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Abstract: Because of the increasing sophistication of formulation technology and the increasing
polymerization of compounds directed toward undruggable drug targets, the influence of the mucus
layer on gastrointestinal drug absorption has received renewed attention. Therefore, understanding
the complex structure of the mucus layer containing highly glycosylated glycoprotein mucins, lipids
bound to the mucins, and water held by glycans interacting with each other is critical. Recent
advances in cell culture and engineering techniques have led to the development of evaluation
systems that closely mimic the ecological environment and have been applied to the evaluation of
gastrointestinal drug absorption while considering the mucus layer. This review provides a better
understanding of the mucus layer components and the gastrointestinal tract’s biological defense
barrier, selects an assessment system for drug absorption in the mucus layer based on evaluation
objectives, and discusses the overview and features of each assessment system.
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1. Introduction

Oral medication forms are widely used to improve patient quality of life because they
are non-invasive and convenient routes of administration. However, oral formulations
are absorbed in the gastrointestinal tract and require various gastrointestinal absorption
processes, including the movement of the formulation in the gastrointestinal tract, drug
elution and dissolution, drug penetration through the intestinal membrane, and transfer
into the systemic bloodstream. These processes can alter the pharmacokinetics and efficacy
of the drug [1–3]. Therefore, an accurate understanding of drug candidate gastrointestinal
absorption is critical for efficient drug development.

Because most orally administered drugs have a high biological membrane affinity, the
cell membrane permeation of the drug in the intestinal tract occurs by passive diffusion
following a drug concentration gradient. Cell membrane permeation follows the pH
partitioning hypothesis, particularly for dissociable weak electrolyte compounds. Therefore,
a drug’s lipid solubility and the ratio of its presence at the absorption site influence drug
absorption [4]. Drug absorption is also influenced by gastrointestinal tract physiological
characteristics, as evidenced by the efflux transporter P-glycoprotein, which acts as an
absorption barrier by transporting the drug from the intestinal cells to the lumen [5].

In addition to drug transporters, the gastrointestinal mucus layer adjacent to the
intestinal mucosa has been identified as a physiological factor influencing drug absorption
in the gastrointestinal tract. The mucus layer is a highly viscous liquid phase that covers
the gastrointestinal epithelium and acts as a physical barrier to pathogens and commensal
bacteria entering the mucosa [6–8]. Because drugs must pass through the mucus layer to
reach the epithelial cell membrane surface, it may also be an important regulator of drug
absorption in the gastrointestinal tract. The mucus layer is composed of proteins, lipids,
sugar chains, and water, and is thought to act as a barrier to drug absorption through the
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following mechanisms: (1) drug–mucus component interactions (drug physical properties,
such as hydrophobicity and charge), and (2) molecular size selectivity (due to the network
structure of the mucus components) [9–11] (Figure 1). Therefore, the influence of the mucus
layer on drug membrane permeation is becoming increasingly important. However, unlike
drug transporters [12–14] with a systemic evaluation established in the preclinical phase, a
systematic evaluation system for the mucus layer has not been established. This is presum-
ably because, unlike transporters comprising a single protein, the mucus layer is composed
of complex components, and the resulting complex chemical and physical properties render
constructing an evaluation system challenging. Therefore, drug development evaluation
systems focusing on the mucus layer are still in the early stages.
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Recently, to address undruggable targets, the pharmaceutical industry has been ac-
tively developing oral mid-molecular-weight drugs, such as cyclic peptides and targeted
protein degraders, from existing simple small molecules [15–18]. Because of properties
such as high lipophilicity, large molecular weight, low solubility, and high protein binding,
there is concern that mid-molecular-weight drugs may interact with the mucus layer. When
added to extracted mucus components, cyclosporin A causes aggregation [19]. In addi-
tion, mid-molecular-weight formulations are often specially formulated to overcome low
membrane permeability and solubility (e.g., self-micro-emulsifying drug delivery systems
and nanoparticle formulations) [20–22]. Maria et al. found a 16-fold increase in mucus
adhesion compared to regularly modified nanoparticles and a 7.2-fold increase in AUC
for oral administration compared to free octreotide solution, using modified nanoparticles
that promote mucus adhesion [23]. When assessing drug absorption using mid-molecular-
weight formulations and associated special formulation techniques, the complex and varied
interactions of the mucus layer become increasingly important. Consequently, this review
provides an overview of the various drug interactions with mucus layer constituents and
examines the influence of the mucus layer on drug absorption. Furthermore, advances
in cultured cell technology and engineering techniques have led to the development of
systems that closely mimic the ecological environment and have been used to assess gas-



Pharmaceutics 2023, 15, 2714 3 of 16

trointestinal absorption. Novel assessment techniques focusing on the mucus layer and the
advantages and disadvantages of the various models available are discussed to help select
appropriate models for assessing the influence of the mucus layer on gastrointestinal drug
absorption.

2. Gastrointestinal Mucus

Gastrointestinal mucus is secreted at 10 L per day and contains mucin (5%), lipids
(37%), proteins (39%), DNA (6%), and other components by dry weight (%, w/w) [24]
(Figure 1). For absorption in the gastrointestinal tract, the drugs must pass through the
mucus layer, permeate the gastrointestinal membrane, and enter the systemic circulation.
Therefore, the first barrier to gastrointestinal membrane permeation is the mucus layer,
consisting of two layers: an inner, tightly adherent layer and an outer, loosely adherent layer
that undergoes repeated secretion and turnover [25]. The two-layer structure maintains
the homeostasis of the intestinal flora and protects the intestinal epithelium from intestinal
pathogens, as the inner layer is mostly sterile, while the outer layer serves as a habitat for
bacteria [26]. When fluorescent beads of 1 µm diameter are added to the structure, the beads
penetrate the outer layer, but do not penetrate the inner layer [27]. Mucin molecules play
an important role in the maintenance function and as components of this structure [26,28].
Mucus layer thickness in rats, measured using a micropipette before and after aspiration
removal, was the thickest in the ileum and thinnest in the jejunum, ranging from 100 to
800 µm. In contrast, the thickness of the human gastrointestinal mucus layer ranges from
10 to 750 µm [29]. The exact thickness of the mucus layer in humans remains controversial
because human tissues are generally derived from patients whose mucosal epithelium is
in poor health or whose mucus secretion is abnormal. Although replicating the complex
properties of the mucus layer, such as its multiple components, bilayer structure, intestinal
flora, and inconsistent thickness, is challenging, an appropriate evaluation system that
matches the desired results and how to incorporate them must be selected.

3. Components of the Mucus Layer
3.1. Mucin

Mucin, the molecular entity of the mucus layer, is a highly glycosylated glycopro-
tein. The mucus layer is a charged hydrophilic layer due to the mucin sugar chain’s
negative charge and water-holding capacity [29–31]. Mucins are classified into membrane-
bound (MUC1, MUC3A, MUC3B, MUC4, MUC12, MUC13, MUC14, MUC15, MUC16,
MUC17, MUC20, MUC21, and MUC2) and secretory (MUC2, MUC5AC, MUC5B, MUC6,
and MUC19), based on their functional characteristics and localization [7,32,33]. Trans-
membrane mucins are plasma membrane-anchored membrane proteins with a single
transmembrane domain, an amino-terminal extracellular region densely decorated with
sugar chains, and a carboxy-terminal intracytoplasmic tail. Because of the highly glycosy-
lated core protein, membrane-bound mucins have a test-tube brush, and MUC1, MUC3A,
MUC3B, MUC4, MUC12, MUC13, MUC15, MUC17, MUC20, and MUC21 are expressed
in the gastrointestinal tract [31,34]. Compared with normal MCF7 cells, MCF7 cells stably
expressing MUC1 with the parts involved in signaling removed showed a 150-fold increase
in resistance to the fat-soluble drug paclitaxel and a 2.7-fold increase in cell adhesion
water content [35] (Figure 2), suggesting that MUC1 acts as a hydrophilic barrier against
anticancer drugs and contributes to chemotherapy resistance by limiting lipophilic drug
membrane permeation. Secretory mucins have a large glycosylated PTS domain, a light
glycosylated carboxy- and amino-terminal region rich in cysteine, and form a gel [31,36,37].
Because of this geometry, secretory mucins are retained as a mesh-like barrier surrounding
the plasma membrane. MUC2, MUC5AC, and MUC6 are expressed in the gastrointestinal
tract. Particle mobility measurements in sputum mucus from patients with cystic fibrosis
(CF) decreased with increasing particle size [38]. The high content of MUC5AC in sputum
from patients with CF supports the idea of size filtering by secreted mucins [39]. Because
mucins have many subtypes that differ in properties and molecular size, it is important to
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focus on mucin molecular species differences when studying the microscopic environment
of the mucus layer.
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Figure 2. Inhibitory effect of MUC1 cell-associated water on cell accumulation of paclitaxel and
its schematic representation. (A) The uptake experiment was performed with paclitaxel (10 µm,
60 min). (B) Cell-adhered water volume. (C) Schematic representation of (A,B). All symbols represent
independent experiments. ns: not significant, * p < 0.05 compared with the control (mock cells).
Adapted with permission from Ref. [35]. Copyright 2022 American Society for Pharmacology and
Experimental Therapeutics.

3.2. Glycans

Many proteins exist as glycoproteins, which are made up of glycans bound cova-
lently to amino acids via glycosylation; these glycans play important roles in biological
tissue formation and defense [40]. Typical forms of glycosylation found on secreted or
membrane-bound proteins are N-linked (to asparagine) and mucin-type O-linked (to serine
or threonine) glycosylation [41]. Mucins are glycoproteins with a unique structure in which
a series of O-linked glycans derived from N-acetylgalactosamine are attached to serine and
threonine residues in tandem repeat domains [9]. Glycans contribute to water and charge
retention in the mucus layer [6,29–31]. Mucin glycosylation and expression distribution dif-
fer by subtype. In mice, MUC5AC is expressed in the upper gastrointestinal tract, primarily
in the stomach, and approximately half of its glycans are neutral, with many monosulfated
glycans but few fucosylated or sialylated glycans. In contrast, MUC2 is predominantly
expressed in the lower gastrointestinal tract, primarily in the large intestine, dominated
by fucosylated glycans and negatively charged sialylated and sulfated glycans [42]. Rats
showed similar gastrointestinal site-specific glycosylation [43]. Structural characterization
of oligosaccharides released from purified human mucin by gastrointestinal sites revealed
that fucosylated glycans were mainly detected in the small intestine, whereas sulfated
glycans were mainly detected in the distal colon [44]. This suggests that there are species
differences in the glycosylation of mucins between rodents and humans. In addition to
the mucosal layer thickness and mucin subtype, glycan characteristics depend on the
gastrointestinal tract site.
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In endogenous MUC1-high expressing Capan-1 cells, inhibiting enzyme O-glycosylation
with glycan synthesis inhibitors leads to a decrease in MUC1 glycans and an increase in 5-
fluorouracil incorporation into genomic DNA [45,46] (Figure 3). This suggests a link between
MUC1 glycan levels and the 5-fluorouracil cellular uptake’s therapeutic effect. Furthermore,
the thickness of the cell surface water layer differs between cells transgenic for MUC1 and
MUC13, which have different lengths of glycosylated extracellular domains [35]. These find-
ings suggest that the electronegativity of the mucin glycan moiety or the water layer thickness
retained by the glycans may influence drug permeation through the plasma membrane. The
mucin glycosylation region is extensive, and glycans are important in drug cell membrane
permeation because they influence water retention and charge-bearing.
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Figure 3. Effects of inhibition of O-glycosylation on 5-FU uptake by Capan-1 cells and its schematic
representation. (A) 5-FU staining following 1 h of 5-FU exposure in the presence (+) or absence (−)
of benzyl-α-GalNAc. The 5-FU was stained with 5-FU antibody (green). The cell nucleus (blue)
and 5-FU-antibody (green) were observed using fluorescence microscopy. Scale bars = 100 µm.
(B) Schematic representation of (A). Adapted with permission from Ref. [45]. Copyright 2022 Elsevier.

3.3. Lipids

Lipids are one of the most important nutrients; during absorption in the small intestine,
they assist in the absorption of fat-soluble vitamins [47]. In living organisms, lipids are
homeostatic because they are essential components of cell membranes, where cell signaling
and membrane proteins are prepared [48]. Endogenous lipids in mucus include cholesterol,
ceramides, palmitic acid, stearic acid, oleic acid, linoleic acid, other free fatty acids, and
polar lipids [24]. Sputum analysis from patients with CF confirmed that the lipids in
the purified mucin fraction were complexed with glycoproteins [49]. Lipid extraction
from canine gastric mucus glycoproteins reduced viscosity by 80–85%, and removing
covalently bound fatty acids further reduced the viscosity of defatted glycoproteins by
39% [50]. Fluorescence probing of the hydrophobicity of gastric mucus glycoproteins
revealed that some fatty acids were covalently bound to mucins in the protein domain,
whereas most were adsorbed by hydrophobic bonds [51]. These findings demonstrate
that lipids form hydrophobic and covalent bonds with mucins in the mucus layer and
regulate mucus viscoelasticity. Yildiz et al. showed that when microspheres were injected
into the duodenum of rats 1 h after the oral administration of soybean oil, the transport
rate of the microspheres was reduced by a factor of 10 compared with that in the control
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group [52]. Furthermore, the addition of lipids associated with food and drug delivery
systems increased the elasticity of the mimetic mucus. These results suggested that the
amount of dietary lipids in the gut and those used in drug delivery systems must be
considered when transporting drug carriers through the mucus layer. However, excessive
lipid intake is known to affect the function of the intestinal barrier and mucus layer. Gulhane
et al. showed that a prolonged high-fat diet induces a decrease in mucosal barrier function
due to goblet cell differentiation, a decrease in Muc2, a loss of tight junction proteins, and
an increase in serum endotoxin levels [53]. Compared to the physiological environment,
assessments using cultured cells or commercially available purified mucins may result in
fewer lipids or their removal during the production process, which may not reflect the
in vivo environment. Therefore, the viscosity of the mucus layer and its interaction with
lipid components should be considered.

4. In Vivo Experimental Methods
4.1. Mucolytic Agent

Mucolytic agents such as dithiothreitol (DTT) and N-acetylcysteine (NAC) are used in
experimental animals to assess the effect of the mucus layer on gastrointestinal drug ab-
sorption. Mucolytic agents work by cleaving disulfide bond cross-links in secretory mucin
and disrupting the intermolecular network structure [31,54]. The intranasal administration
of fluorescein isothiocyanate (FITC)–dextran with NAC in rats resulted in a 4-fold increase
in AUC compared to normal FITC–dextran, confirming that mucus layer removal by NAC
improves drug mucosal permeability [55]. Using an in situ single-pass perfusion technique,
Masaoka et al. demonstrated that the intestinal membrane permeability of griseofulvin
was significantly increased in jejunum pre-treated with DTT for 30 min [56]. Similarly,
when DTT was pre-activated in vitro for 10 min, the intestinal membrane permeability of
griseofulvin and antipyrine was increased in the proximal part of the small intestine of
the duodenum and jejunum, but not in the distal part of the small intestine [57] (Figure 4).
Mucus layer removal increased the drug’s mucosal permeability, indicating that the effect
varies depending on the compound administered and the gastrointestinal tract site. Al-
though in situ single-pass perfusion and in vitro sac techniques are useful for assessing the
site-specific absorption of the mucus layer in the gastrointestinal tract, the concentration of
local mucolytic agents can be higher than with conventional administration. If site-specific
absorption is assessed as an effect of the mucus layer throughout the gastrointestinal tract,
oral administration to animals is preferable; however, it must be ensured that the mu-
cus layer remover reaches the target gastrointestinal absorption site and does not affect
compound solubility or stability.

4.2. Mucin Knockout/Mucin-Deficient Mice

Mucin knockout (KO) mice are frequently used to study the function and characteris-
tics of mucin molecules in vivo. In terms of membrane permeation, Muc1−/−mice have a
decreased uptake and absorption of cholesterol in the gastrointestinal tract compared to
normal mice [58]. FITC–dextran was detected in the plasma of Muc2−/−mice but not in
normal mice after oral administration [59]. These findings suggest that MUC1 and MUC2
play important roles in compound uptake and absorption in the gastrointestinal tract. The
effect of MUC1 on cholesterol uptake in the gastrointestinal tract is particularly intriguing,
as the mucin molecule facilitates rather than hinders the compound’s gastrointestinal ab-
sorption. Mucus layer thickness in the stomach of Muc1−/− mice was reduced compared
to wild-type mice, and MUC5AC was the major component of the mucus layer [60]. Thus,
the formation of a macromolecular complex of membrane-bound and secreted mucin an-
chored on the intestinal epithelial cell membrane may help to stabilize secreted mucin on
the intestinal surface, and mucins may interact between subtypes. The mucin KO mice
allow for the assessment of the effect of mucin molecules on the ecological environment;
however, some mucins also affect inflammatory mechanisms and tumor resistance [61–65].
For example, the microscopy of the colon of Muc2−/− mice revealed mucosal thickening,



Pharmaceutics 2023, 15, 2714 7 of 16

increased proliferation, and surface erosion, indicating damage to areas other than the
mucus [65]. Therefore, KO mice may have altered intestinal histology and environment,
leading to different pharmacokinetic data than normal mice.
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5. In Vitro Experimental Methods
5.1. Mucus-Secreting Cells

Caco-2 cells do not have a mucus volume corresponding to the human intestinal tract
due to the lack of mucus-secreting cells and low mucus-producing capacity, and the amount
of mucus in model cells and in the in vivo environment differs in the literature [66–68]. To
compensate for this drawback, a co-culture system of Caco-2 and HT-29 cells derived from
mucus-secreting human colon cancer has been used to simultaneously assess mucus layer
permeabilization through the gastrointestinal membrane [69,70]. When Caco-2 intestinal
epithelial cells were co-cultured with HT29-MTX cells, mucus formation was observed,
and a 40–80 µm thick mucus layer formed in the transwells, depending on the amount of
HT29-MTX cells [71]. HT-29 cells treated with fluorouracil and methotrexate can generate
HT29–5-fluorouracil cells expressing high levels of MUC2 and MUC4 or HT29–MTX cells
expressing high levels of MUC3 and MUC5AC [72]. Although this does not allow for a
complete subtype selection, it does allow for some examination of mucin subtypes without
genetic recombination manipulation. HT29-MTX cells were used not only as a simple
active pharmaceutical ingredient and to evaluate the effect of nanoparticle formulations on
the mucus layer [73]. In cells with incomplete mucus formation, there was no significant
difference in cellular uptake between the nanoparticle formulations; however, in cells with
confirmed mucus formation, nanoparticle formulations with significantly higher cellular
uptake were found. The use of HT29-MTX cells made it possible to select a nanoparticle
formulation that considered the effect of the mucus layer. However, because the culture
system contains two types of cells, the culture conditions must be controlled, and the
P-glycoprotein substrate has a different membrane permeability from that of Caco-2 cells
because HT29 cells do not express P-glycoprotein [68].
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In recent years, cell culture systems have advanced remarkably, particularly in terms
of induced pluripotent stem (iPS) cells, which differentiate into functional intestinal cell-
like cells and are used in pharmacokinetic studies [74–76]. MUC2 mRNA expression
levels in iPS cells are equivalent to those in human intestinal cells and can be used for
membrane permeabilization studies [77]. Adding indomethacin, a non-steroidal anti-
inflammatory drug, to iPS cells decreases, whereas adding the mucoprotective agent
rebamipide increases MUC2 expression levels [78]. Furthermore, indomethacin causes
mucosal damage and increases the membrane permeability of FITC–dextran, whereas
rebamipide restores membrane permeability. These findings indicate that the barrier
function of the mucus layer can also be assessed in iPS cells and that iPS cells are steadily
evolving into cells capable of the pharmacokinetic evaluation of the mucus layer. The
presence of goblet cells, MUC2 production, and mucin granules in iPS cell-derived intestinal
organoids has also been confirmed [78–80]. Various human iPS cell-derived intestinal
organoids with colon-like and small intestine-like properties have also been generated, and
could provide an evaluation system closely reflecting in vivo location characteristics [79].
While iPS cell-derived intestinal organoids are used for cellular drug uptake studies, the use
of intestinal organoids as a membrane permeability test is difficult due to their shape [80].

5.2. Extracted and Mimicked Mucus

Mucus interaction and mucus layer permeability have been studied using mucus
extracted from patients with CF, cultured cells, and animals [19,24,81–83]. Studies using
commercially available animal-derived mucins (porcine and bovine) have become the
mainstream due to variations in extraction methods, inter-individual differences between
animals, the pathological conditions of patients, and easy availability [84]. As mentioned
above, mucus has a complex structure and contains various components, rendering mucus
extraction without damage and its reproduction difficult. The biosimilar mucilage had
a viscosity 100 times lower than the elastic properties of porcine intestinal mucilage [85],
presumably because commercial mucins are fragmented during purification, and contami-
nating proteins can alter their gel-forming capacity, as it is difficult to isolate and purify
mucins while preserving their natural structure and avoiding contaminants [86–88]. How-
ever, specific criteria, such as viscosity, can be set for mimicking. Biosimilar mucus, that
can be used with cultured cells by adding polymeric thickeners and adjusting the lipid
content, has been developed using information from comprehensive component analyses of
porcine gut mucus [75,89] (Figure 5). When the permeability of various model compounds
in Caco-2 cells with and without this mucus was compared, the permeability was reduced
by 1.2- to 6.8-fold in biosimilar mucus-added cells, with the effect being most pronounced
for the lipophilic drug testosterone [85]. These results suggest that biosimilar mucus could
be used as a barrier function assessment system for cell membrane permeability.

Biosimilar mucus is a high-throughput assay that can be measured without biolog-
ical materials because commercial products eliminate the need for mucus extraction. In
particular, the parallel artificial membrane permeability assay allows many compounds
and formulations to be studied simultaneously, and the membranes used do not require
the use of biological components [90,91]. The transwell mucus diffusion model with
mucus added to the insert is a high-throughput evaluation system that allows many com-
pounds and formulations to be studied simultaneously. Friedl et al. evaluated the effect
of size and chemical composition of self-emulsifying drug delivery systems on mucus
layer permeability through a transwell model incorporating intestinal mucus [92]. The
mucus permeability of fluorescein diacetate incorporating Cremophor RH40 increased in
a concentration-dependent manner, indicating Cremophor RH40 as a promising excipi-
ent. Extracted and mimetic mucus evaluation systems can also help select excipients by
assigning a rank order based on mucus influence.
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Figure 5. Comparison of native porcine intestinal mucus (PIM) and mucus mixture. (A) Flow curves
of the PIM (open squares) compared with mucus mixture (triangles). (B) Elastic (G′) and viscous (G′′)
modulus of extracted mucus; G′ (open squares) and G′′ (open diamonds) of PIM and G′ (triangles)
and G′′ (inverted triangles) of the mucus mixture. (C) Cumulative amount of testosterone resulting
from its penetration through the Caco-2 cell monolayer in the absence (triangles) or presence (circles)
of biosimilar mucus. Reproduced with permission from ref [85]. Copyright 2014 Elsevier.

5.3. Microphysiological Systems (MPS)

MPS, such as organ-on-a-chip based on microfluidic devices, are attracting attention
as a new cell culture platform. Culture environments that are difficult to replicate with
conventional cell culture systems, such as mechanical stimulation, 3D extracellular ma-
trix environments, and cell–cell interactions, can be constructed using these microfluidic
devices [93–96]. Caco-2 cells have been cultured on microfluidic devices and used to
assess drug cell membrane permeability under conditions that mimic the intestinal envi-
ronment [97–99]. Although MUC2 was not expressed in Caco-2 cells cultured in normal
transwell inserts, it was expressed in Caco-2 cells cultured on microfluidic devices [100,101].

Techniques for cultivating intestinal cell organoids-on-chips have also been developed.
After dissociation, Sontheimer-Phelps et al. cultured primary human colon epithelial
cells as organoids-on-a-chip [102]. Organoid cultures on transwell inserts and Matrigel
demonstrated little goblet cell differentiation, whereas organoid cultures on the Colon
Chip revealed that approximately 15% of epithelial cells differentiated into goblet cells.
This matched the percentage of goblet cells found in human colon samples. Furthermore,
when colon epithelial cells were cultured in the Colon Chip underflow, the mucus layer
accumulated to approximately 570 µm and was a bilayer structure with an inner layer
impermeable to fluorescent beads and an outer layer permeable to fluorescent beads
(Figure 6). This result reflects in vivo mucus layer characteristics that could not be replicated
in normal cultured cells. In addition, the transparency of the Colon Chip method allows
the secretion and accumulation of the mucus layer to be monitored over time under
microscopic imaging, allowing the thickness to be observed without the cumbersome and
mucus-damaging risk of using an alcohol-based fixing solution.
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confocal images of the Colon Chip perfused with fluorescent beads (magenta). Cells were stained
with calcein AM (light green). (B) Quantification of (A). * p < 0.05 for the inner and outer layers.
Reproduced from ref [102].

Similarly, duodenum-derived organoids-on-a-chip were generated, and genome-wide
transcriptional profiling between human duodenal tissue, duodenal-on-a-chip, and Caco2
cell-on-chips showed that duodenal-on-a-chip closely resembled duodenal tissue [103,104]
(Figure 7). Furthermore, the duodenal-on-a-chip had a 10-fold higher MUC2 expres-
sion than the Caco2 cell-on-a-chip, suggesting that combining microfluidic devices and
organoids can effectively mimic the in vivo environment [104] (Figure 7). In addition, the
effluent from the channels can be collected, allowing the sampling of secreted substances.
Microchannels lined with endothelial cells, which are not present in normal organoid
cultures, may allow the assessment of the mucus layer and cell membrane permeation
of drugs.
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In addition, mucus-on-a-chip has been developed to evaluate the interaction between
nanoparticles and the mucus layer without the use of cells or animal samples [105,106].
Wright et al. developed a device that clearly visualizes the mucosal adhesion behavior of
chitosan nanoparticles, a phenomenon that is difficult to observe with standard permeation



Pharmaceutics 2023, 15, 2714 11 of 16

models. In contrast, mesoporous silica and poly (lactic-co-glycolic) acid showed mucosal
permeation, demonstrating that specific mucus-nanoparticle binding makes a significant
difference in the permeation pattern [106]. This device is useful because it eliminates
cytotoxic effects, which are a concern in nanoparticle evaluation, and allows observation of
mucus adhesion behavior.

However, the on-chip approach of assessing the mucus layer has only been used in
a few cases, and a detailed characterization of the secretory mucus layer remains lacking,
warranting further research in the future.

6. Conclusions and Future Perspectives

As formulations become more complex and drug candidates have higher molecular
weights, research into the barrier function of the mucus layer is becoming increasingly
important, as the mucus layer is more susceptible to intestinal drug absorption. The
advantage of in vivo evaluation is that the mucus layer’s contribution can be assessed
in a biological environment. As previously stated, the effects of the altered intestinal
environment in mucin KO mice must be considered, as the KO impairs barrier function
and alters immune and signaling functions. Furthermore, for mucolytic agents, the effects
of pH and concentration in the gastrointestinal tract must be considered to design dosages
that do not impair efficacy and to set concentrations that account for gastrointestinal tract
toxicity. However, it is not suitable for analyzing the contribution of each component and
must be avoided from an animal welfare point of view as the studies are conducted using
laboratory animals.

In vitro evaluation systems consider animal welfare perspectives and provide a high
degree of design freedom. It is possible to calculate a drug’s mucus layer permeability alone
using extracted or mimetic mucus, and by combining it with cell membrane permeation
studies, gastrointestinal permeation can also be evaluated considering both the mucus
layer and cell membrane permeation processes. The addition of mucus to Caco-2 cells and
PAMPA, which are commonly used in conventional drug discovery research, could allow
the use of existing platforms and enable high-throughput testing. Furthermore, in vitro
evaluation of the mucus layer has advanced, and the two-layer structure of the mucus,
which could previously only be reproduced in vivo, can now be reproduced using MPS,
which may further improve in vivo reproducibility in vitro.

The development of evaluation techniques has assisted in assessing the influence of
the mucus layer on gastrointestinal drug absorption from various perspectives, depending
on the evaluation system used. To assess the mucus layer having complex components,
the strengths and weaknesses of the assessment model must be considered to select an
appropriate method. This review provides an important understanding of newly developed
mucus layer assessment techniques, which will facilitate the analysis and approval of novel
drugs. Furthermore, many examples of the mucus layer’s influence have been investigated
in various in vivo and in vitro assessment systems; however, the only use of the mucus
layer for extrapolation to humans and the prediction of human pharmacokinetic data has
been as a non-stirred water layer. We believe that these findings will be used in the future to
improve data prediction accuracy by incorporating the mucus layer into prediction models.
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