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Abstract: Glasdegib is a recently approved drug for the treatment of acute myeloid leukemia. It is
formulated and marketed in monomaleate salt form. In our investigation, we were able to prepare a
glasdegib dimaleate form, which could, in theory, exist in double-salt form or as a mixture of salt and
co-crystal species. Therefore, the obtained crystals of glasdegib dimaleate were characterized via 15N
ssNMR and single-crystal X-ray diffraction, which revealed that the obtained glasdegib dimaleate
exists in double-salt form. This is a surprising finding based on the pKa values for glasdegib and
maleic acid. Furthermore, we fully characterized the new dimaleate form using thermal analyses
(DSC and TGA) and spectroscopy (IR and Raman). Finally, the physicochemical properties, such as
solubility and chemical stability, of both forms were determined and compared.

Keywords: glasdegib; salts; X-ray diffraction; ssNMR; stability; solubility

1. Introduction

Acute myeloid leukemia (AML) is a cancer disease that affects the blood and bone
marrow. It represents a type of acute leukemia that is most commonly found in adults and
can progress rapidly without proper treatment [1]. In recent years, several new therapies
for the treatment of AML have appeared. These therapies involve kinase inhibitors (FLT3
inhibitors), IDH1/IDH2 inhibitors, BCL-2 inhibitors, hedgehog inhibitors and others [2–15].
Glasdegib (Figure 1), 1-((2R,4R)-2-(1H-benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-
(4-cyanophenyl)urea (previously also known as PF-04449913), was developed by Pfizer
for the treatment of AML [16–19]. Glasdegib inhibits the hedgehog signaling pathway,
known to be associated with a broad range of cancers, via the binding to and inhibition of
transmembrane protein Smoothened [17,19–23]. It was approved in November 2018 by the
U.S. Food and Drug Administration and in June 2020 by the European Medicines Agency
for use, in combination with low-dose cytarabine, as a treatment for newly diagnosed AML
in patients aged ≥75 and/or unfit for intensive induction chemotherapy [20–23].

Glasdegib was developed as a film-coated tablet for oral use which contains the active
pharmaceutical ingredient in the form of a monomaleate salt (Figure 1) [24]. Glasdegib
was reported to have pKa values of 1.7 (benzimidazole nitrogen) and 6.1 (methylpiperidine
nitrogen) [24,25], which makes it suitable for the formation of mono-salts with carboxylic
acids. Although several salts of glasdegib have been reported in the literature (e.g., maleate,
(S)-mandelate and dihydrochloride, which forms a hydrate) [17,26], the monomaleate salt
has the most favorable properties in terms of chemical stability, thereby forming the lowest
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levels of (2S,4R)-epimer under stress conditions (50 ◦C and 75% relative humidity over
6 weeks) [26]. Furthermore, glasdegib monomaleate is a moderately soluble drug [27] with
an aqueous solubility of 1.7 mg/mL [24,25]. Therefore, there is a need for the development
of alternative glasdegib salts with better stability and/or solubility.

In our study we were able to isolate a glasdegib dimaleate form upon treatment of
glasdegib monomaleate with an additional amount of maleic acid [28]. Based on the pKa
values of glasdegib [24,25] and maleic acid (pKa1 = 1.9 and pKa2 = 6.3) [29], the structure of
this novel form with regard to the ionization state was not evident. Thus, in this report, we
provide full details on the preparation and characterization of the glasdegib dimaleate form.
Interestingly, glasdegib dimaleate proved to be a double-salt form, which is surprising.
Furthermore, we compare its properties with its monomaleate analogue.

Figure 1. Chemical structure of glasdegib, maleic acid, glasdegib monomaleate and glasdegib
dimaleate and their reported pKa values [24,25,29].

2. Materials and Methods
2.1. Materials

For the purpose of this study, glasdegib monomaleate (Taros, Dortmund, Germany)
was used.

For the purpose of glasdegib dimaleate synthesis, maleic acid, sodium hydroxide,
methanol, ethyl acetate and dichloromethane were purchased from Merck KGaA (Darm-
stadt, Germany). Hydrochloric acid and isopropanol were obtained from FluoroChem
(Derbyshire, UK).
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2.2. Characterization Methods
2.2.1. Fourier Transform Infrared (FTIR) Measurements

FTIR spectra were collected using a Nicolet™ iS50 FTIR Spectrometer (Thermo Fisher
Scientific Inc., Waltham, MA, USA) with a KBr disk.

2.2.2. Raman Measurements

Raman spectra were collected using a Nicolet™ iS50 FTIR Spectrometer (Thermo
Fisher Scientific Inc., Waltham, MA, USA) with an iS50 Raman Module.

2.2.3. Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis
(TGA) Measurements

DSC thermograms were acquired using a differential scanning calorimeter DSC 3+ STARe

System instrument (Mettler Toledo, Columbus, OH, USA), and TGA thermograms were col-
lected using a TGA/DSC 1 STARe System instrument (Mettler Toledo, Polaris Parkway,
Columbus, OH, USA). The sample was heated in a 40 microliter aluminum pan with a pierced
aluminum lid from 30 to 300 ◦C at a rate of 10 K/min. Nitrogen (purge rate 200 mL/min) was
used as a purge gas.

2.2.4. Powder X-ray Diffraction (PXRD) Measurements

Bulk powder samples of glasdegib base, dihydrochloride, monomaleate and dimaleate
were analyzed via powder X-ray diffraction using the PANalytical Empyrean diffractome-
ter (Malvern Panalytical GmbH, Kassel, Germany) equipped with a theta/theta coupled
goniometer in transmission geometry, Cu-Kα1, 2 radiation (wavelength 0.15419 nm) with a fo-
cusing mirror and a solid state PIXcel1D detector. The patterns (Figures S16, S18 and S20–S23)
were recorded at a tube voltage of 45 kV and a tube current of 40 mA, applying a step size
of 0.026◦ 2-Theta with 50 s per step in the angular range of 2◦ to 40◦ 2-Theta under ambient
conditions. Automatic divergence and antiscatter slits were used to irradiate 10 mm of
sample length.

2.2.5. Nuclear Magnetic Resonance (NMR) Spectroscopy

All solutions’ NMR spectra (Figures S27–S30) were recorded at 298 K using a Bruker
Avance III 500 MHz spectrometer (Bruker Biospin, Rheinstetten, Germany). The spec-
trometer was equipped with a 5 mm BBO, Z-gradient probe operating at a 1H resonance
frequency of 500 MHz and a 13C resonance frequency of 125 MHz. Spectra were acquired
and processed using Bruker TopSpin software, version 3.1. 1H NMR chemical shifts (δH)
and 13C NMR chemical shifts (δC) are quoted in parts-per-million (ppm) downfield from
tetramethylsilane (TMS), and coupling constants (J) are quoted in Hertz (Hz). The abbrevi-
ations for NMR data are s (singlet), d (doublet), t (triplet), sept (septet) and m (multiplet).

2.2.6. Solid-State Nuclear Magnetic Resonance (ssNMR) Analysis

ssNMR spectra were acquired using the Agilent Technologies NMR System 600 MHz
NMR spectrometer (Varian Inc., Palo Alto, CA, USA) equipped with a 3.2 mm NB dual
resonance HX MAS probe. The Larmor frequencies of proton and nitrogen nuclei were
599.39 and 60.75 MHz, respectively. 1H NMR chemical shifts are reported relative to
external reference adamantane (δH 1.85 ppm), which corresponds to the TMS signal at
δH 0.0 ppm. 15N NMR chemical shifts are reported relative to ammonium sulfate (δN
−355.7 ppm), which corresponds to the nitromethane signal at δN 0.0 ppm. Samples were
spun at 20,000 (1H) and 10,000 Hz (15N). A short excitation time of 200 µs was used to
transfer polarization, relaxation delays of 1.5–4.75 s and at least 50,000 repetitions.

2.2.7. X-ray Single-Crystal Analysis

Single-crystal X-ray diffraction data for glasdegib monomaleate and glasdegib di-
maleate were collected on an Agilent Technologies SuperNova Dual diffractometer (Yarn-
ton, UK) using an Atlas detector with monochromated Cu-Kα radiation (λ = 1.54184 Å) at
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150 K. The data were processed using CrysAlis Pro [30]. Structures were solved via the
SHELXT program [31] and refined using a full-matrix least-squares procedure based on
F2 with SHELXL [32] using the Olex2 program suite [33]. All non-hydrogen atoms were
refined anisotropically. All hydrogen atoms were readily located in difference Fourier maps.
Hydrogen atoms bonded to carbon atoms were subsequently treated as riding atoms in
geometrically idealized positions with Uiso(H) = kUeq(C), where k = 1.5 for methyl groups—
which were permitted to rotate but not to tilt—and 1.2 for all other H atoms. N–H groups
were refined by restraining bonding distances, except for H atoms attached to N4 with
Uiso(H) = 1.2Ueq(N). Hydrogen atoms involved in the intramolecular O–H· · ·O interactions
in maleate monoanions were refined freely with Uiso(H) = 1.5Ueq(O). Geometric parameters
were calculated using the SHELXL [32] and Platon programs [34]. The crystallographic
data are listed in Table 1.

Table 1. Crystallographic data for glasdegib monomaleate and glasdegib dimaleate.

Glasdegib Monomaleate Glasdegib Dimaleate

CCDC number 2,180,664 2,180,665
Formula C25H26N6O5 C29H30N6O9

Mr 490.52 606.59
T (K) 150.00(10) 150.00(10)

Crystal system monoclinic orthorhombic
Space group P21 P212121

a (Å) 9.7312(3) 10.3645(2)
b (Å) 12.3780(3) 14.5078(3)
c (Å) 10.5764(3) 19.2377(3)
α (◦) 90 90
β (◦) 113.776(3) 90
γ (◦) 90 90

Volume (Å3) 1165.83(6) 2892.71(10)
Z 2 4

Dc (g/cm3) 1.397 1.393
µ (mm−1) 0.827 0.885

F (000) 516.0 1272.0
Reflections collected 8533 10926

Independent reflections (Rint) 4415 (0.0196) 5775 (0.0376)
Data/restraints/parameters 4415/3/342 5775/4/419

R, wR2 [I > 2σ(I)] a 0.0284, 0.0718 0.0436, 0.1047
R, wR2 (all data) a 0.0304, 0.0737 0.0499, 0.1104

GOF, S b 1.039 1.052
Largest diff. peak/hole/e Å−3 0.15/−0.16 0.27/−0.21

Flack parameter −0.10(8) 0.23(13)
a R = ∑||Fo| − |Fc||/∑|Fo|, wR2 = {∑[w(Fo

2 − Fc
2)2]/∑[w(Fo

2)2]}1/2. b S = {∑[(Fo
2 − Fc

2)2]/(n/p}1/2, where
n is the number of reflections and p is the total number of refined parameters.

2.2.8. Ultra-High-Performance Liquid Chromatography (UHPLC) Method

The solubility of glasdegib and related substances/degradation products were mea-
sured using ultra-high-performance liquid chromatography (UHPLC) with UV detection.
For that purpose, an Acquity UPLC system (Waters, Millford, MA, USA) equipped with
a quaternary solvent manager (QSM), a sample manager (SM), a temperature-controlled
column compartment and a tunable UV (TUV) detector was used. The method conditions
were as follows: column: Acquity UPLC CSH C18 (1.7 µm, 100 mm × 2.1 mm); mobile
phase A: A = ammonium bicarbonate (pH 9.0; 10 mM) pH-adjusted using ammonia solu-
tion (25%); mobile phase B: B = 100% ACN; pump flow: 0.4 mL/min; injection volume:
1 µL; column temperature: 30 ◦C; autosampler temperature: 10 ◦C; detection wavelength:
270 nm; needle-wash solvent: ACN-water (1:9, v/v); purge wash solvent: methanol-water
(1:9, v/v); sample solvent composition: methanol-water (3:7, v/v); gradient: t = 0 min,
15% B; t = 0.5 min, 15% B; t = 11 min, 40% B; t = 11.5 min, 75% B; t = 13 min, 75% B;
t = 13.5 min, 15% B; re-equilibration = 4.5 min; and tR (glasdegib) = 9.0 min (Figure S24).
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The concentrations of glasdegib salt for solubility measurements and for the determination
of related substances/degradation products were 0.2 and 0.5 mg/mL, respectively.

2.2.9. Chiral High-Performance Liquid Chromatography (HPLC) Method

The chiral purity of glasdegib was determined using an Alliance 2695 Separations
Module (Waters, Millford, MA, USA) equipped with a quaternary pump, an autosampler,
temperature-controlled column compartment and a 2487 Dual Absorbance Detector (Waters,
Millford, MA, USA). The method conditions were as follows: column: Chiralpak IC (5 µm,
250 mm × 4.6 mm; Daicel Corp, Tokyo, Japan); mobile phase A: A = 100% heptane; mobile
phase B: B = 2-propanol containing 0.1% (v/v) diethylamine; pump flow: 1.5 mL/min;
injection volume: 10 µL; column temperature: 25 ◦C; autosampler temperature: 5 ◦C;
detection wavelength: 270 nm; needle-wash solvent: 100% 2-propanol; sample solvent:
100% methanol; gradient: t = 0 min, 10% B; t = 0.5 min, 10% B; t = 20.5 min, 40% B;
t = 27 min, 60% B; t = 28 min, 10% B; re-equilibration = 12 min; tR (glasdegib) = 8.7 min;
and tR (2S,4R-epimer) = 15.8 min (Figure S25). The concentration of glasdegib salt for the
determination of chiral purity was 1.0 mg/mL.

2.2.10. Stress Stability Testing

Preliminary stress stability testing was conducted using dynamic vapor sorption
apparatus (ProUmid SPSx-1µ Sorption Test System, Ulm, Germany). Samples of glasdegib
monomaleate and glasdegib dimaleate were exposed to a temperature of 40 ◦C and relative
humidity of 75% for 3 months. Samples were taken for analysis after 1, 2 and 3 months and
analyzed via UHPLC (purity), chiral HPLC (chiral purity) and PXRD (form purity).

2.2.11. Dissolution and Solubility Testing

Dissolution and solubility were evaluated for both glasdegib monomaleate and glas-
degib dimaleate. Dissolution was tested at different pH values using the following buffer
solutions: pH 1.2 (United States Pharmacopeia 29), pH 4.0 (European Pharmacopoeia
7.0, ref. 4013800), pH 5.5 (European Pharmacopoeia 7.0, ref. 4002000) and pH 7.0 (European
Pharmacopoeia 7.0, ref. 4008200) at 37 ◦C and 300 rpm using an EasyMax 102 reactor
system (Mettler Toledo, Greifensee, Switzerland) using 50 mL reactor and a magnetic stirrer.
Experiments were performed by adding excess glasdegib salts into the desired buffer
solution already set at 37 ◦C. Samples were taken after stopping the stirring for 5–10 min
(decantation) to avoid the contamination of samples with insoluble particles. Samples were
then analyzed via UHPLC to measure glasdegib concentration.

2.3. Synthesis Methods and Characterization Data

To facilitate the ssNMR characterization of glasdegib dimaleate, standards of glasdegib
base and glasdegib dihydrochloride were prepared from glasdegib maleate.

2.3.1. Characterization of Glasdegib Monomaleate

DSC (10 ◦K/min): 195.4 ◦C onset, 202.2 ◦C peak; FTIR (KBr): 3424, 3326, 3297, 3275,
3188, 3042, 2975, 2954, 2912, 2882, 2837, 2787, 2750, 2219, 1690, 1602, 1535, 1499, 1463, 1445,
1411, 1387, 1359, 1329, 1319, 1273, 1261, 1240, 1218, 1174, 1143, 1113, 1096, 1070, 1061, 1030,
1016, 1008, 986, 960, 927, 901, 861, 847, 829, 801, 771, 755, 716, 673, 570, 550, 520, 508, 495,
480, 454 and 420 cm−1; Raman: 3118, 3072, 3059, 3029, 3013 2988, 2976, 2955, 2933, 2219,
1691, 1613, 1589, 1535, 1490, 1445, 1432, 1387, 1329, 1320, 1303, 1288, 1273, 1261, 1233, 1208,
1175, 1145, 1113. 1070, 1035, 1023, 1014, 997, 966, 926, 911, 901, 874, 841, 830, 800, 782, 748,
729, 716, 676, 646, 620, 561, 551, 520, 511, 495, 480, 466, 455, 445, 422 and 401 cm−1; 1H NMR
(MeOD, 500 MHz): δ 7.68–7.62 (m, 2H), 7.59 (s, 4H), 7.34 (dd, J = 6.1, 3.1 Hz, 2H), 6.30 (s,
2H), 4.57 (d, J = 4.3 Hz, 1H), 4.27–4.22 (m, 1H), 3.61 (d, J = 12.8 Hz, 1H), 3.30–3.23 (m, 1H),
2.67 (s, 3H), 2.48–2.36 (m, 2H), 2.25 (ddt, J = 15.1, 11.1, 4.2 Hz, 1H) and 2.08 (dt, J = 14.9,
4.5 Hz, 1H) ppm; 13C NMR (MeOD, 125 MHz, proton-decoupled): δ 170.80, 156.73, 150.78,
145.62, 138.35, 135.92, 134.25, 124.93, 120.16, 119.50, 119.41, 116.29, 105.46, 59.45, 51.82, 43.35,
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42.81, 35.46 and 29.08 ppm; PXRD diffractogram (Figure S16) corresponds to the previously
published data [26].

2.3.2. Synthesis of Amorphous Glasdegib Base

Ethyl acetate (60 mL) and 0.5 M sodium hydroxide solution (100 mL) were added
to glasdegib monomaleate (2.00 g, 4.08 mmol). The suspension was mixed at 25 ◦C until
no solid particles were observed. The phases were separated, and the organic phase was
washed two times with 0.5 M sodium hydroxide solution (2 × 45 mL) and another two
times with water (2 × 20 mL). Ethyl acetate phase was dried over sodium sulfate. The
solids were filtered off, and the filtrate was concentrated on the rotary evaporator until
a solid phase was obtained. The amorphous solid was additionally dried at 40 ◦C under
reduced pressure to obtain 1.30 g (65% yield) of amorphous glasdegib base, which was
used directly for the preparation of the crystalline glasdegib base.

2.3.3. Synthesis and Characterization of Crystalline Glasdegib Base

The amorphous glasdegib base (200 mg, 0.534 mmol) was dissolved in mixture of
ethyl acetate (40 mL) and methanol (0.6 mL) upon heating to 60 ◦C using an ultrasonic bath.
Clear solution was placed into the vial and stirred at room temperature (25 ◦C) for about
16 h, with a pierced vial cap to enable slow evaporation of part of the solvent. The resulting
solid was filtered and dried at 40 ◦C under reduced pressure to give to give 110 mg (55%
yield) of crystalline glasdegib base (Figure S20). DSC (10 ◦K/min): 235.5 ◦C onset, 237.2 ◦C
peak; FTIR (KBr): 3356, 3051, 2982, 2947, 284, 2793, 2219, 1708, 1659, 1622, 1593, 1456, 1431,
1418, 1380, 1369, 1328, 1271, 1177, 1146, 1146, 1112, 1073, 1042, 1002, 991, 896, 834, 778, 767,
744, 677, 639, 617, 569, 549, 513, 467 and 424 cm−1; Raman: 3353, 3066, 3053, 2982, 2951,
2929, 2897, 2224, 2216, 1709, 1661, 1610, 1592, 1543, 1532, 1455, 1321, 1270, 1230, 1206, 1180,
1147, 1114, 1046, 1028, 1003, 982, 926, 890, 850, 830, 751, 714, 643, 625, 617, 552, 514, 503, 469
and 446 cm−1.

2.3.4. Synthesis and Characterization of Glasdegib Dihydrochloride Hydrate

The glasdegib base (100 mg, 0.267 mmol) was dissolved in mixture of ethyl acetate
(17 mL) and methanol (3 mL). The suspension was mixed at 50 ◦C until it became clear. To
the solution, 6 N hydrochloric acid in isopropanol (0.1068 mL) was added. After several
minutes, a solid phase was observed. The suspension was cooled down to 5 ◦C, and
the solid particles were filtered and dried at 40 ◦C under reduced pressure to provide
50 mg (42% yield) of crystalline glasdegib dihydrochloride hydrate [17] (Figure S21). DSC
(10 ◦K/min): 159.1 ◦C onset, 189.4 ◦C peak and 208.0 ◦C onset, 210.7 ◦C peak; FTIR (KBr):
3314, 3100, 3050, 2928, 2853, 2736, 2613, 2224, 1707, 1629, 1595, 1534, 1486, 1471, 1453, 1430,
1414, 1383, 1325, 1288, 1223, 1175, 1151, 1116, 1064, 1023, 989, 968, 930, 896, 876, 836, 759,
750, 668, 638, 620, 546, 518, 495 and 479 cm−1; Raman: 3087, 3078, 3053, 3024, 2993, 2982,
2974, 2945, 2934, 2227, 2215, 1715, 1706, 1610, 1573, 1545, 1528, 1491, 1453, 1430, 1388, 1336,
1317, 1306, 1287, 1266, 1242, 1205, 1176, 1155, 1118, 1101, 1064, 1037, 1019, 1001, 968, 930,
896, 878, 843, 831, 800, 745, 714, 704, 644, 620, 561, 544, 520, 509, 495, 474, 446, 417 and
400 cm−1.

2.3.5. Synthesis and Characterization of Glasdegib Dimaleate

Glasdegib monomaleate (100 mg, 0.22 mmol) and maleic acid (31 mg, 0.27 mmol) were
dissolved in a mixture of dichloromethane (1.9 mL) and methanol (0.1 mL) upon heating to
40 ◦C and with the aid of sonication in an ultrasonic bath. The obtained clear solution was
filtered through a 0.45 µm syringe filter into a fresh vial fitted with a stir bar. Under constant
mixing, dichloromethane (12 mL) was added to the solution. After 2 h of stirring, a white
suspension was formed, which was further stirred at room temperature for approximately
16 h. The precipitate was isolated via filtration, rinsed with dichloromethane (1 mL) and
dried for about 16 h at room temperature and under a reduced pressure of about 50 mbar
to obtain 60 mg (49% yield) of crystalline the glasdegib dimaleate form (Figure S18). DSC
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(10 ◦K/min): 186.0 ◦C onset, 190.1 ◦C peak; FTIR (KBr): 3390, 3326, 3274, 3223, 3183, 3149,
3105, 3047, 2946, 2868, 2704, 2595, 2215, 1699, 1626, 1599, 1536, 1416, 1384, 1355, 1330, 1317,
1291, 1244, 1227, 1176, 1147, 1123, 1096, 1067, 1008, 988, 930, 891, 867, 849, 821, 799, 752, 718,
673, 667, 618, 577, 551, 521, 505, 492, 450 and 427 cm−1; Raman: 3192, 3077, 3049, 2990, 2950,
2216, 1699, 1602, 1562, 1536, 1454, 1381, 1347, 1318, 1292, 1271, 1209, 1176, 1146, 1119, 1110,
1037, 1018, 999, 964, 932, 894, 876, 864, 843, 830. 799, 782, 745, 729, 715, 618 and 486 cm−1;
1H NMR (MeOD, 500 MHz): δ 7.70–7.63 (m, 2H), 7.59 (s, 4H), 7.40–7.32 (m, 2H), 6.31 (s,
4H), 4.71 (dd, J = 8.9, 4.9 Hz, 1H), 4.26 (t, J = 4.6 Hz, 1H), 3.70 (d, J = 12.9 Hz, 1H), 3.37 (ddd,
J = 14.1, 11.3, 3.3 Hz, 1H), 2.74 (s, 3H), 2.52–2.41 (m, 2H), 2.28 (ddt, J = 15.0, 11.0, 4.2 Hz, 1H)
and 2.11 (dt, J = 15.2, 4.6 Hz, 1H) ppm; 13C NMR (MeOD, 125 MHz, proton-decoupled): δ
169.93, 156.75, 149.89, 145.59, 138.31, 134.24, 133.74, 125.11, 120.16, 119.53, 119.44, 116.36,
105.47, 59.31, 51.86, 43.22, 42.56, 35.16 and 28.83 ppm; PXRD (Cu-Kα): 5.5, 7.5, 9.2, 10.3, 11.0,
11.3, 11.9, 13.8, 14.7, 15.4, 17.0, 17.3, 18.0, 18.6, 19.3, 20.3, 20.8, 22.0, 22.8, 24.6, 25.4, 25.6, 26.0,
26.6, 27.3, 27.9, 29.2 and 29.8◦ 2θ.

3. Results
3.1. Synthesis of Glasdegib Dimaleate

Initially we conducted an extensive screening of the solid form in order to identify
potential novel forms of glasdegib. In the majority of cases, no new solid form was detected.
However, when we crystalized glasdegib monomaleate from dichloromethane, we observed
that the substance was only partially soluble. Furthermore, after the removal of undis-
solved material via filtration, a new solid was crystallized from a clear dichloromethane
solution. The analyses of the solid via PXRD (Figures 2, S16, S18, S20 and S21) and DSC
(Figures S1–S4) suggested that a new form was obtained. Moreover, the solution 1H NMR
analysis of the obtained solid indicated that excess maleic acid was present in a novel
form. Therefore, subsequent targeted crystallization experiments using glasdegib mono-
maleate in the presence of additional quantities of maleic acid provided a new form,
which was determined to be glasdegib dimaleate based on the solution 1H NMR analysis
(Figures S27 and S29). In order to improve the process feasibility, due to the low solubility
of glasdegib monomaleate in dichloromethane, we conducted subsequent crystallization ex-
periments from the mixture of dichloromethane and methanol, which provided consistently
pure glasdegib dimaleate.

Figure 2. Powder X-ray diffraction patterns of glasdegib derivatives: glasdegib base, glasdegib
dihydrochloride, glasdegib monomaleate and glasdegib dimaleate.
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3.2. Characterization of Glasdegib Dimaleate
3.2.1. PXRD Analysis

As presented in Figures 2 and S18, glasdegib dimaleate had notably different PXRD sig-
nal pattern in the PXRD diffractogram compared to the glasdegib monomaleate, glasdegib
base or glasdegib dihydrochloride. The PXRD pattern of glasdegib dimaleate contained sev-
eral characteristic signals at 2-Theta of 7.5◦, 15.4◦, 20.3◦, 20.8◦, 22.0◦, 24.6◦, 25.4◦, 25.6◦ and
26.0◦, which were not observed in the glasdegib monomaleate, glasdegib base or glasdegib
dihydrochloride. To obtain a more complete picture on the characteristics of this novel
form, we performed additional characterization using IR, Raman, DSC, TGA ssNMR and
single-crystal X-ray analysis, which is described below.

3.2.2. Infrared Spectral Analysis

In the IR spectrum of glasdegib monomaleate (Figure 3) and glasdegib dimaleate
(Figure 4), the region between 3500 and 2500 cm−1 is populated by overlapping N–H, O–H,
sp2 C–H (benzene rings) and sp3 C–H (CH2 and CH3 groups) stretching vibrations. In
the case of the monomaleate form, distinct bands are observed at 3424, 3326, 3275, 3188,
3042, 2975, 2912, 2882, 2787 and 2750 cm−1 (Figure 3), while in the case of the dimaleate
form, distinct bands are observed at 3326, 3274, 3183, 3105, 3047, 2946, 2868 and 2595 cm−1

(Figure 4). The most diagnostic band in the IR spectra is associated with stretching of the
nitrile (C≡N) group, which is located at 2219 cm−1 for the monomaleate form (Figure 3)
and at 2215 cm−1 for the dimaleate form (Figure 4). The carbonyl (C=O), alkene (C=C) and
aromatic (C=C) stretching vibration regions (ca. 1700–1500 cm−1) are densely populated
with bands for the cis-alkene group, aromatic double bonds, the urea carbonyl group, the
carboxylic acid carbonyl group and the carboxylate anion carbonyl group. In this region
the most diagnostic band is located at 1690 cm−1 for the monomaleate form (Figure 3) and
at 1699 cm−1 for the dimaleate form (Figure 4). Similarly, the fingerprint regions or IR
spectra for both forms are crowded with a large number of similar absorption bands.

Figure 3. IR spectrum of glasdegib monomaleate with highlighted diagnostic regions and bands.



Pharmaceutics 2022, 14, 1641 9 of 26

Figure 4. IR spectrum of glasdegib dimaleate with highlighted diagnostic regions and bands.

3.2.3. Raman Analysis

Due to the congested IR spectrum with a large number of overlapping bands in
the fingerprint region, we decided to also characterize the glasdegib monomaleate and
dimaleate forms using Raman spectroscopy, which should enable better distinction of
both forms. The Raman spectrum of glasdegib monomaleate (Figure 5) and glasdegib
dimaleate (Figure 6) display CH stretching of unsaturated carbons in the region above
3000 cm−1, while CH stretching of saturated carbons popthe ulates the region from 3000 to
2933 cm−1 for monomaleate form, and from 3000 to 2950 cm−1 for the dimaleate form. The
most diagnostic bands (C≡N stretch of a nitrile bond) in the Raman spectra are located at
2219 cm−1 for the monomaleate form (Figure 5) and at 2216 cm−1 for the dimaleate form
(Figure 6). Furthermore, a distinct characteristic band is also observed for the carbonyl
group (C=O) at 1691 cm−1 for the monomaleate form (Figure 5) and at 1699 cm−1 for the
dimaleate form (Figure 6). In addition, very strong aryl C=C stretches at 1613 cm−1 for the
monomaleate form (Figure 5) and 1602 cm−1 for the dimaleate form (Figure 6) are observed,
and are also detected in the glasdegib base (Figure S13).

Figure 5. Raman spectrum of glasdegib monomaleate.
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Figure 6. Raman spectrum of glasdegib dimaleate.

3.2.4. DSC and TGA Analysis

The thermal behaviors of the obtained glasdegib dimaleate, glasdegib monomaleate,
glasdegib dihydrochloride hydrate [17] and glasdegib base are shown in Figures 7 and S1–S4.
It can be observed that the new dimaleate form exhibits distinct thermal behavior compared
to the other glasdegib derivatives (Figure 7).

Figure 7. DSC thermograms of glasdegib derivatives. Black: glasdegib monomaleate, red: glasdegib
dihydrochloride hydrate; blue: glasdegib base; and green: glasdegib dimaleate.

In the DSC thermogram of glasdegib monomaleate (Figure 7, black line and Figure S1)
two endothermic transitions were observed. The first transition at 118.5 ◦C (onset) and
124.8 ◦C (peak) is associated with a 2.3% mass loss, as observed in the TGA thermogram
above 100 ◦C (Figure S1), which is probably associated with the partial desolvation of
the residual solvent. The second broader peak transition at 195.4 ◦C (onset) and 200.2 ◦C
(peak) is associated with the melting of the monomaleate form. After both endothermic
phenomena, an exothermic transition associated with decomposition was not observed up
to 300 ◦C.

Glasdegib dihydrochloride hydrate (Figure 7, red line and Figure S4) exhibited more
complex thermal behavior, where a very broad endothermic peak was observed at 159.1 ◦C
(onset) and 189.4 ◦C (peak). In this endothermic transition, the TGA thermogram (Figure S4)
shows that 10.86% of the mass is lost until 206 ◦C, which probably corresponds to a loss of
one hydrochloric acid and one water (calculated mass loss 11.7%). Subsequently, another
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endothermic transition is observed at 208.0 ◦C (onset) and 210.7 ◦C (peak), which probably
corresponds to the melting of the formed hydrochloride form. In the TGA thermogram
(Figure S4) it can be observed that additional mass loss starts at temperatures above
215 ◦C and continues up to the final measured temperature of 300 ◦C. In this temperature
range, the formation of the glasdegib base (see paragraph below) can be observed in the
DSC thermogram, which melts at 235.7 ◦C (onset) and 237.8 ◦C (peak). Interestingly, at
temperatures between 265 and 270 ◦C, an exothermic transition can be observed, which is
not observed in other glasdegib derivatives and is probably associated with decomposition.

The glasdegib base (Figure 7, blue line and Figure S3) has a simple thermogram with a
single melting peak at 235.2 ◦C (onset) and 237.2 ◦C (peak) and no exothermal transition
up to 300 ◦C. The mass loss for the glasdegib base was observed in the TGA thermogram
(Figure S3) above 230 ◦C and continued until the final measured temperature of 300 ◦C.

The DSC curve of glasdegib dimaleate (Figure 7, green line and Figure S2) shows no
thermal events until the first endothermic peak, with an onset temperature of 165.9 ◦C
and a peak temperature of about 169.3 ◦C; this indicates the good thermal stability of the
glasdegib dimaleate form. Furthermore, no exothermic phenomena are observed in the
DSC thermogram up to 300 ◦C. The TGA thermogram (Figure S2) shows that mass loss for
glasdegib dimaleate starts at temperatures above 110 ◦C.

3.2.5. Solid-State Nuclear Magnetic Resonance Analysis

In order to determine the true ionization state of glasdegib dimaleate, we first con-
ducted an ssNMR study, which involved 1H ssNMR as well as 15N ssNMR measurements
using glasdegib monomaleate, glasdegib dihydrochloride and glasdegib bases as key stan-
dards for the ionized and unionized state of glasdegib. The glasdegib base presents a
reference substance for non-protonated species of glasdegib derivatives, whereas glasdegib
dihydrochloride serves as a reference for the protonated double-salt form.

The ssNMR characterization of different glasdegib forms included 1H echo MAS
(magic-angle spinning) ssNMR spectra, which showed proton signals between δH 14 and
16 ppm for glasdegib (δH 14.6 ppm) as well as dihydrochloride (δH 15.8 ppm) that are
most likely involved in intermolecular hydrogen bonds (Figure S26). The signal of di-
hydrochloride salt appears broader, which could be attributed to the fact that multiple
molecules are present per asymmetric unit, as also observed in 15N ssNMR spectra (vide
infra). Glasdegib monomaleate and glasdegib dimaleate showed two sets of signals each:
one at δH 14–16 ppm and the other at δH 20 ppm (Figure S26). The latter suggests the
formation of additional hydrogen bonds for monomaleate and dimaleate species. A 1H
ssNMR chemical shift of such high value is typical for strong hydrogen-bond interactions.

The glasdegib base showed four groups of signals in the 15N CP-MAS ssNMR spec-
trum (Figure 8a). The lowest NMR chemical shift was assigned to methylpiperidine
nitrogen (δN −334.6 ppm). The intense signal at δN −285.7 ppm was attributed to both urea
nitrogen atoms, followed by two benzimidazole nitrogen atoms in the region between δN
−266.5 and −272.3 ppm (pyrrole-like NH) and at δN −231.0 ppm (pyridine-like N). Simi-
larly, four groups of NMR signals were observed for glasdegib dihydrochloride (Figure 8b).
The lowest NMR chemical shift at δN −326.2 ppm was assigned to methylpiperidine nitro-
gen. The signal at δN −290.1 ppm was attributed to both urea nitrogen atoms, followed
by two benzimidazole nitrogen atoms in the regions between δN −268 and −270 ppm
(pyrrole-like NH) and between δN −210 and −223 ppm (pyridine-like N). Note that some
of the NMR signals in the 15N CP-MAS spectra of glasdegib dihydrochloride are doubled,
which suggests that more than one molecule is present per asymmetric unit (Figure 8b).

Glasdegib dihydrochloride showed a higher intensity of methylpiperidine nitrogen
compared to the glasdegib base. Furthermore, the protonation of the methylpiperidine
nitrogen atom showed an NMR chemical shift change of ca. 10 ppm (Figure 8a,b).
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Figure 8. 15N CP MAS ssNMR (15N cross-polarization magic-angle spinning solid-state nuclear
magnetic resonance) spectra of (a) glasdegib base, (b) glasdegib dihydrochloride, (c) glasdegib
monomaleate and (d) glasdegib dimaleate.

The 15N ssNMR spectra of the glasdegib monomaleate and glasdegib dimaleate
species were compared to the glasdegib base and dihydrochloride forms (Figure 8). The
methylpiperidine nitrogen atoms of both glasdegib monomaleate and glasdegib dimaleate
showed 15N chemical shifts similar to glasdegib dihydrochloride, which suggests the pro-
tonation of methylpiperidine nitrogen. A chemical shift of the methylpiperidine nitrogen
atom was observed at δN −325.2 ppm for glasdegib monomaleate species (Figure 8c) and at
δN −326.1 ppm for glasdegib dimaleate species (Figure 8d). In addition, a small chemical-
shift difference was observed for pyridine-like the benzimidazole nitrogen atom when
comparing glasdegib monomaleate and glasdegib dimaleate, where dimaleate species
showed NMR chemical shifts similar to glasdegib dihydrochloride (compare 15N NMR
signals at ca. δN −216 ppm).

The 15N LG-CP MAS ssNMR spectra [35–37] were recorded for each glasdegib form,
where a short excitation time (200 µs) was used to transfer polarization from the 1H to 15N
nuclei. The comparison with the CP MAS spectra of glasdegib derivatives allowed enabled
the detection of protonated and unprotonated species (Figure 9). The 15N ssNMR chemical
shift of the glasdegib base is consistent with the non-protonated form, as no signal could
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be observed for the methylpiperidine nitrogen atom at ca. δN −335 ppm (Figure 9a). The
NMR signals of other nitrogen atoms (urea and benzimidazole nitrogens) were observed at
the same chemical shifts as in the 15N CP-MAS spectra (compare Figures 8a and 9a).

Figure 9. 15N LG-CP MAS ssNMR (15N Lee–Goldburg cross-polarization magic-angle spinning
solid-state nuclear magnetic resonance) spectra of (a) glasdegib base, (b) glasdegib dihydrochloride,
(c) glasdegib monomaleate and (d) glasdegib dimaleate. Note that signals marked with * were
attributed to artefacts that correspond to transmitter-frequency offset.

The 15N LG-CP MAS ssNMR spectra confirmed that both monomaleate and dimaleate
species correspond to protonated forms of glasdegib (Figures 9c and 9d, respectively).
Strong 15N NMR signals were observed for methylpiperidine nitrogen atoms in the case of
glasdegib monomaleate at δN −325.8 ppm (Figure 9c) as well as in the case of glasdegib
dimaleate at δN −326.4 ppm (Figure 9d). Furthermore, the pyridine-like benzimidazole
nitrogen atom of glasdegib monomaleate species showed a negligible shift when compared
to the glasdegib base (δN −227.7 ppm; ∆δN 3 ppm), which suggests that glasdegib monoma-
leate exists in salt form with its primary protonation site on the methylpiperidine nitrogen
atom. Glasdegib dimaleate showed an identical deshielded methylpiperidine nitrogen
atom, and interestingly, a remarkable shift in the pyridine-like benzimidazole nitrogen
atom (δN −216 ppm; ∆δN 15 ppm) with respect to the glasdegib base.
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In essence, the salt/co-crystal properties of glasdegib monomaleate were assessed by
comparing its 15N chemical shifts to the glasdegib base and dihydrochloride species. The
methylpiperidine nitrogen atoms of glasdegib monomaleate exhibit δN −325.8 ppm, which
is consistent with the downfield shift of ca. 10 ppm, as observed in the case of glasdegib
dihydrochloride. Additionally, the pyridine-like benzimidazole nitrogen atom of the glas-
degib monomaleate species showed a negligible shift when compared to the glasdegib base
(∆δN 3 ppm), which suggests that glasdegib monomaleate exists in salt form with its pri-
mary protonation site on the methylpiperidine nitrogen atom. Glasdegib dimaleate showed
and identical deshielded methylpiperidine nitrogen atom (δN −326.1 ppm), and moreover,
a remarkable shift in the pyridine-like benzimidazole nitrogen atom (∆δN 15 ppm). The
latter implies that despite the low ∆pKa value for the benzimidazole nitrogen/maleic acid
pair, the obtained glasdegib dimaleate exists in double-salt form.

3.2.6. X-ray Single-Crystal Determination

We were able to obtain crystals of glasdegib monomaleate and glasdegib dimaleate suitable
for the X-ray structural analysis (Figure 10a,b). The crystallographic data are listed in Table 1.
In both crystal structures, partially deprotonated maleic acid is present in the form of maleate
monoanions with a strong intramolecular O–H· · ·O hydrogen bond (2.386(4)–2.403(2) Å). The
C–O distances are within the ranges expected for maleate monoanion.

Figure 10. Thermal ellipsoid figures of (a) glasdegib monomaleate and (b) glasdegib dimaleate drawn
at the 30% probability level. The asymmetric unit of glasdegib monomaleate contains one protonated
glasdegib molecule and one maleate monoanion. The asymmetric unit of glasdegib dimaleate
contains one double-protonated glasdegib molecule and two maleate monoanions. Hydrogen bonds
are represented by dashed blue lines.

Compound glasdegib monomaleate crystalizes in monoclinic space group P21 with
one protonated glasdegib molecule and one maleate monoanion in an asymmetric unit
(Figure 10a).
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The glasdegib molecule is protonated on the methylpiperidine N4 nitrogen atom. In
glasdegib monomaleate, a hydrogen-bonded chain is formed along the c axis through a
series of interactions between a protonated glasdegib molecule and a maleate monoanion
(Figure 11). The methylpiperidine NH group of glasdegib is connected to maleate via
N4–H4· · ·O2 hydrogen bonding and supported by a C23–H23· · ·N5 interaction between
maleate and a benzimidazole moiety, forming an R2

2(9) ring motif [38]. Furthermore,
glasdegib interacts with the adjacent maleate monoanion through N1–H1· · ·O3i and N6–
H6a· · ·O5i interactions with urea and benzimidazole moieties, respectively, supported by
C3–H3· · ·O2i and C12–H12· · ·O4i bonding and forming one R2

2(12) and two R2
2(8) ring

motifs (symmetry code: (i) x, y, 1 + z) (Table 2). The chains are connected into layers along
the bc plane through C18–H18· · ·O1iii interactions between the benzimidazole moiety and
the urea oxygen atom (symmetry code: (iii) x, 1 + y, z) (Figure 11a). Double layers are
formed through C11–H11b· · ·N3ii interaction, connecting the methylpiperidine moiety of
one glasdegib molecule with the cyano-group of the adjacent glasdegib molecule (symmetry
code: (ii) 1 − x, 1

2 + y, 2 − z) (Figure 11b,c).

Figure 11. Hydrogen-bond architecture in the glasdegib monomaleate: (a) layer formation along bc
plane; (b) formation of double layers via C11–H11b· · ·N3 interactions; (c) packing of double layers
along a axis (arbitrary colors; one double layer is presented by light and dark blue and second double
layer is represented by light and dark magenta). Hydrogen bonds are represented by dashed blue
lines. Hydrogen atoms not involved in the motif shown have been omitted for clarity.
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Table 2. Hydrogen bonds for glasdegib monomaleate and glasdegib dimaleate [Å and ◦].

D–H· · ·A d(D–H) d(H· · ·A) d(D· · ·A) <(DHA)

glasdegib monomaleate
N1–H1· · ·O3i 0.885(13) 2.033(15) 2.892(2) 164(2)
N4–H4· · ·O2 0.98(2) 1.78(3) 2.687(2) 151(2)
N6–H6· · ·O5i 0.90(3) 1.87(3) 2.762(2) 171(3)
O3–H3A· · ·O4 1.16(3) 1.25(3) 2.403(2) 177(3)
C3–H3· · ·O2i 0.95 2.54 3.458(3) 162.7
C7–H7· · ·O1 0.95 2.25 2.863(3) 121.7

C11–H11B· · ·N3ii 0.99 2.42 3.407(3) 172.5
C12–H12· · ·O4i 1.00 2.25 3.211(2) 161.9
C18–H18· · ·O1iii 0.95 2.56 3.302(3) 135.2
C23–H23· · ·N5 0.95 2.54 3.274(3) 134.3

glasdegib dimaleate
N1–H1· · ·O4i 0.891(13) 1.929(14) 2.820(3) 177(4)
N2–H2· · ·O5i 0.886(13) 2.122(15) 2.999(3) 170(3)
N4–H4· · ·O2 0.99(4) 1.76(4) 2.703(3) 158(3)
N5–H5· · ·O6 0.871(13) 1.872(15) 2.736(4) 171(4)
N5–H5· · ·O7 0.871(13) 2.56(3) 3.192(4) 130(3)
N6–H6· · ·O8i 0.877(13) 2.36(2) 3.153(4) 150(3)
N6–H6· · ·O9i 0.877(13) 2.05(3) 2.772(4) 140(3)
O4–H3A· · ·O3 1.17(5) 1.23(5) 2.397(3) 170(4)
O8–H7A· · ·O7 1.15(5) 1.24(6) 2.386(4) 177(5)
C7–H7· · ·O1 0.95 2.22 2.842(4) 122.4

C9–H9· · ·O5ii 1.00 2.50 3.326(4) 139.6
C12–H12· · ·O5i 1.00 2.45 3.228(4) 134.6
C13–H13B· · ·O6 0.99 2.42 3.364(4) 159.0
C21–H21· · ·O7 0.95 2.50 3.244(4) 134.8

C28–H28· · ·N3iii 0.95 2.60 3.404(5) 142.7

Symmetry codes for glasdegib monomaleate: (i) x, y, 1 + z; (ii) 1 − x, 1
2 + y, 2 − z; (iii) x, 1 + y, z, and for glasdegib

dimaleate: (i) 1
2 − x, 1 − y, 1

2 + z; (ii) 1 − x, − 1
2 + y, 1

2 − z; (iii) x, y, −1 + z.

Compound glasdegib dimaleate crystalizes in orthorhombic space group P212121 with
one double-protonated glasdegib molecule and two maleate monoanions in an asymmetric
unit (Figure 10b). The glasdegib molecule is protonated on the methylpiperidine N4 nitro-
gen atom as well as on the benzimidazole N5 nitrogen atom. A small structural difference
between the monoprotonated vs. diprotonated glasdegib molecule is also evident due to
the C15–N5 and C15–N6 distances being 1.315(3) and 1.359(3) Å in glasdegib monomaleate
vs. 1.331(4) and 1.328(4) Å in glasdegib dimaleate, respectively. In glasdegib dimaleate,
a hydrogen-bonded chain is formed along the c axis through a series of interactions be-
tween the double-protonated glasdegib molecule and two maleate monoanions (Figure 12).
The methylpiperidine moiety of the glasdegib dication is connected to one maleate anion
via N4–H4· · ·O2 hydrogen bonding, and this maleate anion is further connected to the
adjacent glasdegib dication through N1–H1· · ·O4i and N2–H2· · ·O5i interactions with
the urea moiety supported by a C12–H12· · ·O5i interaction with the methylpiperidine
moiety, forming R2

2(8) and R1
2(7) ring motifs (symmetry code: (i) 1

2 − x, 1 − y, 1
2 + z)

(Figure 12a, Table 2). The benzimidazole moiety interacts with one maleate monoan-
ion through bifurcated N5–H5· · ·O6 and N5–H5· · ·O7 hydrogen bonding, supported by
C13–H13b· · ·O6 and C21–H21· · ·O7 interactions; thus, each oxygen atom (O6 and O7) is
an acceptor of two hydrogen bonds, and R1

2(7), R1
2(6) and R2

1(4) ring motifs are formed.
Furthermore, the benzimidazole moiety also interacts with the adjacent maleate monoanion
through bifurcated N6–H6· · ·O8i and N6–H6· · ·O9i hydrogen bonding, forming an R2

1(4)
ring motif. This maleate monoanion also supports the formation of the chain through
a C28–H28· · ·N3iii interaction with the cyano-group of the adjacent glasdegib dication
(symmetry code: (iii) x, y, −1 + z). Chain formation is also further supported by almost-
parallel π· · ·π interactions between the phenyl rings of the cyanophenyl and benzimidazole
moieties of two adjacent molecules, with a centroid-to-centroid distance of 3.9040(18) Å
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and ring slippage of 1.413 Å. A supramolecular structure is achieved, connecting the chains
via C9–H9· · ·O5ii interactions (symmetry code: (ii) 1 − x, − 1

2 + y, 1
2 − z) (Figure 12b,c).

Figure 12. Hydrogen-bond architecture in the glasdegib dimaleate: (a) chain formation along c axis;
(b) packing of chains along ab plane via C9–H9· · ·O5 interactions; (c) space-filled presentation of
packing of chains (arbitrary colors). Hydrogen bonds are represented by dashed blue lines and π· · ·π
interactions by dashed green lines. Hydrogen atoms not involved in the motif shown have been
omitted for clarity.

The crystal structures of glasdegib monomaleate and glasdegib dimaleate differ pri-
marily in their glasdegib:maleate monoanion ratios and in a charge on the glasdegib species.
In glasdegib monomaleate, each protonated glasdegib molecule is hydrogen-bonded to
two adjacent maleate monoanions, forming a chain along the c axis, primarily through
N–H· · ·O interactions. In glasdegib dimaleate, each double-protonated glasdegib molecule
is hydrogen-bonded to four adjacent maleate monoanions, forming a chain along the c
axis, also primarily through N–H· · ·O interactions. Monoprotonated and diprotonated
glasdegib species differ in their number of potential NH hydrogen-bond donating sites as
well as in their N hydrogen-bond acceptor sites. Different hydrogen-bonding patterns can
be observed due to the different behavior of urea NH groups. In glasdegib monomaleate,
only one urea NH group is involved in hydrogen bonding, while both urea NH groups are
hydrogen-bond donors in glasdegib dimaleate. The urea oxygen atom is in both crystal
structures involved only in intramolecular hydrogen bonding. In both structures, the
methylpiperidine N atom is protonated and is involved in strong N–H· · ·O interactions
with maleate monoanion. The main difference regarding hydrogen-bond donor/acceptor
sites lies in the benzimidazole group. Nitrogen atom N5 is protonated only in glasdegib
dimaleate; thus, the benzimidazole moiety possesses two NH groups as a hydrogen-bond
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donor. Contrarily, in glasdegib monomaleate, benzimidazole possesses only one NH group
acting as hydrogen-bond donor and one N atom acting as hydrogen-bond acceptor. In
glasdegib monomaleate, four NH groups form three N–H· · ·O interactions with maleate
monoanion, while in glasdegib dimaleate, five NH groups form seven N–H· · ·O interac-
tions, with four being bifurcated. A higher number of hydrogen-bonding interactions in the
dimaleate form potentially explains the slightly higher stability of this form. Even though
in glasdegib dimaleate, two monoanionic maleate ions are present and the glasdegib is
double-protonated, as well as possessing a higher number of hydrogen-donating sites,
there is an almost negligible difference in the conformation of mono- vs. diprotonated
glasdegib species (Figure 13a). Although their conformations are similar, their intermolecu-
lar interactions still lead to different packing arrangements; this is already shown by the
fact that glasdegib monomaleate and glasdegib dimaleate crystallize in monoclinic and
orthorhombic space groups, respectively. In glasdegib monomaleate, the protonated glas-
degib molecules are arranged in a head-to-head fashion, while in glasdegib dimaleate, the
double-protonated glasdegib molecules are arranged in a head-to-tail fashion (Figure 13b).

Figure 13. Superposition showing the differences in the conformation of glasdegib monomaleate
(orange) and glasdegib dimaleate (green) of (a) glasdegib molecule and (b) chains along c axes,
formed primarily by N–H· · ·O interactions. Maleate monoanions are presented in light orange and
light green colors.

3.2.7. Stability Testing

To gain initial insights into the stability of glasdegib dimaleate, we conducted prelimi-
nary comparative stress testing with glasdegib monomaleate in a 3-month study. The stress
stability testing of both glasdegib monomaleate and glasdegib dimaleate was conducted
under storage conditions of 40 ◦C and 75% RH (open dish). Both samples were analyzed for
purity and chiral purity using liquid chromatography methods at four time points: initially
(t = 0), and after each month and was completed after 3 months (Table 3). In addition,
solid-form purity was also checked wiusingth PXRD.
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Table 3. Stability of glasdegib monomaleate and glasdegib dimaleate.

Form Type and Testing Time Point Chiral Purity 1 [Area%] Purity 2 [Area%]

glasdegib monomaleate, t = 0 100.00 99.86
glasdegib monomaleate, t = 1 month 99.96 99.81
glasdegib monomaleate, t = 2 months 99.96 99.73
glasdegib monomaleate, t = 3 months 99.96 99.72
glasdegib dimaleate, t = 0 100.00 99.98
glasdegib dimaleate, t = 1 month 100.00 99.97
glasdegib dimaleate, t = 2 months 100.00 99.93
glasdegib dimaleate, t = 3 months 100.00 99.90

1 Determined via chiral HPLC method. 2 Determined via UHPLC method.

The testing results of both glasdegib monomaleate and glasdegib dimaleate indi-
cated that both forms are stable in terms of chiral purity, indicating that the previously
reported epimerization of the dihydrochloride form to (2S,4R)-epimer [26] does not take
place in either maleate form in a solid state. Interestingly, the study showed that the mono-
maleate form is chemically slightly less stable, as evidenced by the analysis of UHPLC
purity, where a slightly higher rise in degradation products was observed for glasdegib
monomaleate (purity dropped from a 99.86 area% at the beginning of the testing to a
99.72 area% after 3 months; ∆(Σ impurities) = 0.14%) compared to glasdegib dimaleate
(purity dropped from 99.98 area% at the beginning of the testing to 99.90 area% after
3 months; ∆(Σ impurities) = 0.08%). The results obtained using the PXRD measurements
indicated that glasdegib dimaleate is fully stable for at least 2 months at 40 ◦C and 75% RH
(Figure S22), while in the case of glasdegib monomaleate, traces of glasdegib dimaleate
were already observed after 1 month (Figure S23).

3.2.8. Solubility Testing

The dissolution and solubility of glasdegib monomaleate and glasdegib dimaleate
were evaluated at a pH of 1.2, 4.0, 5.5 and 7.0 using the United States Pharmacopeia and
European Pharmacopoeia buffers.

At pH = 1.2 (Figure 14), similar dissolution behavior was observed for both the mono
and dimaleate form, with solubility slightly rising over the time. After 24 h, glasdegib
monomaleate had slightly higher solubility (11.08 mg/mL) compared to the glasdegib
dimaleate (10.62 mg/mL).

Figure 14. Dissolution testing of glasdegib monomaleate and glasdegib dimaleate at pH = 1.2.
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At pH = 4.0 (Figure 15), the dissolution curves were different compared to those
obtained at pH = 1.2. In this case, the solubility of both forms was dropping over time.
After 24 h, glasdegib monomaleate had higher solubility (2.56 mg/mL) compared to the
glasdegib dimaleate (1.68 mg/mL).

Figure 15. Dissolution testing of glasdegib monomaleate and glasdegib dimaleate at pH = 4.0.

At pH = 5.5 (Figure 16) the dissolution curves were similar compared to those obtained
at pH = 1.2, slightly rising over time. After 24 h, glasdegib dimaleate had higher solubility
(3.02 mg/mL) compared to the glasdegib monomaleate (2.28 mg/mL).

Figure 16. Dissolution testing of glasdegib monomaleate and glasdegib dimaleate at pH = 5.5.

At pH = 7.0 (Figure 17), the dissolution curves revealed that solubility was rising
slightly over time after 4 h for both forms. After 24 h, glasdegib monomaleate had slightly
lower solubility (0.76 mg/mL) compared to the glasdegib dimaleate (0.79 mg/mL).
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Figure 17. Dissolution testing of glasdegib monomaleate and glasdegib dimaleate at pH = 7.0.

4. Discussion

The formation of novel maleic acid containing a solid form of glasdegib was confirmed
via PXRD, IR, Raman and DSC analysis. Indeed, notable differences in the PXRD diffrac-
togram (Figure 2), IR and Raman spectra (Figures 3–6), as well as in the DSC thermograms,
were observed (Figure 7) between the known glasdegib monomaleate form and the novel
form. As revealed by the solution 1H NMR analysis, the novel solid form had 2:1 stoichiom-
etry between maleic acid and glasdegib. However, the determined stoichiometry of the
formed solid brought some ambiguity related to the ionization state of the novel form.

In the past, the pKa difference between base and acid (∆pKa = pKa protonated base − pKa acid)
was established as one of the key parameters that defines the likelihood of salt formation. In
general, it is considered that complexes with ∆pKa > 4 form as salts, while ∆pKa < −1 favors
co-crystal formation. In the interim zone where −1 < ∆pKa < 4, both types of species can
be formed. Nevertheless, the likelihood of co-crystal formation is higher in the lower part
of the scale close to or below ∆pKa = 0 [39]. In the zone where ∆pKa is between 0 and 3, a
continuum between neutral and ionized species exits, which can provide acid–base complexes
with mixed ionization states [40]. Very recently, such evidence was provided experimentally
using ssNMR [41] and single-crystal X-ray determination [42] in the pharmaceutical field on
tenofovir alafenamide fumarate.

Glasdegib contains two basic sites that can be protonated by an acid: methylpiperidine
nitrogen and benzimidazole nitrogen (Figure 1). The reported pKa values of glasdegib
(6.1 for methylpiperidine nitrogen and 1.7 for benzimidazole nitrogen) [24,25] and maleic
acid (pKa1 = 1.9 and pKa2 = 6.3) [29] give ∆pKa values of 4.2 in the case of the methylpiperi-
dine nitrogen/maleic acid pair and −0.2 for the benzimidazole nitrogen/maleic acid
pair (more acidic proton in maleic acid is considered; Table 4). The reported pKa val-
ues for glasdegib [24,25] do not provide information on which solvent they acquired,
which brings some ambiguity to the ∆pKa calculation, because pKa values change in dif-
ferent solvents. Therefore, we also calculated the pKa values for glasdegib and maleic
acid using the ChemAxon Marvin Suite [43] in order to obtain solvent bias-free pKa and
∆pKa values. The calculation using the ChemAxon Marvin Suite provided pKa values of
6.67 (methylpiperidine nitrogen) and 3.01 (benzimidazole nitrogen) for glasdegib, while
pKa values of 2.85 and 5.75 were obtained for maleic acid. The calculated pKa values
were 3.82 in the case of the methylpiperidine nitrogen/maleic acid pair and 0.16 for the
benzimidazole nitrogen/maleic acid pair (Table 4). Thus, the calculated pKa data fit well
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with the measured data, and the obtained ∆pKa values are similar for the reported and
calculated values.

Table 4. Calculated ∆pKa values for glasdegib–maleic acid complex considering glasdegib
methylpiperidine nitrogen/maleic acid pair and benzimidazole nitrogen/maleic acid pair.

pKa Protonated Base pKa1 Acid [29] ∆pKa = pKa (Protonated Base) − pKa1 (Acid) ** [39]

6.1 (methylpiperidine nitrogen) [24,25] 1.9 [29] 4.2

1.7 (benzimidazole nitrogen) [24,25] 1.9 [29] −0.2

6.67 (methylpiperidine nitrogen) * [43] 2.85 * [43] 3.82

3.01 (benzimidazole nitrogen) * [43] 2.85 * [43] 0.16

* Calculated using ChemAxon Marvin Suite 17.28.0. ** Calculation performed for more acidic proton in
maleic acid.

Based on the calculated ∆pKa values for the glasdegib–maleic acid pair, it is obvious
that in the case of glasdegib monomaleate, salt will be formed on methylpiperidine nitrogen
because ∆pKa = ca. 4 (Table 4). A similar situation can be anticipated in the case of glasdegib
dimaleate, where one maleic acid will protonate the methylpiperidine nitrogen, whereas the
second maleic acid could either act as a co-former to form a co-crystal, or form a salt with the
benzimidazole nitrogen of glasdegib. The calculated probability for the formation of salt on
the benzimidazole nitrogen P(A−B+) with the second maleic acid using Cruz-Cabeza equa-
tions [39] show that benzimidazole nitrogen should remain unprotonated (the probability
of salt formation only 25–31%, Table 5), while the probability of co-crystal formation P(AB)
is three times higher (Table 5). Therefore, the obtained glasdegib dimaleate should be a
mixture of salt and co-crystal species: (maleic acid)−·(maleic acid)·(glasdegib)+ = A−AB+,
rather than a double-salt form: (maleic acid)−·(maleic acid)−·(glasdegib)+ + = A−A−B++

(Table 5).

Table 5. Calculated probability for salt or co-crystal formation for the protonation of benzimidazole
nitrogen with the second maleic acid molecule in the glasdegib–maleic acid 1:2 complex.

∆pKa P(A−B+) 1 (%) P(AB) 1 (%)

Reported pKa values. −0.2 24.6 75.4
Calculated pKa values 0.16 30.7 69.3

1 Calculated probability (P) value based on Cruz-Cabeza equations [39]: P (AB, %) = −17·∆pKa + 72 and
P (A−B+, %) = 17·∆pKa + 28.

To further confirm the structure of glasdegib monomaleate and glasdegib dimaleate, a
single-crystal X-ray analysis of both forms was performed. As expected, it confirmed that
glasdegib monomaleate exists in salt form with protonated methylpiperidine nitrogen. In
the case of glasdegib dimaleate, it affirmed an interesting observation from the 15N ssNMR
study that this complex exists as a double salt with protonated methylpiperidine nitrogen
and benzimidazole nitrogen.

The confirmed double-salt structure (A−A−B++), instead of a salt-co-crystal species
structure (A−AB+), for glasdegib dimaleate by 15N ssNMR and single-crystal X-ray analysis
is surprising based on the pKa values of this acid–base pair. This outcome might be
attributed to the specific choice of solvents used in the preparation of glasdegib dimaleate,
since it is known that the proton transfer process can be solvent-dependent [44] and the
choice of solvent plays a very important role in the synthesis of organic salts [45].

Until 2006, the maleate anion was used in 4.2% of marketed drugs containing basic
active pharmaceutical ingredients [46]. Similarly, in the period of 2007–2016, the maleate
anion was used in 4.3% of drugs that contained basic active pharmaceutical ingredients [47].
Some recent or well-known examples of marketed drugs that contain a maleate anion [48]
are afatinib dimaleate (contains two basic sites with pKa values of 8.2 and 5.0) [49], neratinib
monomaleate (contains two basic sites with pKa values of 7.65 and 4.66) [50], sunitinib
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monomaleate (contains one basic site with a pKa of 8.95) [51] and enalapril monomalate
(contains one basic site with a pKa of 5.5) [52]. These data suggest that the maleate anion
is used in active pharmaceutical ingredients that contain basic moieties with a pKa of
5 or higher, which facilitates salt-species formation. In this respect, glasdegib dimaleate
represents and unusual example.

After the determination of the ionization state of glasdegib dimaleate by 15N ssNMR
and single-crystal X-ray determination, the physiochemical properties of glasdegib di-
maleate were investigated. The stress stability testing at 40 ◦C and 75% relative humidity
demonstrated slightly better chemical and physical stability of glasdegib dimaleate com-
pared to the monomaleate form. Moreover, dissolution testing and solubility determination
at pH values of 1.2 (Figure 14) and 7.0 (Figure 17) showed good comparability of both
forms, while lower solubility of dimaleate was observed at a pH of 4.0 (Figure 15) and
higher solubility was observed at a pH of 5.5 (Figure 16). These properties of glasdegib
dimaleate ascertain its suitability for the development of pharmaceutical dosage forms.

5. Conclusions

In summary, for the first time, glasdegib dimaleate was prepared and fully charac-
terized using spectroscopic and thermal analyses, which demonstrated that glasdegib
dimaleate exists in double-salt form. This is a surprising finding based on the known pKa
values of glasdegib and maleic acid in the literature. This comparative study of the physico-
chemical properties of both forms suggested that glasdegib dimaleate has similar aqueous
solubility and slightly better stability under stress conditions. These properties affirm the
glasdegib dimaleate form as a suitable candidate for the development of pharmaceutical
preparation. Finally, the presented study demonstrates how unpredictable the formation of
a specific pharmaceutical solid can be in terms of its chemical structure.

6. Patents

This work is based on our International Patent Application WO 2021191278 A1,
30 September 2021.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14081641/s1, Figure S1: DSC and TGA thermo-
gram of glasdegib monomaleate; Figure S2: DSC and TGA thermogram of glasdegib dimaleate;
Figure S3: DSC and TGA thermogram of glasdegib base; Figure S4: DSC and TGA thermogram of glas-
degib dihydrochloride hydrate; Figure S5: IR spectrum of glasdegib monomaleate, 1800–400 cm−1;
Figure S6: IR spectrum of glasdegib dimaleate, 1800–400 cm−1; Figure S7: IR spectrum of glasdegib
base, 4000–400 cm−1; Figure S8: IR spectrum of glasdegib base, 1800–400 cm−1; Figure S9: IR spec-
trum of glasdegib dihydrochloride hydrate, 4000–400 cm−1; Figure S10: IR spectrum of glasdegib
dihydrochloride hydrate, 1800–400 cm−1; Figure S11: IR spectrum of maleic acid, 4000–400 cm−1;
Figure S12: IR spectrum of maleic acid, 1800–400 cm−1; Figure S13: Raman spectrum of glas-
degib base; Figure S14: Raman spectrum of glasdegib dihydrochloride; Figure S15: Raman spec-
trum of maleic acid; Figure S16: Measured PXRD pattern of glasdegib monomaleate powder;
Figure S17: Calculated PXRD pattern from the single-crystal structure of glasdegib monomaleate;
Figure S18: Measured PXRD pattern of glasdegib dimaleate powder; Figure S19: Calculated PXRD
pattern from the single-crystal structure of glasdegib dimaleate; Figure S20: Measured PXRD pattern
of glasdegib base powder; Figure S21: Measured PXRD pattern of glasdegib dihydrochloride powder;
Figure S22: Measured PXRD pattern of glasdegib dimaleate powder exposed to stress conditions for
2 months; Figure S23: Measured PXRD pattern of glasdegib monomaleate powder exposed to stress
conditions for 1 month; Figure S24: Ultra-high-performance liquid chromatogram of glasdegib for de-
termination of solubility; Figure S25: Chiral high-performance liquid chromatogram for determination
of chiral purity; Figure S26: 1H echo MAS NMR spectra of glasdegib base, glasdegib dihydrochloride
hydrate, glasdegib monomaleate and glasdegib dimaleate; Figure S27: 1H-NMR spectrum of glas-
degib monomaleate in MeOD at 500 MHz; Figure S28: 13C-NMR spectrum of glasdegib monomaleate
in MeOD at 125 MHz; Figure S29: 1H-NMR spectrum of glasdegib dimaleate in MeOD at 500 MHz;
Figure S30: 13C-NMR spectrum of glasdegib dimaleate in MeOD at 125 MHz; Figure S31: MarvinS-
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ketch 17.28 calculated pKa values for glasdegib; Figure S32: MarvinSketch 17.28 calculated pKa values
for maleic acid. CCDC 2180664 and 2180665 contain the supplementary crystallographic data for
this paper. These data can be obtained free-of-charge via www.ccdc.cam.ac.uk/data_request/cif,
by emailing data_request@ccdc.cam.ac.uk or by contacting The Cambridge Crystallography Data
Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44-1223-336033.
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