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Abstract: Osteogenic scaffolds reproducing the natural bone composition, structures, and properties
have represented the possible frontier of artificially orthopedic implants with the great potential
to revolutionize surgical strategies against the bone-related diseases. However, it is difficult to
achieve an all-in-one formula with the simultaneous requirement of favorable biocompatibility,
flexible adhesion, high mechanical strength, and osteogenic effects. Here in this work, an osteogenic
hydrogel scaffold fabricated by inorganic-in-organic integration between amine-modified bioactive
glass (ABG) nanoparticles and poly(ethylene glycol) succinimidyl glutarate-polyethyleneimine (TSG-
PEI) network was introduced as an all-in-one tool to flexibly adhere onto the defective tissue and
subsequently accelerate the bone formation. Since the N-hydroxysuccinimide (NHS)-ester of tetra-
PEG-SG polymer could quickly react with the NH2-abundant polyethyleneimine (PEI) polymer
and ABG moieties, the TSG-PEI@ABG hydrogel was rapidly formed with tailorable structures and
properties. Relying on the dense integration between the TSG-PEI network and ABG moieties on
a nano-scale level, this hydrogel expressed powerful adhesion to tissue as well as durable stability
for the engineered scaffolds. Therefore, its self-endowed biocompatibility, high adhesive strength,
compressive modulus, and osteogenic potency enabled the prominent capacities on modulation of
bone marrow mesenchymal stem cell (BMSCs) proliferation and differentiation, which may propose
a potential strategy on the simultaneous scaffold fixation and bone regeneration promotion for the
tissue engineering fields.

Keywords: bioactive hydrogels; adhesive; osteogenesis; tetra-PEG; bioactive glass

1. Introduction

Bone tissue has an inborn and unique ability of self-regeneration for many variously
minor injuries, but some serious diseases like bone fracture defects, trauma, and even
osteosarcoma are still dangerous in orthopedics [1–3]. Although there has been significant
progress in the development of surgical techniques, the operation difficulty and the inci-
dence of delayed healing or nonunion will eventually result in the disability and significant
socio-economic burden in clinical practice. Scientists and doctors are trying to improve
the surgical treatment of autologous and allograft bone grafting above these severe bone
defects, but it may inescapably lead to clinical complications of donor shortage, delayed
operation, limited donor volume, donor site immune rejection, and probably bacterial
infection [4–8]. In view of these shortcomings, the emergence of tissue engineering tech-
nology, taking advantage of exogenous progenitor cells and the controlled release of biotic
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components, has provided innovative ideas and promising methods for promoting bone
regeneration [9–14].

The rapid development of hydrogel scaffolds with preferred biocompatibility, suffi-
cient mechanical strength, matching degradation rate, and promotional osteogenic activity
has become a hot spot in bone tissue engineering research [15–20]. Hydrogels, mainly
including synthetic hydrogels and natural hydrogels, are generally composed of three-
dimensional networks with multifarious pores and polymeric structures, which can be
widely used for drug release systems, tissue engineering fields, and flexibly intelligent
materials [21–24]. Despite the great progress that has been achieved in the development
of hydrogels over the past few decades, the respective insufficiency of weak strength of
naturally-derived hydrogels and poor biocompatibility of synthetic hydrogels remains
the main challenge and constraint on acquiring the hydrogel scaffolds in clinic [25–28].
Therefore, increasing the mechanical strength of natural polysaccharides, improving the
cell compatibility of synthetic polymers, or integrating their advantages on preparing the
multifunctional composite hydrogels are mainly methods to explore the tissue-engineered
hydrogels in biomedical applications.

Branched polymers with dendritic structures and abundant terminal groups have
been an ideal crosslink to design the complex networks and advanced functions for the
topological polymers and hydrogels [29–32]. Much of the research to date involves the sim-
ple crosslinking between the branched polyethyleneimine (PEI) and another polymers such
as polyacrylic acid (PAA), poly(vinyl alcohol), and poly(ethylene glycol) via the multiply
electrostatic interactions within a few seconds [33–37]. For example, the resulting PEI/PAA
hydrogel scaffold exhibits preferred cell biocompatibility and powerful self-healing ability,
but the bone conduction and other biological properties are required for the further modifi-
cations [37]. Therefore, incorporation of the bioactive components or biological factors is
an effective approach to improving the bio-function of tissue-engineered constructs.

Bioactive glass (BG) comprised of silicon, calcium, and phosphorus elements has
advanced the ability to induce bone mineralization to repair bone defects. Especially
under physiological conditions, BG can produce a hydroxyapatite layer through chemical
combination with bone tissue, similar to the stage of forming bone mineral, and provides
a favorable environment for the activity, growth, proliferation, and differentiation of
osteoblast-related cells [38,39]. However, the complex microenvironment always leads
to the microphase separation between inorganic phases and organic networks that can
induce the structural heterogeneity, endanger the stability, and impair the osteogenic
potency of the BG-based composites, ultimately leading to an imbalance between bone
growth and degradation of the implanted material [40,41]. Considering the decisive role
of ensuring the stably osteogenic activity, BG particles were necessarily required for the
further physical–chemical modification. For example, Chen et al. [42] proposed a modified
composite strategy on preparing amine-terminated bioactive glass (ABG) particles that
were incorporated into the adhesive glue on the nanoscale level. Along with the gradual
hydrogel degradation in vivo, ABG was expose-contacted and subsequently bound onto the
bone tissues to facilitate angiogenesis, which exhibited the beneficial nanophase integration,
bone mineralization, mechanical strength, adhesion force, and osteo-activation for in vivo
bone regeneration.

Herein, we designed and prepared an inorganic–organic TSG-PEI@ABG hydrogel
via the highly efficient ammonolysis reaction between (NHS)-ester of tetra-PEG-SG and
branched PEI polymers in the presence of ABG particles in one-pot step (Figure 1). Covalent
bonds rendered the TSG-PEI@ABG hydrogel with flexible injectability, fit-to-shape capacity,
strong mechanics, and adhesiveness. Due to the reliable integration between soft network
and rigid ABG particles on the nanoscale level, the facilitating adhesive strength and
osteogenic performance were simultaneously achieved, indicating the hydrogel’s long-term
stability and durable osteogenesis for the therapy of bone-related disease.
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Figure 1. Schematic illustration of the fabricated TSG-PEI@ABG composite hydrogels.

2. Materials and Methods
2.1. Materials

Tetra-arm poly(ethylene glycol) (tetra-PEG-OH, Mw = 20 kDa) was purchased from
SINOPEG, China. Glutaric anhydride (98%), dimethylamino-pyridine (DMAP, 98%), and
N-hydroxysuccinimide (NHS, 98%) were purchased from Energy Chemical Co., Ltd.,
Shanghai, China. 3-aminopropyltriethoxysilane (APTES, 98%) was purchased from J&K,
Beijing, China. Branched polyethyleneimine (PEI, MW = 1200, 99%) was purchased from
Alfa Aesar. Bioactive glass (BG, Biological Grade) was purchased from Aladdin. All other
chemical reagents were purchased from Energy Chemical Co., Ltd., Shanghai, China, and
used as received without further purification.

2.2. Synthesis of Tetra-PEG-SG Polymer

First, tetra-PEG-OH (4 g, 0.2 mmol), glutaric anhydride (228 mg, 2 mmol), and DMAP
(244 mg, 2 mmol) were dissolved in 50 mL of anhydrous DCM. After continuously stirring
for 24 h, the DCM solution was washed with 2 M HCl solution, saturated NaCl solution,
and DI water three times, followed by drying over the anhydrous MgSO4. The obtained
product was purified by precipitating into the diethyl ether for several times to afford
the intermediate of tetra-arm PEG-glutaric acid (tetra-PEG-COOH) polymer. Then, tetra-
PEG-COOH (1 g, 0.05 mmol), EDCI (96 mg, 0.5 mmol), and NHS (58 mg, 0.5 mmol) were
dissolved in 25 mL of anhydrous DCM. After continuously stirring for 24 h, the DCM
solution was washed with 2 M HCl solution, saturated NaCl solution, and DI water three
times and was followed by drying over the anhydrous MgSO4 to afford the white solid of
tetra-PEG-SG polymer under the vacuum.

2.3. Synthesis and Modification of ABG Particles

The modification method to prepare ABG particle was performed according to the
previous works [41,42]. Briefly, 0.3 g of BG and 5 mL of APTES were added into the hexane
by continuously stirring at 60 ◦C. After 24 h, the ethanol and DI water were used to wash
impurities several times, and the amine-terminated ABG particles were obtained after the
drying process under the vacuum.
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2.4. Preparation of TSG-PEI and TSG-PEI@ABG Hydrogels

TSG-PEI hydrogel was easily prepared after mixing the 15 wt% of tetra-PEG-SG and
1 mg/mL of PEI solutions at 37 ◦C without adding any other additive crosslinkers. As for
the preparation of TSG-PEI@ABG hydrogel, the ABG was added into the PEI solutions in
advance with continuous sonication for 30 min, and then mixed with tetra-PEG-SG solution
via vortexing at 37 ◦C to achieve the gelation.

2.5. Nuclear Magnetic Resonance Spectra

Nuclear magnetic resonance (1H NMR and 13C NMR) spectra were obtained on a
Bruker DRX-400 spectrometer (Bruker, Bremen, Germany) using the deuterated chloro-
form (CDCl3, δ = 7.26 ppm) as the solvent and tetramethyl-silane (δ = 0 ppm) as the
internal standard.

2.6. Scanning Electron Microscopy

The network architecture of hydrogels was observed using scanning electron mi-
croscopy (SEM). Firstly, the hydrogels were freeze-dried to obtain the dry samples, and
then a thin gold layer of Pt was sputter-coated onto the sample surface for 90 s to make them
conductive. After that, the hydrogel networks could be observed via a JEOL JSM-6700F
microscope with an acceleration voltage of 10 kV.

2.7. Compressive Measurement

The compressive strength of hydrogels was measured using a universal tensile ma-
chine (3365, Instron, Norwood, MA, USA) at a compressive speed rate of 2 mm/min. The
hydrogel samples were cut into cylinders (diameter of 15 mm and height of 8 mm) for the
measurement.

2.8. Rheological Measurement

The rheology behavior of hydrogels was conducted using a rheometer (Thermo Haake
Rheometer, Newington, NH, USA). The measured hydrogel samples were spread on a
parallel plate (25 mm) and sealed with silicone oil. A dynamic frequency scan in the range
from 0.1 to 100 rad/s was used to record the storage and loss moduli (G′ and G′′). The
stress amplitude was set as 0.1% and the temperature was set at 25 ◦C.

2.9. Adhesive Study

Adhesion measurement was performed using the lap shear test by injecting 1 mL of
gels onto the porcine skins, and commercially available fibrin glue was used as the control
group. Briefly, standard lap shear test was performed on porcine skins that were adhered
using the TSG-PEI, TSG-PEI@ABG, and fibrin glue for 30 s of pressing under a 200 g weight
at room temperature before the tests, respectively. The porcine skins were cut into slices
with a length of 60 mm, thickness of 10 mm, and width of 20 mm for the usage. All tests
were performed with the universal testing machine (3365, Instron, Norwood, MA, USA) at
a constant rate of 10 mm/min. The experiments were carried out at room temperature with
a humidity of 45%, and each sample was tested five times to obtain the average values.

2.10. Cell Extraction and Culture

The bone marrow mesenchymal stem cells (BMSCs) were isolated from 3-month-old
New Zealand white rabbits. The original generation of BMSCs was expanded up to passage
3 for experiments with the culture medium. The cells needed to be cultured in the medium
and refreshed every 2 days in an environment of 37 ◦C and 5% CO2. Isolation, culture,
trilineage differentiation potential assay, and immunophenotypic identification of BMSCs
were verified as previously described in the literature [43].
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2.11. In Vitro Cytotoxicity Assay

The cytotoxicity was performed using CCK-8 assay. The hydrogel extracts were
prepared by placing the hydrogel into Dulbecco’s Modified Eagle’s medium (DMEM)
at 37 ◦C for 24 h and then sterilizing them by filtration with a 0.22 µm filter. BMSCs
were suspended in cell culture medium and seeded into 48-well plates with a density of
1 × 104 cells/100 µL and incubated for 24 h at 37 ◦C in a 5% CO2 humidified incubator.
The culture medium was then replaced with the hydrogel extract and incubated for another
24 h. Cells cultured in fresh medium were set as the control group. The cell viability (%)
was calculated via the following equation:

Cell viability (%) = [(Asample − Ablank)/(Acontrol − Ablank)] × 100%

2.12. Cell Proliferation Assay

Cell proliferation was also measured using CCK-8 assay. Firstly, the BMSCs were
incubated in growth medium for 1 day, and then the hydrogel extracts were added into the
medium and further incubated for another several days. After 7 days of incubation, cell
culture medium was replaced with 100 µL of fresh culture medium and 10 µL of CCK-8
were added for another 4 h. Then, the absorbance at 450 nm was recorded on a microplate
reader (Thermo, Waltham, MA, USA). Cell number was correlated with OD value for
calculating the cell proliferation.

2.13. Live/Dead Staining Assay

Cell biocompatibilities were evaluated using a live/dead viability kit. The BMSCs
after culture with hydrogel extracts was stained with live/dead staining working solution
(Calcein-AM/PI) according to the manufacturer’s protocol. After culturing for 1 day, the
stained cells were directly observed under the inverted optical microscope (Olympus,
Tokyo, Japan). Calcein-AM generates a green fluorescence signal in living cells and PI dye
only affects the nuclei of dead cells to emit a red fluorescence light. The number of live cells
was quantitatively analyzed by Image J 1.8.0 software (Image J2, Wayne Rasband, Bethesda,
ML, USA).

2.14. Alizarin Red S (ARS) Staining

BMSCs were seeded on the hydrogel extracts with a density of 1 × 106 cells/well
in osteogenic differentiation medium (Sigma, Springfield, MO, USA) including α-MEM
supplemented with 10% of FBS, 1% of antibiotics, 50 µM of ascorbic acid, 10 mM of β-
glycerol phosphate, and 0.1 µM of dexamethasone. After the osteogenic incubation for
7 and 14 days, the cells were washed three times, fixed with 4% of paraformaldehyde
for 15 min, and stained for 30 min using the ARS staining kits at room temperature. The
stained BMSCs were dried, and image J 1.8.0 software (Image J2, USA) was utilized to
calculate the stained areas for semi-quantitative analysis.

2.15. Semiquantitative RT-PCR

The total RNA was extracted using the typical TRIzol Reagent and cDNA was synthe-
sized from 200 ng of total RNA by RevertAidTM H Minus First Strand cDNA Synthesis Kit
(Thermo Scientific, Waltham, MA, USA). Template PCRs were performed after 33 cycles
of amplification with the adjustment annealing temperature. The primer sequences were
listed as follows in Table 1.
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Table 1. The primer sequences used for the RT-PCR.

Gene Forward Primers (5′–3′) Reverse Primers (5′–3′)

GAPDH AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA
RUNX2 AGTGACTGGGAAACCAGATGCTGA GCTCTTGGCAAATCTGGCGTGTAA

ALP CCAACTCTTTTGTGCCAGAGA GGCTACATTGGTGTTGAGCTTTT
OCN CTGACCTCACAGATCCCAAGC TGGTCTGATAGCTCGTCACAAG

Osterix ATGGCGTCCTCTCTGCTTG TGAAAGGTCAGCGTATGGCTT

2.16. Statistics Analysis

All the results were presented as the mean and standard deviation of 3–6 independent
experiments. The statistics were analyzed by SPSS 22.0 software (SPSS Inc., Chicago, IL,
USA). One-way ANOVA was used for more than two groups. p < 0.05 was considered to
be significant.

3. Results
3.1. Preparation and Characterization of TSG-PEI and TSG-PEI@ABG Hydrogels

The scheme illustration of preparation process of TSG-PEI@ABG hydrogel is shown
in Figure 1. The tetra-PEG-SG polymer could be feasibly prepared via the two efficient
reactions in mild conditions. The 1H NMR spectrum shows the explicit attribute of the
characteristic peaks of tetra-PEG-SG with a very close integration ratio (a:b:c:d = 2:1:1:1) in
Figure 2A. In addition, 13C NMR spectrum also clearly verified the structural integration
and further proved the successful preparation of targeted polymer. Taking into consider-
ation the abundant amine groups in the branched PEI polymers and ABG particles, the
NHS-reactive tetra-PEG-SG polymer can be quickly reacted to form the TSG-PEI or TSG-
PEI@ABG hydrogel networks after mixing them together, within seconds. It was mentioned
that the ABG particles should be mixed with PEI solution under the sonication in advance
to achieve the uniform arrangement as far as possible between the inorganic phases and
organic materials. As shown in Figure 2B, the TSG-PEI hydrogel possessed interconnected
pores that were benefited for the nutrition/metabolic waste exchange and cell adhesion,
spreading and entry for both in vitro and in vivo experiments. After loading the rigid ABG
particles into the soft polymeric networks, it was clearly observed that TSG-PEI@ABG
hydrogel also exhibited suitable architectures and many pores for supporting the sustain-
able ABG release, cell adhesion, and substance exchange, but the deeper crosslinking with
organic moieties could lead to denser networks and stronger mechanics.

Compared to the TSG-PEI hydrogel, the mechanical performances of TSG-PEI@ABG
hydrogel were significantly improved in Figure 3. For example, the compressive strength
and modulus of TSG-PEI@ABG hybrid hydrogel were more than twice those of the organic
hydrogel, which indicated the uniform distribution of inorganic ABG particles within the
hydrogel networks (Figure 3A). Similarly, the rheology testified the viscoelastic behavior
of prepared hydrogels in the whole frequency and also elucidated that the introduction
of ABG moieties significantly improved the mechanical modulus of the TSG-PEI@ABG
hydrogel (Figure 3B), further demonstrating the rationalized networks and optimized
structures of hybrid hydrogels. In addition, the greater storage modulus G′ and G′′ further
confirmed higher crosslinking density of the TSG-PEI@ABG hydrogel and suggested its
potential key roles in the fabrication of implanted scaffolds for the nonload-bearing bone
tissue repair.
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For assessing one of the key factors to endow the engineered scaffold with high stability
and durability during the practical application, the adhesive property of the hydrogel was
quantitatively characterized on porcine tissue by a lap shear test (Figure 3C). Previous
studies revealed that the adhesive performance of an adhesive was determined by the
interface adhesive and mechanical strength of the hydrogel [44,45]. The interface adhesive
strength was mainly dependent on the chemical reaction of the remaining NHS ester groups
with tissue amines. As shown in Figure 3D, both the TSG-PEI and TSG-PEI@ABG hydrogels
exhibited higher adhesion strength than the commercially available and clinical fibrin glue.
Compared to the physical interaction of fibrin glue, the stronger tissue adhesion of prepared
hydrogels was due to the rapid formation of chemical linkages among the amine-terminated
proteins tissue and the tetra-PEG-SG polymers. It was mentioned that since hybridized
ABG particles also possessed abundant amine groups, it could be integrated into an organic
network via the physical aggregation effect and chemical ammonolysis reaction with
ester-active tetra-PEG-SG polymers, spontaneously enhancing the adhesion and cohesion
effects and forming a highly integrated inorganic–organic hybrid structure. Under this
circumstance, ABG introduction endowed the hydrogel with powerful cohesion strength to
satisfy the maintenance of durable stability and toughness onto the tissues, thus surpassing
the weak strength of the TSG-PEI hydrogel. Therefore, the conventional hybridization
method with BG moieties and elaborate optimization of involved ABG arrangement within
the networks not only furnished the hydrogel scaffold with competitive adhesion and
flexibility but also contributed to the tissue bioactivity in stimulating the osteogenesis and
angiogenesis at the target sites, which is crucial for maintaining the long-lasting stability
and bioactive osteogenesis in clinical bone repair applications.

3.2. Cell Viability and Proliferation

In view of its favorable structures, pores, mechanics, and adhesion force of the TSG-
PEI@ABG hydrogel, it is necessary to assess the cell biocompatibility for this engineered
scaffold. Therefore, we co-cultured the BMSCs with the hydrogel extract to evaluate the
in vitro cytocompatibility by CCK-8 and live/dead staining assays. Quantitatively, the
TSG-PEI hydrogels had capacities on maintaining a high cell survival level over the times
with or without being laden with ABG. The cell viability ratio at day 3 was obviously
higher than that of day 1, indicating the low cytotoxicity and high cell proliferation behav-
iors (Figure 4A). In addition, the ABG intervention not only did not impair the material
cytotoxicity but also promoted the cell growth, which indicated the uniform dispersion
within the networks instead of the large aggregates and implied the important roles of ABG
substrate on promoting cell proliferation after prolonged incubation. As expected, the cells
within the TSG-PEI@ABG hydrogel continued to increase after 7 days of culture in vitro
(Figure 4B), further revealing the outstanding cell activity and proliferation behavior of the
ABG-doped hybrid scaffold. Live/dead assay in Figure 4C showed almost all the luminous
green lights and clearly demonstrated the high cell viability after culture with this hydrogel
scaffold for 24 h. Therefore, we believe that the porous structures and good mechanical
properties of this biocompatible TSG-PEI@ABG scaffold are able to enhance cell activity,
growth, proliferation, and differentiation.

3.3. Osteogenic Differentiation of BMSCs in the Hydrogel Scaffolds In Vitro

To reveal the effect of hydrogel scaffolds on the osteogenic differentiation in vitro, we
seeded BMSCs cells on the control, TSG-PEI, and TSG-PEI@ABG hydrogel scaffolds. ARS
staining and qPCR assay were used to examine the osteoinduction capacity. As shown in
Figure 5, the TSG-PEI@ABG hydrogel scaffold could conspicuously increase the calcification
nodule formation of BMSCs after 14 days of osteogenic induction, surpassing the other
two groups in terms of both quantity and volume, thus demonstrating that the BMSCs
cultured on this hydrogel scaffold had obvious activation and enhanced the osteogenic
differentiation.
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cells), (b) TSG-PEI hydrogel, (c) TSG-PEI@ABG hydrogel. (B) In vitro osteogenic differentiation via
the semi-quantification of calcification depositions. Statistically significant differences in comparison
with control untreated cells, TSG-PEI hydrogel, and TSG-PEI@ABG hydrogel (** p < 0.01).

In addition, the mRNA levels of expression of the osteogenesis-related marker genes
of OCN, Osterix, ALP, and Runx 2 were investigated using the control, TSG-PEI, and TSG-
PEI@ABG hydrogels, as shown in Figure 6. On day 7, real-time PCR results showed that all
the four key osteogenic markers in the TSG-PEI@ABG group were significantly upregulated
compared to those in the control group. It was mentioned that the higher gene expressions
in the TSG-PEI@ABG hydrogel than those of TSG-PEI hydrogel indicated the improved
mechanical properties and promoted osteogenic differentiation performances due to the
introduction of bioactive ABG moieties and contribution of denser hybrid networks. On
day 14, these levels of the TSG-PEI@ABG group were significantly higher than those of the
TSG-PEI and control groups, further suggesting that the ABG introduction could effectively
promote osteogenic differentiation of stem cells for a long period in vitro. During the culture
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periods, ABG particles may be expose-contacted into the stem cells to favor the angiogenesis
because of their biological components of silicon, calcium, and phosphorus elements, which
can play important roles in facilitating the bone mineralization and eventually enhancing
the bone regeneration along with the gradual hydrogel degradation in vivo [41,42].
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4. Conclusions

In summary, we constructed a kind of hybrid hydrogel adhesive via the efficient NHS–
amine chemistry due to the availability and affordability of the polymeric components
of NHS-activated tetra-PEG-SG polymer and the amine groups of branched PEI polymer
and ABG particles. Under the high efficiency of the crosslinking reaction, the obtained
TSG-PEI@ABG hydrogel displayed suitable porous architectures, sufficient compressive
and adhesive strength, and facilitated a moisture environment for the stem cell survival,
growth, and proliferation. It was particularly stressed that NH2-modified ABG introduction
not only contributed to the hybrid crosslinking junction to enhance the cohesive strength
and structural stability, but also provided the crucial osteogenic components to guide the
osteogenesis. Consequently, compared to previous attempts at preparing the engineered
hydrogel scaffolds for osteogenesis, the current attempt has put forward an adaptive
hybridization strategy, offering a potential candidate with feasible usage availability and
robust osteogenic potency.
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