitro release, and in vivo oral bioavailability of QT–NSSPE were also investigated. Results showed
that the droplets of QT–NSSPE with the size of 10.29 ± 0.44 µm exhibited a core-shell structure
consisting of a core of oil and a shell of QT–NC. QT–NSSPE has shown a great stability in droplets
shape, size, creaming index, zeta potential, and QT content during 30 days storage at 4, 25, and
40 ◦C. In vitro release studies showed that QT–NSSPE performed a better dissolution behavior
(65.88% within 24 h) as compared to QT–NC (50.71%) and QT coarse powder (20.15%). After oral
administration, the AUC0–t of QT–NSSPE was increased by 2.76-times and 1.38 times compared with
QT coarse powder and QT–NC. It could be concluded that NSSPE is a promising oral delivery system
for improving the oral bioavailability of QT.

Keywords: pickering emulsion; self-stabilizing; poorly soluble drug; quercetin; nanocrystals;
oral bioavailability

1. Introduction

Quercetin (QT), a plant flavonoid extracted and isolated from Sophorajaponica L.,
was widely present in several edible fruits and vegetables [1], which has a variety of
pharmacological effects such as anti-inflammatory, anti-oxidant, anti-hypertensive, and
neuroprotection [2–5]. Recent studies suggested that QT could decrease neuronal oxidative
stress by scavenging free radicals, inhibiting xanthine oxidase and nitric oxide synthase,
and had an improvement effect on Alzheimer’s disease [6–9]. Nonetheless, QT exhibits
poor dissolution behavior due to its low solubility that is only 0.01 mg·mL−1 in water
at 25 ◦C [10], which seriously limited its oral bioavailability. In the past few decades,
considerable research efforts have been devoted to enhancing the solubility of QT in water,
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thus improving its oral bioavailability, such as liposomes [11], self-microemulsion [12], and
nanocrystals [13–15]). But these methods still have some limitations such as poor stability
and low drug loading capacity. In addition, they require numerous surfactants, which
might lead to severe ecological pollution and some side effects such as neurotoxic damage,
allergy, irritancy, renal damage [16–18]. Therefore, more efforts should be made to explore
a new dosage form for improving oral absorption of QT.

Pickering emulsions, stabilized by insoluble solid particles without any surfactants,
were found in 1900s. Compared with the surfactant emulsions, Pickering emulsions have a
stable space barrier formed by solid particles adsorbed on the surface of emulsion droplets,
which results in great stability [19]. Moreover, Pickering emulsions also have shown other
advantages such as eco-friendliness and lower cost [20,21]. Therefore, Pickering emulsion
have attracted plentiful attention in food, cosmetic, and pharmaceutical application [22–24].
As an emerging drug delivery system, Pickering emulsions were usually used for facilitat-
ing the dermal delivery of drugs, enhancing oral bioavailability of insoluble drugs, and
controlling the drug release [25–28].

However, there are still some problems with Pickering emulsions for drug delivery
due to the safety of solid stabilizers. Many solid particles could be adopted for Pickering
emulsions stabilization, including silica, cellulose, starch granules, and Mg (OH)2 [29–32].
Among these solid particles, silica has been the most frequently used in the drug de-
livery systems of Pickering emulsions. Nevertheless, massive use of silica might take
some adverse effects, such as neurotoxic damage, cytotoxicity, and renal damage [33–36].
Furthermore, Pickering emulsions usually have low drug loading capacity owing to the
limitation of drug solubility in the oil phase. There is thereby an urgent need to explore
new approaches to prepare Pickering emulsions with favorable safety profile and high
drug loading capacity.

More recently, drug nanocrystals self-stabilized Pickering emulsion (NSSPE), as a
new delivery system of drugs with poor water solubility, was developed to improve the
water solubility of insoluble drugs thus enhancing its low oral bioavailability. NSSPE was
stabilized by the nanocrystals of insoluble drugs without any additional solid particle
stabilizers. It has dual advantages of nanocrystals and Pickering emulsions, and also
overcome the side effects caused by solid particles such as silica, which might be a good
choice for oral delivery of drugs with poor water solubility. In NSSPE, the insoluble drugs
cannot only adsorb on the oil-water interface in the form of nanocrystals to stabilize the
Pickering emulsions, but also dissolve in the oil inner phase. Accordingly, NSSPE has a
better drug loading capacity as compared with the conventional Pickering emulsions. So
far, NSSPE had been applied to the flavonoids puerarin and silybin, results showed that it
could significantly increase oral absorption of these two drugs when compared with drug
coarse powder [24,37].

The purpose of this study was to developed QT nanocrystal self-stabilized Pickering
emulsion (QT–NSSPE) for oral delivery of QT. QT nanocrystal (QT–NC) was fabricated by
high pressure homogenization method, and QT–NSSPE was then prepared by ultrasound
method with QT–NC as solid particle stabilizer and optimized by Box-Behnken design.
The morphology, differential scanning calorimetry (DSC), X-ray powder diffraction (XRD),
physical stability, and in vitro drug release of QT–NSSPE were investigated. Finally, a
pharmacokinetic study of QT–NSSPE was implemented in rats as compare to QT coarse
powder, and nanocrystal.

2. Materials and Methods
2.1. Materials

Quercetin coarse powder (purity > 95%) was purchased from Shaanxi Ci Yuan Biotech-
nology Co., Ltd. (Xi’an, China); QT reference standard (purity > 98%) and kaempferol
(internal standard, purity > 98%) were purchased from Chengdu Pufei De Biotech Co., Ltd.
(Chengdu, China); Labrafac Lipophile WL 1349 was obtained from Beijing Fengli Jingqiu
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Pharmaceutical Co., Ltd. (Beijing, China). HPLC-grade methanol was purchased from
Fisher Scientific (Waltham, MA, USA). Other chemicals were analytical grade.

2.2. Animals

Specific pathogen free male Sprague-Dawley rats (180–220 g) were acquired from
the Keyu Laboratory Animal Center of Beijing (Beijing, China). They received care in
compliance with the Principles of Laboratory Animal Care and the Guide for the Care and
Use of Laboratory Animals. The protocol of the study was approved by the Institutional
Animal Ethics Committee of Air Force Medical Center, PLA of China (No. 2021-74-PJ01).
All rats were housed in an environmentally controlled breeding room (25 ± 2 ◦C, 60 relative
humidity, and 12 h cycle of light and dark).

2.3. Preparation and Characterization of Quercetin Nanocrystal

Quercetin nanocrystal (QT–NC) was prepared by high pressure homogenization
method. Briefly, QT coarse powder was dispersed in 50 mL pure water using a high shear
homogenizer (MT-30K, Hangzhou Miu Instruments Co., Ltd., Hangzhou, China) at 13, 000
rpm for 2 min. And then the dispersion was processed through a high pressure homoge-
nizer (AH100D, ATS Industrial Systems Co., Ltd., Suzhou, China) with ten homogenization
cycles at 100 MPa.

The mean size of the QT–NC was measured using a size analyzer (Winner 801, Jinan
Winner Particle Instruments Stock Co., Ltd., Jinan, China). The morphology of QT–NC was
observed by transmission electron microscopy (TEM). QT–NC was dropped on a 200-mesh
copper grid and dried in the air for morphological evaluation by TEM (Tecnai G2F20, FEI,
Eindhoven, The Netherlands).

2.4. Preparation of QT–NSSPE

According to our previous study, Labrafac Lipophile WL 1349 was used as oil phase
of QT–NSSPE [38]. The schematic diagram of formation process of QT–NSSPE can be seen
in Figure 1. Firstly, the appropriate volume of oil and freshly obtained QT–NC were added
into a glass vial to get 10 mL of mixed liquid. Next, the glass vial of mixture was placed
into a beaker with ice water and then processed by an ultrasonic cell grinder (JY92-IIN,
Ningbo Scientz Biotechnology Co., Ltd., Ningbo, China) with a dipping probe close to the
oil/water interface to form QT–NSSPE, for 9 min at an intensity level 6 and 50% pulses. In
addition, the duration of ultrasonication was 3 s per time and the interval time was 4 s, in
support of heat dissipation.
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2.5. Experimental Design

The preliminary experiment showed that the oil volume fractions (X1), QT concen-
tration (X2), and pH (X3) had significant effects on the droplets size and drug loading of
QT–NSSPE. Therefore, the three factors were chosen as independent variables for a 3-factor,
3-level Box-Behnken design to optimize the formulation of QT–NSSPE. The second-order
polynomial models and quadratic response surfaces were generated by Design Expert
software. The independent and dependent variables were listed in Table 1, along with their
low, middle, and high levels.

Table 1. Variables used in Box-Behnken design.

Level

Low (−1) Medium (0) High (+1)

Independent variables
X1 = oil volume fractions 0.3 0.4 0.5

X2 = QT concentration (%, w/v) 0.4 0.5 0.6
X3 = pH 5.0 7.0 9.0

Dependent variables Constraints
Y1 = droplets size (µm) Minimize

Y2 = drug loading (mg·mL−1) Maximize

2.6. Droplets Shape, Droplets Size and QT Content in QT–NSSPE Determination

The droplets shape of QT–NSSPE was observed by microscopy (BX60, Integrated
DS-SMC-UI digital imaging system, Olympus Co., Ltd., Tokyo, Japan) and the mean size
of the QT–NSSPE droplets were calculated by the software of Image Pro Plus 6.0 (USA).
QT–NSSPE of 1 mL was placed into 100 mL of methanol and sonicated for 10 min to make
the QT completely dissolve in methanol. After centrifuging at 1000 rpm for 10 min, 1 mL of
supernatant was filtered through 0.22-µm millipore filter. The amount of dissolved QT in
methanol was determined by HPLC. HPLC analysis was performed on a LC-20A HPLC
system (Shimadzu, Tokyo, Japan). Analysis was performed on Diamonsil-C18 column (250
× 4.6 mm, 5 µm, Shimadzu, Tokyo, Japan) with column temperature maintained at 30
◦C. The mobile phase consisted of methanol and 0.1% phosphoric acid (59:41, v/v). The
flow-rate was 1 mL·min−1 and the detection wavelength was 360 nm (Han et al., 2020). Test
of each sample was carried out three times and the results were recorded as an average.

2.7. Zeta Potential and Creaming Index

Zeta potential of QT–NSSPE was determined by a Zetasizer (NICOMP 380ZLS, PSS,
California, USA) after the emulsion was diluted 20-fold with pure water. The appearance
of QT–NSSPE was observed and creaming index (CI) was calculated as follows [19]:

CI = (Ht/H0) × 100% (1)

where Ht and H0 are the height of the emulsion layer at a certain time and the total height
of samples, respectively.

2.8. Characteristic of QT–NSSPE
2.8.1. Fluorescence Microscope (FM)

QT has a strong fluorescence when excited by UV-lights [39], therefore, QT–NSSPE was
observed by FM to confirm the adsorption behavior of QT–NC on the surface of emulsion
droplets. QT–NSSPE was dropped on a glass and observed with a fluorescence microscopy
(BX60, Integrated DS-SMC-UI digital imaging system, Olympus Co., Ltd., Tokyo, Japan)
immediately.
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2.8.2. Scanning Electron Microscope (SEM)

Fresh QT–NSSPE 1 mL was diluted and dropped onto a clean tin foil and then dried at
room temperature. The morphology of QT–NSSPE was observed by SEM (S-4800, Hitachi,
Tokyo, Japan) after being gold coated in a vacuum by a sputter coater before analysis. At
the same time, QT coarse powder and QT–NC were also observed as a control.

2.8.3. Differential Scanning Calorimetry (DSC) and X-ray Powder Diffraction (XRD)

The thermal properties and crystalline nature of QT coarse powder, QT–NC lyophilized
powder, and QT–NC adsorbed on the surface of QT–NSSPE droplets were examined by
DSC and XRD, respectively. QT–NC was lyophilized by a freeze dryer (Lab-1A-50, Beijing
Bo Yikang Experimental Instrument Co., Ltd., Beijing, China) to obtain a dry sample. The
QT–NC adsorbed on the surface of QT–NSSPE droplets was collected after centrifugation
at 15,000 rpm for 30 min and dried by a freeze dryer. DSC measurements were performed
using a thermal analyzer (204 A/G, Netzsch, Bühl, Germany). The samples were analyzed
in open aluminum pans and heated at the speed of 10 ◦C/min from 50 to 350 ◦C. The X-ray
diffractograms were recorded by powder X-ray diffractometry (D/Max-2500PC, Rigaku,
Japan) with a CuKalfa radiation (λ = 1.5416 Å). The X-ray diffractograms were performed
in a step scan mode with a current of 25 mA and a voltage of 40 kV over the angle range of
7◦ to 55◦ at a speed of 1 ◦/min.

2.9. Stability of QT–NSSPE

Fresh QT–NSSPE were stored vertically in tubes at 4, 25, and 40 ◦C, respectively.
The droplets shape, droplets size, CI, zeta potential, and QT content of QT–NSSPE were
determined after storage for 5, 10, 15, 20, 25, and 30 days to evaluate the physical stability
of QT–NSSPE using the same methods as described in Sections 2.6 and 2.7.

2.10. In Vitro Release Study

Dissolution experiment was performed by dialysis bag diffusion method employing
Chinese Pharmacopeia Method II dissolution apparatus (ZRS-8G, Tianda Tianfa Co., Ltd.,
Tianjin, China). QT–NSSPE, QT–NC, and QT coarse powder suspension (QT–CPS) contain-
ing 16.2 mg QT were placed in dialysis bags (sigma) with a molecular weight cutoff of 8–14
kDa, respectively. Then, the dialysis bag was tied and immersed into 900 mL of phosphate
buffer saline (PBS, pH = 7.4) containing SDS (1%, w/v) [40] at 37 ◦C with a paddle speed of
100 rpm. Samples (1 mL) was withdrawn at 0.5, 1, 2, 4, 6, 8, 12, and 24 h, and immediately
replenished with equal volume of the release medium. QT concentration of each sample
was determined by HPLC as described in Section 2.6.

In order to determine kinetics and mechanism of drug release, zero-order model,
first-order model, Higuchi’s model, and the Korsmeyer-Peppas release model were applied
to the in vitro release profile data according to their equations as follows:

Mt/M∞ = k0t (2)

Mt = M∞(1 − e−kt) (3)

Higuchi model: Mt/M∞ = kht1/2 (4)

Korsmeyer-Peppas model: Mt/M∞ = kptn (5)

where Mt is the cumulative amount of drug released at time point t, M∞ is the initial
amount of drug, t represents time, k0, k, kh, kp represent the zero-order model, first-
order model, Higuchi, and Korsmeyer-Peppas rate constant, respectively, and n represents
release/diffusion exponent.
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2.11. Pharmacokinetic Study in Rats

All animals were fasted overnight with water accessible prior to the experiment. A
total of 18 rats were randomly divided into three groups. QT coarse powder suspension
(QT–CPS), QT–NC, and QT–NSSPE were intragastrically administered at a dose of QT
equivalent to 50 mg·kg−1, respectively. To obtain QT–CPS, QT coarse powder was added
into pure water and vortexed for 3 min. At predetermined intervals of 0.083, 0.25, 0.5, 1, 2,
4, 6, 8, 12, and 24 h after drug administration, blood samples of about 0.5 mL were collected
via retro-orbital venous plexus and placed into pre-heparinized centrifuge tubes. The blood
sample was immediately centrifuged at 5000 rpm for 10 min. A 200 µL of the supernatant
was gathered and stored at –20 ◦C until analysis.

A modified acid-hydrolyzed method was adopted to extract QT from plasma as
follows [41]: 200 µL of plasma sample, 50 µL of kaempferol as an internal standard
(20.2 µg·mL−1), and 200 µL of 25% hydrochloric acid solution were mixed and vortexed for
2 min. Following hydrolysis in water bath at 90 ◦C for 15 min, 350 µL ethanol was added
after cooling and the obtained mixture was vortexed for 2 min and centrifuged at 8000 rpm
for 10 min to yield the supernatant. QT content in the supernatant was determined by
HPLC as described in Section 2.6.

2.12. Data and Statistical Analyses

The DAS 2.0 software was used to calculate the pharmacokinetic parameters. All data
are expressed as the mean ± standard deviation (SD). One-way analysis of variance was
used to compare the differences among these groups and p < 0.05 meant the difference was
statistically significant.

3. Results and Discussions
3.1. Characterization of QT–NC

The mean size of QT–NC was (354.88 ± 17.35) nm with PDI of 0.106 ± 0.049. Figure 2
showed that QT–NC was a rod in shape with size about 300 to 400 nm.
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3.2. Optimization of QT–NSSPE Formulation
3.2.1. Fitting the Model to the Data

A total of 17 experiments in a three-factor, three-level Box-Behnken design were
required. The independent variables of the 17 runs and the responses that were observed
were given in Table 2. The regression analysis was performed using Design Expert software
on the data obtained to obtain the Y1 and Y2 multiple quadratic regression equations. The
results of analysis of variance showed that the model F values of Y1 and Y2 were 18.63
and 11.52 respectively (Table 3), implying the quadratic polynomial models had sufficient
statistical significance (p < 0.05) to predict the optimal conditions of independent variables.
The significance (p < 0.05) of each variable was considered to form the quadratic polynomial
equation of Y1 and Y2 as follows:

Y1 = 15.45 + 3.32X1 − 1.55X2 − 1.29X3 − 2.64X1X2 + 3.60X1X3 − 1.93X2X3 + 6.33X1
2, (R2 = 0.9599) (6)

Y2 = 4.72 + 0.46X2 + 0.27X3 + 0.22X2X3 − 0.30X1
2, (R2 = 0.9367) (7)

Table 2. Experimental arrangement with response of Box-Behnken design.

Run
Independent Variables Response Value

X1 X2 (%, w/v) X3 Y1 (µm) Y2 (mg·mL−1)

1 0.40 0.60 9.00 10.59 5.47
2 0.30 0.40 7.00 18.49 4.15
3 0.30 0.50 5.00 22.82 3.96
4 0.40 0.50 7.00 15.09 4.73
5 0.40 0.60 5.00 16.85 4.67
6 0.40 0.40 9.00 16.93 4.03
7 0.40 0.40 5.00 15.07 4.06
8 0.40 0.50 7.00 18.03 4.53
9 0.30 0.50 7.00 16.89 4.27
10 0.50 0.50 5.00 22.22 3.98
11 0.40 0.50 7.00 15.36 4.99
12 0.50 0.40 7.00 29.88 4.03
13 0.50 0.60 7.00 20.27 4.83
14 0.30 0.50 9.00 13.25 4.68
15 0.40 0.50 7.00 14.89 4.72
16 0.40 0.50 9.00 12.25 4.91
17 0.50 0.60 9.00 21.29 5.28

Table 3. Analysis of variance (ANOVA) for response surface quadratic mode.

Variables
Y1 Y2

F-Value p-Value Remark F-Value p-Value Remark

Model 18.630 0.0004 significant 11.520 0.0020 significant
X1 32.150 0.0008 ** 0.053 0.8252
X2 6.620 0.0368 * 35.670 0.0006 **
X3 6.980 0.0333 * 18.300 0.0037 **

X1X2 8.570 0.0221 * 0.057 0.8183
X1X3 21.700 0.0023 * 0.160 0.7020
X2X3 8.080 0.0249 * 6.600 0.0371 *
X1

2 76.510 <0.0001 ** 10.310 0.0148 *
X2

2 0.170 0.6900 0.073 0.7943
X3

2 1.320 0.2880 2.770 0.1402
Lack of Fit 0.850 0.5764 not significant 0.830 0.5847 not significant

* Significant at 5% level, ** Significant at 1% level.
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3.2.2. Response Surface Analysis through Polynomial Models

The types of interaction among the three tested variables and the relationship between
responses and experimental levels of each variable can be illustrated in 3D response-surface
plots. Figure 3A–C was the response surface plots that showed the effect of different
independent variables on the droplets size of the QT–NSSPE. The effect of varying QT
concentration and oil volume fraction on the droplets size (Y1) was studied when the pH
was kept constant. As shown in Figure 3A, the changing tendencies of droplets size of the
QT–NSSPE that firstly descended and then ascended were observed with the increase of oil
volume fractions. Besides, with increase of the QT concentration, the droplets size of QT–
NSSPE was decreased. The possible reason is that appropriately reducing the oil volume or
increasing the particles concentration could increase the amount of solid particles adsorbed
at the oil-water interface thus reducing the free energy of the system, which is helpful to
the reduction of droplets size of Pickering emulsions and make it a better stability [42,43].
On the contrary, as the oil volume increases or the particle concentration decreases, a large
number of emulsion droplets cannot be completely encapsulated, which will lead to an
increase in the droplets size and a decrease in stability of Pickering emulsions. Furthermore,
the effect of pH on the droplets size (Y1) was studied while the QT concentration was kept
constant. As shown in Figure 3B, with the increase of the oil volume fraction while keeping
the pH level constant, the droplets size decreased in first and then increased. Because there
are increasing in the solubility of the flavonoids as increasing of pH, which may increase
the proportion of surface active flavonoid molecules at higher flavonoid concentrations
thus enhancing the emulsifying ability of the flavonoid [44,45]. However, at a very high oil
volume fractions, the surface of the QT–NSSPE droplets could not be completely coated
by the stabilizers. At the same time, enhancing the pH could lead to an increase of the
solubility of QT and further reduce the particles in the system, thus increasing the droplets
size. Figure 3C illustrated the effect of different QT concentration and pH on the droplets
size of QT–NSSPE. As mentioned above, increasing both of them lead to a decrease in the
droplets size of QT–NSSPE.

The interaction effects among the three independent variables on drug loading of
QT–NSSPE (Y2) were studied. As shown in Table 3 and Figure 3D, there were not significant
interaction effects between QT concentration and oil volume fractions on the drug loading
of QT–NSSPE (p = 0.8183), the same phenomenon (Figure 3E) was observed at pH and
oil volume fractions (p = 0.7020). The reason may be associated with the fact that the oil
volume fraction has little influence on drug loading of the QT–NSSPE (X1, p = 0.8252).
The effect of pH and QT concentration on the drug loading (Y2) was studied when the oil
volume fraction was kept constant. As can be seen in Figure 3F and Table 3, the use of
higher pH in combination with the larger QT concentration would lead to an increase in the
drug loading of QT–NSSPE. As previously stated, QT has a higher surface active when the
pH is relatively alkaline, which is beneficial for the formation of QT–NSSPE. Moreover, the
more QT was used in the formulation, the more QT–NC could be adsorbed at the surface
of QT–NSSPE droplets, which could result in a higher drug loading of QT–NSSPE.
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Figure 3. Three-dimensional contour plot showing the effect of independent variables on response of
droplets size (Y1) and drug loading (Y2). (A) X1 and X2 on response Y1, (B) X1 and X3 on response
Y1, (C) X2 and X3 on response Y1, (D) X1 and X2 on response Y2, (E) X1 and X3 on response Y2, (F) X2

and X3 on response Y2.

3.2.3. Optimization and Validation

From this mathematical model, the optimum formulation of QT–NSSPE with the
minimum droplets size (Y1) and maximum drug loading (Y2) was determined by using
point prediction of the Design Expert software. Finally, the optimal levels of the three
variables were determined as follows: X1 (oil volume fraction) = 0.39, X2 (QT concentration)
= 0.59%, and X3 (pH) = 8.92. The corresponding predicted response values were: Y1 (size)
= 10.16 µm and Y2 (drug loading) = 5.49 mg·mL−1. Taking into account the reproducibility
of the actual operation, X1, X2, and X3 were taken as 0.4, 0.6, and 9, respectively. Three
verification experiments were performed using the optimal formulation parameters to
validate these predicted values generated according to the results of the Box–Behnken
design. Finally, QT–NSSPE with an average of 10.29 µm droplets size and 5.35 mg·mL−1

drug loading were obtained, which were in good agreement with the theoretical prediction.
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3.3. The Morphologies of QT–NSSPE

FM images of QT coarse powder and QT–NSSPE droplets were shown in Figure 4. As
can be seen in Figure 4A, strong fluorescence of QT coarse powder was observed, while
the equally fluorescence was observed on the surface of QT–NSSPE droplets (Figure 4B),
which demonstrated that QT–NC was adsorbed on the surface of QT–NSSPE droplets. In
addition, the fluorescence in the interior of emulsion droplets was also observed, indicating
the dissolution of quercetin in oil phase. SEM (Figure 5) showed that QT–NSSPE had a
dense solid shell formed by QT–NC adsorbed on the surface of emulsion droplets. However,
a severe adhesion of emulsion droplets was observed in QT–NSSPE. This may be due to
solvent evaporation during the preparation of samples for SEM.
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3.4. DSC

The DSC thermograms of QT coarse powder, lyophilized QT–NC, and QT–NC ad-
sorbed in QT–NSSPE were presented in Figure 6. QT coarse powder exhibited a sharp
endothermic peak at 321 ◦C, which was attributed to the melting point of QT [46,47], while
the broad endothermic peak between 80 ◦C and 125 ◦C was ascribed to the dehydration of
QT. The DSC thermogram of QT–NC showed an endothermic peak at 319 ◦C. An endother-
mic peak at 321 ◦C of QT–NC adsorbed in QT–NSSPE was also detected. There were no
significantly differences in DSC thermograms of QT in the three samples suggesting the
crystalline nature of quercetin has not changed.
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Figure 6. DSC curves of (A) QT coarse powder, (B) QT–NC lyophilized powder, and (C) QT–NC in
QT–NSSPE.

3.5. XRD

XRD was performed to further analyses the crystalline nature of QT coarse powder,
lyophilized QT–NC, and QT–NC adsorbed in QT–NSSPE. As shown in Figure 7, QT coarse
powder exhibited sharp diffraction peaks at 2θ value of 10.8◦, 12.4◦, and 27.4◦, which was
in accord with the document [48]. The presence of these sharp diffraction peaks indicated
that QT was highly crystalline. Compared with QT coarse powder, the crystalline peaks of
lyophilized QT–NC had no significant changes. For QT–NC in QT–NSSPE, the diffraction
peaks at 2θ value of 10.8◦ and 27.4◦ turned into weaker peaks and the diffraction peaks at
2θ value of 12.4◦ has disappeared. The reason may be that the interaction of QT–NC with
oil under sonication caused a decrease in crystallinity and a change in crystal nature of
QT. There are many factors that induce the decrease of crystallinity or the change of crystal
nature, such as temperature, pressure, grinding, and solvent induction [49].
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3.6. Physical Stability

The stability of QT–NSSPE stored at 4, 25, and 40 ◦C for 30 days was studied. As
shown in Figures 8 and 9, all droplets of QT–NSSPE were spherical before and after 30 days
of storage at various situation. The droplets sizes, CI, and zeta potential of QT–NSSPE were
very stable with slight change (p > 0.05) after storage for 5, 10, 15, 20, 25 and 30 days. The QT
concentration of fresh QT–NSSPE was 5.35 mg·mL−1, which did not change significantly
after 30 days of storage at different temperature (p > 0.05). These results indicated that
QT–NSSPE had an excellent stability within 30 days of storage at 4, 25, and 40 ◦C.
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Figure 9. The (A) Droplets size, (B) CI, (C) zeta potential, and (D) QT concentration of QT–NSSPE
during 30 days storage at 4, 25, and 40 ◦C. (n = 3, mean ± SD).

3.7. In Vitro Drug Release

Figure 10 showed the dissolution curves of QT–NSSPE, QT–NCS, and QT–CPS in
PBS (pH = 7.4) containing SDS (1%, w/v). QT was released from QT–NC and QT–NSSPE
at a much faster speed than from QT–CPS. Within 24 h, 50.71% and 68.88% of QT was
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dissolved from QT–NC and QT–NSSPE, respectively. However, only 20.15% of QT was
released from QT–CPS. Both QT–NC and QT–NSSPE exhibited a significant improvement
in drug dissolution as compared to QT–CPS, which may be due to that the form of QT in
QT–NC and QT–NSSPE were nanocrystals. The smaller size and larger specific surface area
of nanocrystals contribute to a much higher dissolution rate of poorly soluble drugs [50,51].
Compared with QT–NC, QT–NSSPE presented a better dissolution behavior with quicker
and more dissolution. This phenomenon was the same as the silybin nanocrystals in self-
stabilized Pickering emulsion [37]. A possible reason is that some QT dissolved in the oil
phase of QT–NSSPE. The dissolved QT was existed in a form of molecule and had a better
release capacity than nanocrystals.
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Figure 10. The in vitro dissolution profiles of QT–NSSPE, QT–NC, and QT–CPS in PBS (pH = 7.4)
containing 1.0% SDS (1%, w/v). (n = 3, mean ± SD).

Drug release data of QT–NSSPE were fitted into various kinetics models to elucidate
the mechanism and kinetics of drug release (Table 4). According to the value of R2 for zero-
order, first-order, Higuchi, and Korsmeyer-Peppas (0.6328, 0.9905, 0.8539, and 0.8632). QT–
NSSPE release profile was best fitted to first-order model, indicating the release mechanism
of QT–NSSPE was sustained release. For Korsmeyer-Peppas, the value of ‘n’ denotes
various mechanisms for the release of drug from the carriers (i.e., Fickian diffusion or non-
Fickian diffusion). For n ≤ 0.43 corresponds to Fickian diffusion, whereas 0.43 < n < 0.85
indicates that diffusion is non-Fickian or anomalous diffusion, and for n ≥ 0.85, anomalous
diffusion is dominant. In this study, the ‘n’ value of Korsmeyer-Peppas was 0.5347, it can
be suggested that the mechanism of QT release from QT–NSSPE was anomalous non-Fick
diffusion, indicating drug release as a combination of diffusion and erosion of polymer
matrix.
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Table 4. The fitting results of the release curves of QT–NSSPE.

Model Equation R2

zero-order Mt/M∞ = 2.6662t + 20.3551 0.6328

first-order Mt = 71.7454 (1 − e−0.1904t) 0.9905

Higuchi Mt/M∞ = 16.9639t1/2 − 0.2666 0.8539

Korsmeyer-Peppas Mt/M∞ = 19.0519t0.5347 0.8632

3.8. Pharmacokinetic Study in Rats

The plasma concentration-time profiles and the main pharmacokinetic parameters
were presented in Figure 11 and Table 5, respectively. QT–NSSPE and QT–NC exhibited
a higher plasma concentration of QT in most of the time point after oral administration
compared to those of QT–CPS. As shown in Table 5, after drug administration, the AUC0–t
of QT–NSSPE was 2.76 times that of QT–CPS and 1.38 times that of QT–NC (p < 0.05). The
Tmax value of QT–NSSPE was (1.75 ± 1.26) h, which was significantly shorter than those
of QT–CPS (3.33 ± 1.63) h (p < 0.01) and QT–NC (2.96 ± 0.17) h (p < 0.05). Furthermore,
the Cmax of QT–NC and QT–NSSPE were 4.43 µg·mL−1 and 6.06 µg·mL−1, about 1.76 and
2.41 times that of QT–CPS (p < 0.05). For t1/2 and MRT0–t, there were no obvious difference
among QT–CPS, QT–NC, and QT–NSSPE (p > 0.05).
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Table 5. Main pharmacokinetic parameters of rats after intragastrical administration of QT–CPS,
QT–NC, and QT–NSSPE (n = 6, mean ± SD).

Parameter QT–CPS QT–NC QT–NSSPE

AUC0–t/µg·mL−1·h 35.92 ± 2.42 72.19 ± 6.80 ** 99.31 ± 8.39 **, ##

MRT0–t/h 9.29 ± 0.45 9.78 ± 0.19 9.54 ± 0.13
Tmax/h 3.33 ± 1.63 2.92 ± 0.17 1.75 ± 1.26 **, #

Cmax/µg·mL−1 2.51 ± 0.23 4.43 ± 0.18 ** 6.06 ± 0.38 **, ##

t1/2/h 12.57 ± 3.72 15.43 ± 3.26 12.97 ± 1.91

** p < 0.01 vs. the QT–CPS group. # p < 0.05, ## p < 0.01 vs. the QT–NC group.

The above results demonstrated that QT–NSSPE could significantly improve the oral
bioavailability of QT, which may be responsible for the follow reasons: (a) Most of QT
in QT–NSSPE was in the form of nanocrystals, the smaller size and larger surface area
of nanocrystals lead to higher dissolution rate, hence increasing the oral bioavailability
of poorly water-soluble drugs [52,53]. (b) With an oily inner core of emulsion droplets,
QT–NSSPE had partially characteristic of type I lipid formulations [54]. After oral admin-
istration of QT–NSSPE, the oil phase of the emulsion droplets will be digested to form
the colloidal species that could interact with endogenous solubilizing species to produce
mixed micelles resulting in an enhanced oral absorption of water insoluble drugs [37,55]. (c)
Emulsions can also increase drug transportation to the gut-associated lymphoid tissue after
oral administration, which promotes the absorption of drugs through the intestinal lym-
phatics [56]. (d) QT–NSSPE has a higher AUC0–t than QT–NC, because the crystallinity of
QT–NC in QT–NSSPE was decreased as proven by XRD. The reduced degree of crystallinity
of nanocrystals was responsible, in addition to the nanoparticle size, for the solubility in-
crease [57]. Furthermore, there was part of QT dissolved in the oily inner core of QT–NSSPE
droplets, leading a better dissolution profile with a faster rate and more dissolution than
QT–NC as confirmed by in vitro dissolution, thus benefiting the oral absorption.

4. Conclusions

Quercetin was categorized as the BCS II drug because of its low solubility, which
results in a low AUC of QT–CPS and thus limiting its application. There are various
methods used to improve the solubility of quercetin, but these methods still have some
limitations such as poor stability and large amounts of surfactants. In this study, a new
drug delivery system of quercetin, QT–NSSPE, was developed using an ultrasound method.
Compared with conventional surfactant emulsions and Pickering emulsions, QT–NSSPE
avoids the adverse reactions caused by surfactants and other particles stabilizer. An oil-in-
water Pickering emulsion of quercetin (QT–NSSPE) with size of 10.29 µm was developed
and optimized by a 3-factor, 3-level Box-Behnken design. In QT–NSSPE, QT–NC acted as
solid particle stabilizers as well as therapeutic ingredient without any other surfactants or
particles stabilizers. In addition, with a core-shell structure formed by QT–NC adsorbed
on the surface of emulsion droplets, QT–NSSPE has not only a good physical stability for
a storage of 30 days, but can also enhance the dissolution rate and oral bioavailability of
quercetin. In conclusion, the drug nanocrystals self-stabilized Pickering emulsion (NSSPE)
could be a promising oral delivery system for insoluble drugs such as quercetin.
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