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Abstract: In recent decades, bioactive peptides have been gaining recognition in various biomedical areas,
such as intracellular drug delivery (cell-penetrating peptides, CPPs) or anti-infective action (antimicrobial
peptides, AMPs), closely associated to their distinct mode of interaction with biological membranes.
Exploiting the interaction of membrane-active peptides with diverse targets (healthy, tumoral, bacterial
or parasitic cell membranes) is opening encouraging prospects for peptides in therapeutics. However,
ordinary peptides formed by L-amino acids are easily decomposed by proteases in biological fluids. One
way to sidestep this limitation is to use topoisomers, namely versions of the peptide made up of D-amino
acids in either canonic (enantio) or inverted (retroenantio) sequence. Rearranging peptide sequences
in this fashion provides a certain degree of native structure mimicry that, in appropriate contexts, may
deliver desirable biological activity while avoiding protease degradation. In this review, we will focus on
recent accounts of membrane-active topoisomeric peptides with therapeutic applications as CPP drug
delivery vectors, or as antimicrobial and anticancer candidates. We will also discuss the most common
modes of interaction of these peptides with their membrane targets.

Keywords: membrane-active peptides; cell-penetrating peptides; antimicrobial peptides; anticancer
peptides; topoisomery; enantio; retro; retroenantio

1. Introduction

Membranes are biological structures that keep the internal contents (cytoplasm, nu-
cleus, etc.) of a cell separate from the external medium, thus ensuring cell integrity. The
distinctive constitutive feature of biological membranes is a phospholipid bilayer matrix
that proteins, drugs, or any other molecule directed toward an intracellular destination
must cross to reach their target [1–3]. Membrane-active agents perturb the basic features
(e.g., permeability, fluidity, etc.) of the membrane and have a significant impact on cell
function (e.g., transport, signaling, and/or integrity). A growing body of recent research
has focused on various types of agents capable of modulating membrane physical proper-
ties and performance [4]. Among these, peptides stand out as particularly promising on
account of their structural versatility that often translates into favorable physicochemical
and biochemical properties. High target specificity, low toxicity, and (most often) low
immunogenicity underpin the prospects of peptides in therapeutic areas [5,6] such as
anti-infectives [7,8], cancer [9–11], cardiovascular [12,13], and Alzheimer’s disease [14,15],
among others.

Chirality is a key structural feature governing the action and specificity of bioactive
peptides. In peptides, chirality stems from the presence of a stereogenic center at the α-
carbon of every amino acid monomer (except Gly) of any peptide sequence (plus additional
stereocenters at the β-carbons of Ile and Thr). While the vast majority of natural peptides
are in an L-configuration at their α-carbon stereocenters, exceptions consisting of D-amino-
acid-containing peptides in various families (arthropods, mollusks, amphibians, etc.) are
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known [16–24]. Peptides partially or totally made up of D-amino acids are predictably more
stable in biological fluids than their all-L counterparts due to the resistance of peptide bonds
with an adjoining α-carbon of a non-L configuration to protease hydrolysis [25–27]. This fea-
ture has been creatively exploited in recent times to boost the in vivo stability/performance
of quite a few therapeutic peptides [28,29]. However, it is by no means a trivial tactic, as the
switch from the L- to D-configuration at one or more stereocenters has an inevitable impact
on the 3D structure of a peptide, which more often than not translates into partial or total
loss of bioactivity. Tweaking peptide stereochemistry, therefore, inescapably requires signif-
icant effort in terms of, first, educated prediction and, second, the subsequent experimental
evaluation of the biological outcomes of such structural manipulations [30].

Among the various approaches adopted by peptide medicinal chemists to overcome
the in vivo vulnerability of bioactive peptides, this review focuses on tactics involving the
conversion of bioactive peptide structures into their topoisomer versions. A generic defi-
nition of topoisomerism would correspond to composition-identical (hence isomeric) yet
three-dimensionally distinct (hence topo-) variants of a molecule, with structural changes
translating into different biological effects. In the peptide/protein field, this term has been
preferentially applied to multiple disulfide peptides adopting different types of spatial
folding as a result of alternative Cys pairings. Less frequently but also suitably, here and
elsewhere [31], the term is used to describe all-D-amino acid counterparts of a peptide with
either a conserved (the enantio version, abbreviated as e hereafter) or fully reversed (the
retroenantio version, abbreviated as re) sequence relative to the canonical version. While
all-D versions with, e.g., pairwise residue switches (or other maneuvers also preserving
global composition) could arguably be included within the topoisomer category, it seems
more fitting to restrict the term to full sequence inversion. Of particular interest for this
work is the re modification (also named retro-inverso or retro-all-D by other authors, though
herein we prefer re). As an example, Figure 1 shows the four possible arrangements a
representative heptapeptide may adopt as far as sequence and chirality are concerned
(the all-L but fully sequence-inverted retro version (denoted as r hereafter) are included
for consistency). When the re analogue in a standard view (N-to-C-terminal from left
to right) is flipped horizontally, i.e., a 180◦ rotation on an in-plane axis that produces a
C-to-N (from left to right) arrangement, and then compared with the original peptide (all-L,
N-to-C from left to right), the side chains in both structures adopt coincident orientations
(Figure 1B), while the amide bond directions are reversed (NH-CO in the re vs. standard
CO-NH in the parent) [25]. As peptide bioactivity largely involves side chain contacts, the
side-chain-superimposable re version is a topological mimic of the parent peptide, with
predictably better stability in biological media [32].
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and of Vogler et al. regarding all-D-Val5-angiotensin II-Asp1-β-amide [35,36] is worth 
mentioning. In both instances, the e versions turned out to be completely inactive, and the 
outcome was rightfully interpreted in terms of a strict chiral requirement for productive 
receptor interaction.  

The first successful report of a biologically active enantiomer was made in the semi-
nal 1967 paper by Shemyakin et al. on enniatin B [37] (Figure 2), a cyclic depsipeptide (i.e., 
with both peptide and ester bonds) antibiotic produced by Fusarium fungi. The fact that 
synthetic enantio enniatin B was equipotent with the natural compound was rationalized 
as follows:  

“Indeed, if one turns the formulas […] 60° in the plane of the figure, all the like 
asymmetric centers coincide, while each ester group will take the place of the N-
methyl amide group and vice versa. [...] There should therefore be a close match-
ing of both these topochemically similar antipodes to the same stereoselective 
receptor...”.  
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Enantio-enniatin B, with the same chemical formula as enniatin B, is a mirror-image isomer with all 
its chiral centers reversed. Rotating enniatin B by 60 degrees in the plane illustrates the similarity. 
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conventional left-to-right orientation, and N- to C-terminus layout) with the re (purple backbone,
right-to-left orientation, N- to C-terminus layout) version shows that the side chains adopt similar
orientations while the amide bonds are reversed.

2. Origins of Topoisomer Peptides

Among the early attempts to explore the relationship between reversed chirality and
biological activity, the work of Stewart and Wooley regarding all-D bradykinin [35,36]
and of Vogler et al. regarding all-D-Val5-angiotensin II-Asp1-β-amide [35,36] is worth
mentioning. In both instances, the e versions turned out to be completely inactive, and the
outcome was rightfully interpreted in terms of a strict chiral requirement for productive
receptor interaction.

The first successful report of a biologically active enantiomer was made in the seminal
1967 paper by Shemyakin et al. on enniatin B [37] (Figure 2), a cyclic depsipeptide (i.e., with
both peptide and ester bonds) antibiotic produced by Fusarium fungi. The fact that synthetic
enantio enniatin B was equipotent with the natural compound was rationalized as follows:

Pharmaceutics 2023, 15, x FOR PEER REVIEW 3 of 25 
 

 

 
Figure 1. (A) Retro (WRKLIGA), enantio (aGilkrw), and retroenantio (wrkliGa) modifications of 
PepH3 (AGILKRW) [33] obtained using Pymol [34]. (B) Overlaying the canonical (yellow backbone, 
conventional left-to-right orientation, and N- to C-terminus layout) with the re (purple backbone, 
right-to-left orientation, N- to C-terminus layout) version shows that the side chains adopt similar 
orientations while the amide bonds are reversed. 

2. Origins of Topoisomer Peptides 
Among the early attempts to explore the relationship between reversed chirality and 

biological activity, the work of Stewart and Wooley regarding all-D bradykinin [35,36] 
and of Vogler et al. regarding all-D-Val5-angiotensin II-Asp1-β-amide [35,36] is worth 
mentioning. In both instances, the e versions turned out to be completely inactive, and the 
outcome was rightfully interpreted in terms of a strict chiral requirement for productive 
receptor interaction.  

The first successful report of a biologically active enantiomer was made in the semi-
nal 1967 paper by Shemyakin et al. on enniatin B [37] (Figure 2), a cyclic depsipeptide (i.e., 
with both peptide and ester bonds) antibiotic produced by Fusarium fungi. The fact that 
synthetic enantio enniatin B was equipotent with the natural compound was rationalized 
as follows:  

“Indeed, if one turns the formulas […] 60° in the plane of the figure, all the like 
asymmetric centers coincide, while each ester group will take the place of the N-
methyl amide group and vice versa. [...] There should therefore be a close match-
ing of both these topochemically similar antipodes to the same stereoselective 
receptor...”.  

 
Figure 2. Enniatin B and its enantio form. (A) The configuration of enniatin B chiral centers. (B) 
Enantio-enniatin B, with the same chemical formula as enniatin B, is a mirror-image isomer with all 
its chiral centers reversed. Rotating enniatin B by 60 degrees in the plane illustrates the similarity. 
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(B) Enantio-enniatin B, with the same chemical formula as enniatin B, is a mirror-image isomer with
all its chiral centers reversed. Rotating enniatin B by 60 degrees in the plane illustrates the similarity.

“Indeed, if one turns the formulas [. . .] 60◦ in the plane of the figure, all the
like asymmetric centers coincide, while each ester group will take the place
of the N-methyl amide group and vice versa. [. . .] There should therefore be
a close matching of both these topochemically similar antipodes to the same
stereoselective receptor. . .”.

By noting that a 60◦ rotation placed the side chains of both enantiomers pointing in
the same direction (albeit with different –ester or amide– connecting units in each case), the
authors were paving the way to the re concept of peptides topologically superimposable
with the parent isomer by simple maneuvers (e.g., 60◦ rotation in enniatin; or 180◦ on
an in-the-plane axis, switching N- and C-termini), and likely to be biologically active as
recognizable by a chiral receptor yet plausibly longer-lived in biological media due to their
D-amino acid residue contents [38].

In another significant paper published in 1969 [39], the same authors expanded their
proposal to other peptide structures. Thus, [Gly5,10] gramicidin S, an antimicrobial peptide
(AMP) active against Gram-positive bacteria, was compared with its re isomer and found
to have comparable activity. In that same paper, Shemyakin et al. [39] recommended N-
and C-terminal blocking (acetyl and carboxamide, respectively) for a linear re peptide to
retain the activity of its parent, by attenuating electrostaticc effects of the end groups and
equalizing hydrophobicity.

In later years, similar principles of e and re switching were generalized for AMPs by the
Merrifield group [38,40–43] and others [44,45], highlighting the importance of factors such
as overall positive charge, amphipathicity, and serum stability for effective antimicrobial
effect [46–52]. Again focusing on peptide–membrane interactions, in 1994, Prochiantz et al.
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were able to demonstrate that cell-penetrating peptides (CPPs) can enter cells independently
of their chiral configuration [53]. The internalization of canonic and e versions of 16-residue
penetratin was studied and found to be comparable, with both peptides appearing to
cross the membrane through energy-independent mechanisms [53,54]. This finding has
been corroborated for other CPP sequences in recent years [55–58], including CPP shuttles
crossing crucial therapeutic boundaries such as the blood–brain barrier [59].

Finally, another area where topoisomeric approaches have been explored is that of
peptide-based vaccines, where van Regenmortel et al. [60] demonstrated the antigenic
mimicry between native peptide antigens and their re counterparts. In contrast to the
substantial amount of work in the AMP and CPP fields, the literature does not show that
these pioneering efforts have inspired a significant follow-up.

Generalizing topoisomer strategies like those successfully described above for AMPs
and CPPs to other peptide therapeutic areas such as peptide hormones has not been
straightforward, underscoring the fact that, in many other cases, stereochemically stringent
interactions are at play, which can be contrasted with the fairly relaxed chiral rules of
engagement for membrane-active peptides.

3. Membrane-Active Peptides and Their Mechanisms of Interaction

Peptide–membrane interactions arise from distinctive sequence motifs within peptides
that correspond to specific physicochemical properties. Membrane-active peptides typically
possess structural features (electrical charge, amphipathicity, etc.) that foster—or prevent—
interaction with membrane bilayers of diverse lipid compositions. These membrane-active
peptides have been categorized into two main groups based on their mode of interaction:
AMPs and anticancer peptides (ACP), both functioning as membrane disruptors, and CPPs,
which translocate across the membrane to enter the cell [61]. Interestingly, these groups of
peptides often exhibit similar properties, with instances where AMP/ACPs overlap with
CPPs, and vice versa [62].

As mentioned, AMPs and ACPs exert their main biological effects by disrupting or
modulating the integrity and function of cell membranes [63,64]. Despite the 20,000-plus
hitherto catalogued AMP/ACP sequences (from natural sources and/or the result of man-
made design and production), some aspects of their mechanisms of action still stimulate
research and controversy [65,66]. There is a consensus that the ability to disrupt the
membrane is not only dependent on the type of AMP/ACP sequence and its conformation
but also on the membrane composition of the target cells. In most typical scenarios, cationic
AMP/ACPs interact with anionic phospholipid head groups on the outer leaflet of bacterial,
fungal, or protozoan membranes through electrostatic and hydrophobic interactions [67].
Upon reaching a concentration threshold, the peptides fuse into the membrane and damage
its structure [47,48] via processes such as those depicted in Figure 3.

Unlike AMPs and ACPs, membrane-active CPPs enter cells via innocuously translo-
cating membranes, without ensuing cell death [69]. This makes CPPs valuable shuttles
for crossing cell membranes or other physiological barriers and intracellularly delivering
diverse payloads [70,71]. The precise mechanisms of cell entry, again subject to some
controversy, have nonetheless been recognized to be influenced by factors such as physico-
chemical properties [72], cargo [73], concentration [74], cell type [75], temperature [76],
and the environmental status of the cell [74]. There is also agreement that CPP–membrane
interaction occurs primarily via either passive diffusion or endocytic or non-endocytic
pathways (Figure 4).

Passive transport is an energy-independent process that relies on the concentration
gradient of a substance. It is commonly observed for ions and small molecules, including
some peptides, and it is driven by the natural tendency of particles to move down concen-
tration gradients until equilibrium is reached. This movement occurs through mechanisms
such as facilitated diffusion [77–80] and osmosis [77,81–83].
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Figure 3. Multiple models showcase the diverse mechanisms by which AMPs disrupt bacterial
membranes. In the classical view of the (not mutually exclusive) mechanisms, after an initial
electrostatic interaction, peptides approach the membrane and, once they reach a critical concentration
threshold, can create peptide-lined pores in the barrel-stave model, or dissolve the membrane into
micellar structures in the carpet model, or establish peptide-and-lipid-lined pores in the toroidal pore
model. (adapted from [68]).

Endocytosis, an energy-dependent process, involves the engulfment of molecules on
a membrane to gain cell entry [84]. CPPs employ endocytosis as a frequent mechanism
of internalization [84]. Endocytosis encompasses three types of processes: phagocytosis,
pinocytosis, and receptor-mediated endocytosis. Pinocytosis occurs in various cell types
and involves the uptake of extracellular fluid, while phagocytosis is specific to macrophages
and leukocytes and entails the internalization of diverse substances. Receptor-mediated
endocytosis occurs when molecular shuttles bind to specific receptors, such as in the LDL-
mediated transport of cholesterol into cells. A graphical representation of these processes
is shown in Figure 4 [84–86].
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Figure 4. Two distinct pathways for the internalization of cell-penetrating peptides (CPPs), adapted
from [87]. Endocytosis (left) involves the internalization of molecules through a process where the cell
membrane engulfs them. It encompasses different subtypes, such as phagocytosis and pinocytosis,
all involving expenditure of energy by the cell to internalize payloads. Non-endocytic routes (right)
rely on specific interactions between the molecules involved and the cell membrane or other cellular
components to facilitate uptake.
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Uptake to the cytosol via energy-independent, non-endocytic pathways can be broadly
categorized into two groups depending on whether or not pore formation occurs [69,74,88].
In the former case, CPPs disrupt the lipid bilayer membrane after a critical concentration is
reached [89–91], much like the mechanism used by AMPs to disrupt bacterial membranes
(see Figure 3) [48,92–95]. Additionally, certain circumstances allow CPPs and pathogenic
amyloid peptides to use this mechanism for cell entry and activity (see Figure 4) [90].
Transmembrane pore mechanisms include the toroidal pore [92,96] and the barrel-stave
model [48,92,96,97]. In contrast, non-pore mechanisms involve the carpet [92,96] and
membrane-thinning models, among others [92,98].

4. Membrane-Active Topoisomeric Peptides

In designing effective membrane-active peptides, not only membrane activity but also
stability in biological fluids are crucial considerations. Many promising membrane-active
peptide candidates have seen their progress toward adoption on the market hampered
by excessively high susceptibility to protease degradation [99,100]. As mentioned in the
introduction, D-amino-acid-containing analogs of bioactive peptides, in particular those
typifying e and re topoisomeric versions, may constitute viable strategies for curtailing pep-
tide clearance via body proteases and ensuring longer systemic survival. In the following
sections, we discuss in more detail examples of topoisomers within the AMP, CPP, and
ACP families developed to this end.

4.1. AMP Topoisomers for Facing the AMR Challenge

The persistent overuse of antibiotics in both preclinical and clinical settings has con-
tributed to an alarming rise in antimicrobial resistance (AMR). The cursory prescription
of broad-spectrum antibiotics to patients with suspected infections resulted in the unwar-
ranted use of, e.g., over 30% of prescribed antibiotics in the USA alone in 2014, with adverse
effects in up to 20% of patients [101,102]. The World Health Organization (WHO) warned
that, without intervention, the global consequences of AMR may be devastating, with a pro-
jected annual death toll of up to 10 million people by 2050 [103]. This prediction surpasses
the combined deaths caused by cancer (8.2 million) and diabetes (1.5 million) [104].

The COVID-19 pandemic has exacerbated this issue [105–108]. According to a USA
antimicrobial resistance report, 80% of patients hospitalized with COVID-19 received an-
tibiotics [109] even though only a minority (17.6%) had a confirmed bacterial infection [110].
The financial burden on governments in relation to eventually tackling the AMRs ensuing
from these practices will likely be huge. For instance, 6 out of the 18 most-worrying AMR
threats have fetched up a staggering USD 4.6 bn annual bill in the USA alone [109]. Not
surprisingly, deaths attributed to AMR are projected to escalate even more rapidly due to
the aforementioned factors [111].

A major challenge in the AMR struggle revolves around the six ESKAPE bacteria
(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter bauman-
nii, Pseudomonas aeruginosa, and Enterobacter spp.) [112–114], a group of highly virulent
pathogens with an extraordinary ability to defeat antibiotic activity. In this context, AMPs
are promising contenders [115–117] due to their rapid action at low micromolar concen-
trations; their broad spectrum, encompassing both Gram-positive and -negative bacteria,
fungi, and viruses [92,97]; and their mechanisms of action, with a much lower tendency to
develop resistance compared to conventional antibiotics [118,119].

AMPs were originally isolated from natural sources. Gramicidin S [120], extracted
from the soil bacterium Bacillus brevis [121,122], was first reported in 1939. The finding
of AMPs in prokaryotes raised the question of whether eukaryotes also produced AMPs
against infections, particularly plants or insects lacking an immune system.

A substance in wheat flour found to be lethal to bread yeast was first described in
1896 [123], but it took some 80 years until it was isolated in a pure form (purothionin) from
wheat endosperm in 1972 and shown to inhibit bacterial growth [124]. In 1962, a paper
described antibacterial activity in the skin secretion of the Bombina variegata frog [125]; this
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activity was later identified as corresponding to the AMP bombinin [126]. Subsequent
reports of eukaryotic AMPs included the cecropins (1981) of the Hyalophora cecropia moth
related by Boman et al. [127,128] and, also in the 1980s, the α-defensins of rabbits [129–131]
and humans [132] reported by Lehrer et al. and the magainins [133] from the Xenopus laevis
frog reported by Zasloff et al. in 1987; this was followed by an ever-growing stream of AMPs
from diverse sources such as β-defensins and θ-defensins from immune cells [134,135]
or the first anionic (Asp rich) AMP reported in the mid-1990s [136]. At present, AMPs
have been found in all types of organisms, including plants [93,137], animals [138–142],
and bacteria [143], and they have been have widely acknowledged as ideal candidates for
tackling AMR [144–148].

Utilizing topoisomers as natural mimics of AMPs to develop improved candidates
is a sensible strategy with which to combat AMR. Among AMP topoisomers, re versions
have a high degree of structural resemblance to natural AMPs and are therefore promising
candidates. Table 1 lists the contributions to the AMP topoisomer repertoire over the
last decades.

In the 1990s, the Merrifield laboratory [42] described the e version of the natural AMPs
cecropin A, melittin, and magainin 2 amide, as well as cecropin–melittin hybrids, and
showed that the antimicrobial activity of the D-enantiomeric versions was equivalent to
that of L-parental peptides. They also found that the mechanisms of action did not require
a specific chiral receptor [42]. More recently, Kumar et al. studied the e and re forms of
peptide 73, a derivative of aurein2.2 (GLFDIVKKVVGAL) [149,150]. Both e73 and re73
versions exhibited activity similar to that of peptide 73, including efficacy against S. aureus
in a cutaneous infection model [150].

In a study by Lynn et al., the e and re forms of BMAP-28, a bovine cathelicidin AMP,
were tested for their activity against Leishmania parasites. Both topoisomers effectively
reduced both promastigote and amastigote forms of L. major [151,152]. In contrast, canonic
BMAP-28 was ineffective due to degradation by the parasite metalloproteinase GP63.

Another bovine AMP, the 13-amino-acid indolicidin, isolated from neutrophil gran-
ules [153], was also studied in its r, e, and re versions [44]. While all the peptides exhibited
antimicrobial activity comparable to that of natural indolicidin, those incorporating D-
amino acids were advantageous due to their lower hemolytic activity.

Crotalicidin (Ctn), a cathelicidin AMP derived from South American pit vipers, ex-
hibits both antibacterial and anticancer properties. Falcão et al. dissected Ctn and showed
that a Ctn [15-34] fragment had similar activity but much better serum stability when
compared to the parent peptide [154–156]. More recently [31], we investigated the e, r, and
re topoisomers of Ctn and Ctn [15-34] and showed that while Ctn topoisomers underwent
a 50% reduction in antimicrobial activity compared to the L-form, activity and improved
serum stability were maintained for Ctn [15-34] topoisomers.

Neubauer et al. investigated the activity of the AMPs aurein 1.2, CAMEL, citropin 1.1,
omiganan, pexiganan, and temporin A along with their r analogues. With the exception of
r-omiganan, the retro analogues exhibited reduced activity compared to their native coun-
terparts. The authors attributed the lower antimicrobial efficacy observed to a relatively
higher hydrophilicity in comparison to the natural peptides. This study was useful in chart-
ing the limitations of retro analogues in antimicrobial applications, with hydrophobicity
and hemolytic activity being presented as particularly relevant issues [157].

The last two examples serve to emphasize the need for caution when proposing
and/or implementing topoisomeric approaches in AMPs (or, for that matter, in bioactive
peptides of any type), as the biological outcomes of sequence inversion (r versions), D-
amino acid replacement (e versions), or the combination of both (re versions) are arguably
non-innocuous given their impact on D structure and ultimately activity [31,99].
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Table 1. Examples of recent AMP topoisomers.

Name a Sequence b Topoisomer Class Active Against Observations c References

Retro-indolicin RRWPWWPWKWPLI r G+ (S. aureus), G− (E. coli) Same MIC values. [44]

Inverso-indolicin ilpwkwpwwpwr e G+ (S. aureus), G− (E. coli) Same MIC values and
increased stability. [44]

Retroinverso-indolicin rrwpwwpwkwpli re G+ (S. aureus), G− (E. coli) Same MIC values and
increased stability. [44]

Retro-[Trp4,6,8,9,11Phe]-indolicidin RRFPFFPFKFPLI r G+ (S. aureus), G− (E. coli) Same MIC values. [44]

Inverso-[Trp4,6,8,9,11Phe]-indolicidin ilpfkfpffpfrr e G+ (S. aureus), G− (E. coli) Same MIC values and
increased stability. [44]

Retroinverso-[Trp4,6,8,9,11Phe]-indolicidin rrfpffpfkfpli re G+ (S. aureus), G− (E. coli) Same MIC values and
increased stability. [44]

D-V681 kwksflktfksavktvlhtalkaiss e G+/G− Same MIC values and
increased stability. [158]

D-V13KD kwksflktfksakktvlhtalkaiss e G+/G− Enhanced AMP activity and
increased stability. [158]

D-BMAP-28 * GGlrslGrkilrawkkyGpiivpiiriG e Leishmania major (protozoa) Enhanced AMP activity. [151]

RI-BMAP-28 * GiriipviipGykkwarlikrGlsrlGG re Leishmania major (protozoa) Enhanced AMP activity. [151]

D-Ano-NH2 Gllkriktll e G+/G− Same MIC values. [159]

D-GL13K Gkiiklkaslkll e G+ Enhanced AMP activity. [160,161]

retro-HHC10 WRIWKWWRK r G+/G− Same MIC values. [162]

inverso-HHC10 krwwkwirw e G+/G− Same MIC values and
increased stability. [162]

retro-inverso-HHC10 wriwkwwrk re G+/G− Same MIC values. [162]

inverso-CysHHC10 ckrwwkwirw e G+/G− Same MIC values. [162–164]

IK8-all D irikirik e G+/G− Enhanced AMP activity. [165]

IK12-all D irvkirvkirvk e G+/G− Enhanced AMP activity. [165]

D-MPI idwkklldaakqil e G+/G− Same MIC values. [166]

r-CAMEL LVKLVAGIKKFLKWK r G+/G− Curtailed AMP activity [157]
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Table 1. Cont.

Name a Sequence b Topoisomer Class Active Against Observations c References

r-citropin 1.1 LGGIVSAVKKIVDFLG r G+/G− Curtailed AMP activity. [157]

r-omiganan KRRWPWWPWRLI r G+/G− Enhanced AMP activity. [157,167]

r-pexiganan KKLIKVFAKGFKKAKKLFKGIG r G− Same MIC values. [157]

r-temporin A LIGSLVRGILPLF r G+ Curtailed AMP activity [157]

D-RR4 wlrrikawlrrika e G− Same MIC values. [168]

RI-73 lwGvwrrvidwlr re G+ (S. aureus) Same MIC values. [150]

D2D kk(1nal)fk(1nal)knle e G+/G− Enhanced AMP activity. [169]

(ri)-r(P)ApoBSPro * GsllkvprkpspiifklkGpklavhp re G− Same MIC values and
increased stability. [170]

Ctn retro * FPITVGIVMPKKFIKKLRKK-
VSKKVKKFFKKFRK r G− Curtailed AMP activity [31]

Ctn enantio * krfkkffkkvkksvkkrlkkifkkpmviGvtipf e G− Curtailed AMP activity and
increased stability. [31]

Ctn retroenantio * fpitvGivmpkkfikklrkkvskkvkkffkkfrk re G− Curtailed AMP activity and
increased stability. [31]

Ctn[15-34] retro * FPITVGIVMPKKFIKKLRKK r G− Same MIC values. [31]

Ctn[15-34] enantio * kkrlkkifkkpmviGvtipf e G− Same MIC values and
increased stability. [31]

Ctn[15-34] retroenantio * fpitvGivmpkkfikklrkk re G− Same MIC values and
increased stability. [31]

D-Caerin GllsvlGsvakhvlphvvpviaehl e G+ Enhanced AMP activity. [171]
a AMP name provided in the publication; b uppercase letters represent L-amino acids, while lowercase letters represent D-amino acids; c relative to original peptide; * peptides described
as both AMPs and ACPs. Abbreviations: G+, Gram-positive; G−, Gram-negative; 1nal; 3-(1-naphthyl)-D-alanine; e, enantio; r, retro; re, retroenantio.



Pharmaceutics 2023, 15, 2451 10 of 28

4.2. CPP Topoisomers and Drug Delivery Challenges

CPPs, also known as Trojan horse, protein translocation domains (PTD), or mem-
brane translocation sequences (MTS), are peptides with the ability to traverse membranes
—including barriers such as the gastrointestinal barrier [172], the blood–placental bar-
rier [173], or the highly restricted blood–brain barrier (BBB) [174]—and deliver therapeu-
tically active payloads across the boundary. CPPs are about 5–30 residues long, usually
linear, (although cyclic versions have been described [27,69]), and mostly composed of
L-amino acids, with some sequences including D-residues or L,D-combinations [69]. CPPs
have been classified as cationic [175–178], amphipathic [179–181], hydrophobic [182–184],
or anionic [185,186], with cargoes that include small molecules (drugs and dyes), proteins,
nanoparticles, or genetic material [71].

Although most CPPs are considered safe, their (mostly) cationic nature may pose
toxicity issues to some organs and tissues; hence it is important to develop CPPs safer for
humans. Moreover, many CPPs degrade fast in biological fluids, proteolytic stability thus
being critical for their efficacy as drug delivery vehicles [187,188]. The design of improved
CPP platforms has addressed these issues by means of in vivo toxicity screens [189] and/or
resorting to topoisomers (e or re versions) to avoid protease degradation. Some recent
examples are shown in Table 2.

The first CPP identified was a fragment of the trans-activator of transcription (Tat)
protein [190]. A detailed study of the protein defined Tat [48–60] as the most effective
fragment [69]. Wender et al. studied a shortened version, Tat [49–57], as well as the
corresponding e and re versions and found that these topoisomers were more effective
than the canonic L-version in terms of entering Jurkat cells [191]. Similarly, Seisel et al.
investigated the e and re versions of the Tat [48–60] sequence using iCal36, a peptide
intended for patients with cystic fibrosis, as cargo, with the re topoisomer found to be most
appropriate [192].

Another CPP discovered soon after Tat was penetratin, derived from the DNA binding
domain of the Antennapedia protein [69]. Nielsen et al. showed that oral coadministration of
insulin with L- or D-penetratin lowers blood glucose levels significantly more than insulin
alone. D-penetratin was most effective due to its lower level of degradation by proteases [193].
Similar results in terms of blood glucose reduction were reported by Kamei et al. [194] with
respect to D-PenetraMax, another e penetratin topoisomeric analogue.

Following the discovery of Tat and penetratin, oligoarginines such as R6 or R8 have
also been recognized as effective CPPs [177]. Studies of e/re topoisomeric poly-Arg pep-
tides again showed their effectiveness in penetration. For instance, Garcia et al. showed
that r6 and r8 in combination with lauric acid enhanced insulin transport through the
gastrointestinal tract by around 30–40% in Caco-2/HT-29 cells [195]. Similar work con-
ducted by Kamei et al. [196] showed that r8 improved on R8 with regard to intravenous
co-administration with insulin.

A rather interesting example of CPP topoisomerism is DAngiopep, the re version of
Angiopep-2, an artificial peptide that crosses the BBB [197]. By combining DAngiopep
with nanoparticles and a dye, effective BBB penetration and glioma targeting within the
brain was demonstrated. This approach could prove particularly valuable in facilitating
tumor identification during surgical procedures [198]. Another relevant BBB-crossing CPP,
the THR peptide, discovered through phage display, can successfully interact with the
human transferrin receptor. The protease vulnerability of the THR peptide [199] has been
successfully overcome by its re version [28], used to transport nanoparticles inside the
brain [200].
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Another example worth mentioning is mastoparan (MP), a 14-residue peptide iso-
lated from the venom of Vespula lewisii. Topoisomers of MP and its MitP analogue (with
α-aminoisobutyric acid instead of alanine in position 10) were shown to be effective
CPPs, with the e version of MP displaying the highest translocation efficacy and protease
resistance [201].

To investigate D- and L-CPP entrance in cells, Verdurmen et al. compared the effect of
three peptides (hLf, penetratin, and nonaarginine) in their canonic and e forms on three
different cell lines (HeLa, Mc57 fibrosarcoma, and Jurkat T) [202]. They observed distinct
differences in uptake efficiency between the two enantiomers at low concentrations, which
could be attributed to a two-step internalization process. A first step was binding to heparan
sulphates (HS) [203], the receptors of Arg-rich CPPs (especially of L-versions [202,204]),
followed by internalization via endocytosis. Notably, the presence of HS appeared to hinder
the efficiency of the second step for D-CPPs at lower concentrations. In contrast, at higher
concentrations, D-enantiomers became more efficient, as the dominant mechanism was
direct penetration [187]. These findings underscore the importance of stereochemistry,
mechanisms of action, and applied concentration when studying CPPs.

Another interesting example is DCDX, the re version of CDX, a 16-residue peptide de-
rived from the II loop of snake neurotoxin candoxin [205], with higher transcytosis observed
in BBB models compared to the protease labile L-version [206]. Han et al. proved that
DCDX combined with liposomes crosses the BBB in vitro, following an energy-dependent
lipid raft/caveolae- and clathrin-dependent pathway [207].

Yet another example of a successful topoisomer CPP engineered into a druggable
candidate, the 16-residue peptide wliymyayvaGilkrw (DRT-017), was developed by our
group. It embodies the re version of a transmembrane (TM5) motif of the CB1 cannabinoid
receptor (CB1R) fused with the e version of a BBB shuttle. The co-administration of the
peptide and a cannabinoid preserves THC-induced analgesia but minimizes side effects
(i.e., cognitive impairment) by restricting, both in vitro and in vivo, the formation of a
heterodimer between CB1R and the serotonin 5HT2A receptor responsible for the unwanted
side effect [208].
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Table 2. Examples of recent CPP topoisomers.

Name a Sequence b Cargo Topoisomer Class In Vitro Cell Lines Tested In Vivo Models References

Tat-D Grkkrrqrrrppq Peptides, small molecules e Caco-2, ATCC, HTB-37,
Calu-3, ATCC, HTB55 - [192,209]

Tatri qpprrrqrrkkrG Peptides, small molecules re Caco-2, ATCC, HTB-37,
Calu-3, ATCC, HTB55 - [192]

D-Tat 49-57 rkkrrqrrr Small molecules,
nanoparticles, proteins. e Jurkat T - [191,210]

D-Tat 57-49 rrrqrrkkr Small molecules,
nanoparticles, proteins. re Jurkat T, MCF-7 Peritoneal-TA3/St

tumor-bearing mice [191,210,211]

D-dfTAT (ckrkkrrqrrrG)2
(disulfide bridge) - e HeLa, MCH58 and HDF - [212]

D-penetratin rqikiwfqnrrmkwkk Insulin e Caco-2, HepG2 and IEC-6 o.a. mice [193,194,213]

D-penetraMax kwfkiqmqirrwknkr Insulin e - o.a. mice [194]

D-polyarginine (rrrr)x Insulin, peptide, nucleic acid e, re
Caco-2, HT-29, Fetal

hepatocytes, HeLa, Mc57
fibrosarcoma and Jurkat T

i.v. male
Sprague-Dawley rats, i.v.

and i.p. ducklings

[195,196,202,
214–216]

DAngiopep yeetkfnnrkGrsGGyfft Nanoparticles re bEnd.3 and U87 Glioma model in mice [198,217]

THRre pwvpswmpprht Small molecules,
nanoparticles re bEnd.3 cells - [28,199,200,218]

JNKD tdqsrpvqpflnlttprkprpprrrqrrkkrG - re Primary cortical
neuronal cultures

i.p. Sprague-Dawley P7
rat pups [216,219]

D-R9F2C rrrrrrrrrffc Oligonucleotides e HeLa - [220]

D-SAP (vrlppp)3 - e HeLa - [221]

β-syn 36D GvlyvGsktr - e SH-SY5Y5 Drosophila model,
mixed with the food [222]

retro-inverso β-syn 36 rtksGvylvG - re SH-SY5Y5 Drosophila model,
mixed with the food [222]

RI-HER-2 vcsaGftyrGepnpmseftdtnytvlapchl
(cyclic disulfide form) - re BT-474, SK-BR-3, MDA-468,

and TS/A
Combination with

RI-VEGF-P4, s.c. mice [223]
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Table 2. Cont.

Name a Sequence b Cargo Topoisomer Class In Vitro Cell Lines Tested In Vivo Models References

RI-VEGF-P4 fsmecimrikphqGqhiGcqmti
(cyclic disulfide form) - re BT-474, SK-BR-3, MDA-468,

and TS/A
Combination with
RI-HER-2, s.c. mice [223]

iMP inlkalaalakkil Peptides e U373MG - [201]

rMP LIKKALAALAKLNI Peptides r U373MG - [201]

riMP likkalaalaklni Peptides re U373MG - [201]

iMitP inlkklakl(Aib)kkil Peptides e U373MG - [201]

rMitP LIKK(Aib)ALAALAKLNI Peptides r U373MG - [201]

riMitP likk(Aib)lkalkklni Peptides re U373MG - [201]

riDOM qqrkrkiwsilaplGttlvklvaGic - re Lipid vesicles - [224]

R.I.-p1932 qpkGppppGqpknGGqpppG - re PE/CA PJ15 and hGF - [225]

NrTP5 ykqchkkGGkkGsG - e HeLa and BHK21 - [226]

RI-C2 arkGrsntfidc siRNA re M17, PC12, L929, or S2103 i.v. C57BL/6 mice model [29]

D-K4 kkkk Peptide nucleic acid e, re Fetal hepatocytes i.v. and i.p. ducklings [215]

RICK kwllrwlsrllrwlarwlG Nanoparticles re U87 - [227]

D-CADY-K Glwralwrllrslwrllwk Nanoparticles e U87 - [227]

retro-D-HAI hrpyiah - re B cells i.p. mice, s.c. rabbit [228]

DVS svafpsyrhrsfwsv Small molecules re HUVEC and U87 i.v. intracranial tumor
model mice [229]

CHA-061 hsfriitsitlrGrrrrrrrrr - re HK-2

Streptozotocin
(STZ)-induced diabetes

mouse model
(via i.p. injection)

[230]

DCDX GreirtGraerwsekf Liposomes re bEnd.3 and U87 i.p. male mice [207]
DPepH3 aGilkrw Proteins, antibodies e HBEC-5i - [59]

DRT-017 wliymyayvaGilkrw - re bEnd.3 i.v. mouse [208]
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Table 2. Cont.

Name a Sequence b Cargo Topoisomer Class In Vitro Cell Lines Tested In Vivo Models References
DA7R rpplwta Peptides re HUVECs and U87 s.c. mice [231]

OPBP-1 rvysf Peptides re HUVECs and U87 s.c. mice [231]

a CPP name provided in the publication; b Uppercase letters represent L-amino acids, while lowercase letters represent D-amino acids. Abbreviations: i.v., intravenous; i.p., intraperitonial;
s.c., subcutaneous; o.a., oral administration; Aib, 2-aminoisobutyric acid; e, enantio; r, retro; re, retroenantio.
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4.3. ACP Topoisomers for Mitigating Side Effects in Cancer Treatments

Despite significant advances, the three main methods for cancer treatment, namely,
chemotherapy [232–234], radiotherapy [235–237], and immunotherapy [235,238,239], suffer
from low selectivity and serious side effects. In particular, in chemotherapy, the continued
use of some antitumor drugs often gives rise to resistance [234]. Therefore, there is a clear
need for new therapies that combine selective drug delivery with high toxicity against
cancer cells [240].

In terms of successfully tackling the above-mentioned resistance and side effects [241],
ACPs appear to be promising candidates. Currently, there are three FDA-approved
ACPs, with revenues over USD 1 million [66]: goserelin (PyrHWSYs(tBu)LRP; Pyr—L-
pyroglutamyl) and leuprolide (PyrHWSYlLRP), analogues of gonadotropin-releasing hor-
mone (GnRH) [242,243]; and octreotide (fCFwLTCThre; Thre—L-threoninol), an analogue
of somatostatin [244]. Since 2000, this list has expanded with entries such as ixazomib,
thymalfasin, and mifamurtide [245,246].

ACPs are classified as direct- or indirect-acting based on their mechanism of action [247].
Direct-acting ACPs (DAAs) specifically target cancer cells, typically attaching to molecules
that are either unique or overexpressed [248]. They are divided into five subclasses [241]:
(a) CPPs acting as cytotoxic drug carriers [249], as discussed in Section 4.2.; (b) pore-forming
peptides, inducing apoptosis or necrosis by interacting with phosphatidylserine anionic
lipids exposed on the outer membrane of cancer cells [250]; (c) peptide inhibitors of signal
transduction cascades, either inhibiting mitogenic signals or restoring the activity of tumor-
suppressive proteins like p53 [251]; (d) cell-cycle-inhibitory peptides, modulating cyclin
and cyclin-dependent kinase activity [252]; and (e) apoptosis-inducing peptides, inhibiting
anti-apoptotic proteins from the Bcl-2 family [252].

Indirect-acting ACPs can influence the tumor environment or immune response in or-
der to target cancer cells and are subdivided into two classes [241]: (a) immune-stimulating
peptides, also referred to as peptide cancer vaccines [253], triggering immune cells such as
T-cells to act as natural killers against cancer cells, and (b) analogues of hormone-releasing
peptides, inhibiting the proliferation of hormone-stimulated tumor cells. These classes
include the above-referred GnRH analogues goserelin and leuprolide [254,255] as well as
octreotide and other somatostatin analogues [256].

Upon comparing the modes of action of pore-forming peptides, DAAs, and AMPs,
it becomes clear that they exhibit similarities in terms of electrostatic interactions [257];
therefore, many AMPs tend to also be explored for their role as potential ACPs. An example,
discussed in Table 1, is Ctn and its fragment Ctn [15-34]. The anti-tumor activity of both
peptides towards several tumor cells has been substantiated [154], and more recently, that of
their topoisomers has been, too [31]. Furthermore, the mechanism by which these peptides
combat tumor cells has been elucidated. Following initial accumulation on the tumor cell
surface, Ctn and Ctn [15-34] enter the tumor cell via either an endocytic pathway or an
energy-independent mechanism. Ultimately, Ctn and Ctn [15-34] induce cell death through
necrosis or apoptosis [258].

Table 3 presents a comprehensive collection of other topoisomeric peptides that have
been explored as ACPs, regardless of their mechanisms of action.

The first, noteworthy case is that of e PMI. PMI is a peptide recognized for its interac-
tion with MDM2 and MDMX, two oncoproteins that negatively regulate the functionality
and stability of tumor-suppressing protein p53. Active MDM2 and MDMX cause p53
inactivation and ensuing tumor proliferation [259]. The binding of PMI to MDM2 and
MDMX prevents their inhibitory action toward p53, thus ensuring that PMI can exert its
tumor suppressing role. Li et al. identified three e peptides, DPMI-α, DPMI-β, and DPMI-γ,
capable of binding MDM2 and MDMX but unable to induce p53-dependent cell death due
to their non-permeability with respect to the cell membrane [260]. They overcame this hur-
dle by encapsulating these peptides within liposomes decorated with an integrin-targeting
cyclic-RGD peptide. This strategy allowed them to curb glioblastoma activity in vivo via
the activation of the p53 pathway.
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Another topoisomer ACP worth mentioning is re RPL (named D(LPR) by the authors).
RPL is the minimal structural part of CPQPRPLC, a peptide obtained via phage display-
library screening [261] that binds both VEGFR-1 (vascular endothelial growth factor) and
NRP-1 (neuropilin-1), two essential contributors to angiogenesis whose inhibition can lead
to a decrease in tumor size. Giordano et al. developed re RPL as an antiangiogenic drug
with promising attributes in vitro and in vivo [262]. Also, Rezazadeh et al. linked re RPL to
technetium-99m and showed that the conjugate was a good radioligand for imaging and
targeting tumors in vivo [263].

The well-known tripeptide RGD binds specifically to integrin αvβ3, making it an
antiangiogenic candidate and a molecular imaging probe [264]. Ramezanizadeh et al.
showed that the re version of RGD, i.e., dGr, in either a linear or cyclic form, was useful for
tumor imaging and presented higher bioactivity than the natural version [265].

VAP is a seven-residue prostate-homing peptide that binds selectively to GRP78
(glucose-regulated protein 78) [266], which, in turn, regulates VEGF expression and is
over-expressed in some tumor cells but remains absent in normal cells. Ran et al. tested e
and re versions of VAP and found higher in vivo antitumoral efficacy when compared to
the L-counterparts. Furthermore, tumor growth diminished with either e-VAP or re-VAP,
concomitant with an increase in body weight, suggesting reduced side effects. The elevated
activity of D-amino-acid-containing peptides was attributed to their resistance against
proteolytic degradation [267].

As mentioned above, NRP-1 plays a pivotal role in tumorigenesis and is highly
expressed within tumor cells. A library of peptides bearing the sequence motif R/K(X)nR/K
(with the C-terminal R or K being particularly vital), named CendR, exhibited notable
affinity for binding to NRP-1 [268] in the L-conformation. Upon binding, the peptides
regulated vascular permeability (enhanced vascular permeability is indispensable for
cancer metastasis [269]). Despite their promise, the susceptibility of CendR peptides to
protease degradation resulted in low activity. However, Wang et al. [270] showed that
topoisomeric CendRs retained functionality. Thus, using RGERPPR as an example, they
showed that both topoisomers were superior, with the e version (rGerppr) displaying higher
stability and stronger binding to NRP-1 than the L-peptide and the re version (rppreGr)
demonstrating heightened tumor-penetrating prowess and stability. This outcome was
interpreted using computational simulations revealing that the three D-Arg residues of the
e version neatly aligned with the binding pockets of NRP-1, a phenomenon absent in the
natural peptide [270].

A last noteworthy example of topoisomeric modulation is FP21, a 21-residue pep-
tide (YTRDLVYGDPARPGIQGTGTF) corresponding to positions 33–53 of human follicle-
stimulating hormone (FSH). The FSH receptor (FSHR) is selectively expressed in 50% to 70%
of ovarian carcinomas; hence, it is a potential target in treating ovarian tumors [271,272].
Zhang et al. demonstrated that FP21, incorporated into nanoparticles, effectively bound
to FSHR but suffered from a limited half-life [273]. The authors overcame this problem
using the re version of FP21, which, again formulated as nanoparticles, achieved FSHR
binding, improved biostability, and enabled a reduction in tumor size over the L-version, al-
together positioning this topoisomer peptide as a promising candidate for treating ovarian
cancer [274].

Table 3. Examples of recent ACPs topoisomers.

Name a Sequence b Topoisomer Class In Vitro Cell Lines Tested References

DPMI-α tnwyanlekllr e U87, U251, HCT116 p53+/+ and
HCT116 p53−/− [259,275]

DPMI-β tawyanfekllr e U87, U251, HCT116 p53+/+ and
HCT116 p53−/− [259,275]
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Table 3. Cont.

Name a Sequence b Topoisomer Class In Vitro Cell Lines Tested References

DPMI-γ dwwplafeallr e U87, U251, HCT116 p53+/+ and
HCT116 p53−/− [275]

D(LPR) lpr re HUVEC [262,263,276]

D-SP5 prpspkmGvsvs re SGC7901 [277]

retro-tuftsin RPKT r A549 and HL-60 [278]
D(RGD) dGr re U87MG, C6and Hela [264,265,279]

RI-BK rfpsfGppr re HUVEC and C6 [280]

RI-VAP pavrtns re U87MG, HUVEC and HL7702 [267]

D-VAP sntrvap e U87MG, HUVEC and HL7702 [267]
DWSW wswGpys re U87 and HUVEC [281]

RI-3 yr(Aib)r re RBL-2H3 and RBL-2H3/ETFR,
osteosarcoma Saos-2 [282]

D(CendR) rppreGr c e HUVEC, C6, U87 and A549 [270]
D(CendR) rGerppr c re HUVEC, C6, U87 and A549 [270]

DT7 hrpyiah re HepG2 [283]

D-FP21 ftctGqiGprapdGyvldrty re HO8910 and HEK 293 T [274,284]

retro-inverso FSH β 33–53 peptide ftctkqikprapdkyvldrty re A2780 [285]

[D]-NRC-03 GrrkrkwlrriGkGvkiiGGaaldhl e HMEC, HDF and HUVEC [286]

RIF7 rqwllfi re A549 [287]

a ACP name provided in the publication; b uppercase letters represent L-amino acids, while lowercase letters
represent D-amino acids; c examples of the R/K(X)nR/K motif discussed in the article. Abbreviations: Aib,
2-Aminoisobutyric acid; e, enantio; r, retro; re; retroenantio.

5. Conclusions

Peptides are making substantial inroads into therapeutic application in diverse fields.
Peptide-based drug development has evolved from merely reproducing natural motifs to
the rational engineering of peptide structures including modifications such as cyclization,
stapling, conjugation, or the introduction of modified, non-coded amino acids. With over
80 peptides already on the market and many others in preclinical or clinical stages, the po-
tential of peptides is becoming increasingly manifest across a wide range of indications [288].
A case in point is provided by combinatory anti-infective therapies, where a conventional
antibiotic and an AMP are co-administered to foil antimicrobial resistance [289].

Despite such promise, therapeutic peptides continue to face significant challenges,
mostly related to their stability in human fluids. In this review, we have shown that topoi-
somer formulations, particularly those featuring D-amino acids (e and re), often provide
viable alternatives to canonical L-versions. This must not be misconstrued, however, as im-
plying that topoisomers do not face challenges in their scope and applications. For instance,
retro peptides can present flexibility and adaptability issues that require cautious structural
scrutiny [157]. Additionally, enantio versions, particularly when used as CPPs, may also
present limitations intrinsically linked to factors such as stereochemistry, mechanisms
of action, or applied concentration [202]. These and other limitations notwithstanding,
e.g., the higher price (at least twice) of D- compared to L-amino acids, the cost-effectiveness
of topoisomer-based approaches is likely to pay off over time and thus furnish valuable
tools for advanced peptide-based therapies.
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