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Abstract: Abnormal tumor vasculature and a hypoxic tumor microenvironment (TME) limit the
effectiveness of conventional cancer treatment. Recent studies have shown that antivascular strategies
that focus on antagonizing the hypoxic TME and promoting vessel normalization effectively synergize
to increase the antitumor efficacy of conventional therapeutic regimens. By integrating multiple
therapeutic agents, well-designed nanomaterials exhibit great advantages in achieving higher drug
delivery efficiency and can be used as multimodal therapy with reduced systemic toxicity. In this
review, strategies for the nanomaterial-based administration of antivascular therapy combined
with other common tumor treatments, including immunotherapy, chemotherapy, phototherapy,
radiotherapy, and interventional therapy, are summarized. In particular, the administration of
intravascular therapy and other therapies with the use of versatile nanodrugs is also described. This
review provides a reference for the development of multifunctional nanotheranostic platforms for
effective antivascular therapy in combined anticancer treatments.

Keywords: antivascular therapy; nanomaterials; chemotherapy; immunotherapy; phototherapy

1. Introduction

Tumor neovascularization is essential for the growth of solid tumors [1]. Tumor growth
and metastasis require the constant creation of new blood vessels, which enables cells to
obtain nutrients and oxygen [2]. The following can lead to the formation of a hypoxic
and acidic microenvironment with high interstitial fluid pressure (IFP) in tumors: the
leakage, curvature, and dilation of blood vessels in neoplasms; morphological abnormalities
of endothelial cells (ECs); loose pericellular junctions; and the absence of pericellular
cells [3–5].

In recent years, according to the abnormal characteristics of tumor blood vessels,
three types of antivascular strategies have been proposed: (1) The anti-angiogenic strategy
uses angiogenesis inhibitors to inhibit the growth of vascular smooth muscle cells, block
the formation of vascular networks, and inhibit EC proliferation and migration from
achieving anti-angiogenic effects, thereby effectively controlling tumor growth [4,6,7].
(2) The vascular destruction strategy aims to destroy the ECs of existing tumor blood vessels
through vascular disrupting agents (VDAs), resulting in the obstruction of blood flow, thus
blocking tumor cell metastasis [8]. The most commonly used VDA in clinical practice is
combretastatin A4 (CA4). CA4 is a tubulin-binding agent that destroys the vasculature
by selectively targeting and destroying established tumor vascular ECs, causing tumor
vascular blockage and leading to the ischemic necrosis of tumor tissue [5,9,10]. (3) Vascular
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blockade therapy aims to restrict blood flow in vessels by inducing the formation of blood
clots or gel phase transitions within blood vessels, thereby blocking the supply of blood,
nutrients, and oxygen to the tumor [11]. Three different blocking pathways can be activated:
the thrombin activation pathway, the fibrin activation pathway, and the platelet activation
pathway [12]. However, single-agent antivascular therapy does not have a prominent
antitumor effect. Cancer cells can develop resistance to anti-angiogenic drugs via different
mechanisms, such as the acquisition of pro-migration phenotypes or the upregulation of
the levels of other angiogenic molecules. For example, treatment with bevacizumab, which
targets vascular endothelial growth factor (VEGF), may lead to a promigratory phenotype
in drug-resistant glioblastoma [13–15]. Vascular destruction therapy can induce hypoxia
and thus lead to tumor recurrence; it is only effective in inducing the destruction of the
central tumor tissue and ignores the peripheral blood vessels of the tumor [9]. Vascular
blockade strategies are often limited by the recurrence of residual tumor cells. For this
reason, strategies that combine vascular-targeted therapy with existing therapies may
achieve synergistic effects. Much of the recent research on vascular therapy has focused
on novel biomaterials, such as nanomaterials. Nano-assisted tumor vascular therapy may
improve the overall quality of vascular care, and the use of nano-targeted drug delivery
may offer improved treatment strategies for tumor vasculature.

Some nanomaterials are specially designed to aggregate at tumor sites to improve can-
cer diagnosis and treatment, as well as to detect tumor response to treatment and improve
prognosis [16,17]. Many new nanocomposites have been developed as drug delivery carri-
ers capable of improving drug delivery efficiency and reducing systemic toxicity [18,19].
Regarding nanoparticles, it has been shown that the conjugation of targeted ligands can
achieve precise drug delivery and overcome biological barriers to enable the drug to reach
the tumor core [20,21]. In addition, some nanomaterials themselves can also achieve the
purpose of targeting tumor blood vessels, thus resolving the problems encountered in
vascular therapy [22–25]. Given the ease with which triblock copolymers can be formed,
Darge et al. designed a triblock copolymer hydrogel (PDLLA-PEG-PDLLA) based on the
sol–gel transformation, and this hydrogel can achieve a continuous high concentration
of drug at the tumor site, reducing the toxicity associated with chemotherapeutic drugs,
such as DOX, and the systemic administration of VDAs to human organs (Figure 1A) [26].
Some nanomaterials are responsive to pH, redox potential, GSH level, and light and thus
can be used for the controlled release of cargo after exposure to different stimuli [27].
Taleb harnessed the high loading capacity and excellent stability of mesoporous silicon
nanoparticles (MSNs) as a carrier for DA (a chemical messenger that inhibits angiogenesis)
delivery, as MSNs can be easily modified to have pH-sensitive bonds for targeted delivery
to the acidic microenvironment of tumors (Figure 1B) [28]. The nanodrug delivery system
designed by Zhang’s team (PRL-PD/FRU-cRGD) can be modified to specific sizes (large,
~120 nm; small, ~15 nm) and easily reach the core of the tumor to exert strengthened
antitumor effects (Figure 1C) [29]. Nie Guangjun’s team prepared a nanorobot that can
be programmed to specifically deliver thrombin to the corresponding part of the tumor,
causing tumor blood vessel embolism (Figure 1D) [30]. In addition, nanoparticles can also
bind to platelet membranes as a delivery platform for antitumor drugs and therapeutics.
Nie used platelet membrane-coated MSNs combined with VDAs, and the nanoparticles
damaged blood vessels and tended to aggregate at the damaged vascular site, resulting
in amplified vascular damage [31]. The interactions of antivascular therapy, nanother-
apy, and conventional therapies have led to the birth of multimodal synergistic therapies.
Alamzadeh proposed a co-loaded gold nanoparticle–cisplatin hydrogel complex for a
combination of thermochemotherapy and radiotherapy [32]. Xu designed a multimodal
combination therapy based on ultrasound-responsive nanoparticles [33]. Mirrahimi de-
signed a nanotherapy platform that can be used for CT/MR dual imaging and realized DOX
release and strong thermochemotherapeutic effects [34]. You developed a nanoplatform
modified with Pt (platinum), which acts as a catalyst to continuously break down H2O2
to O2 and relieve hypoxic photodynamic therapy [35]. Lu designed a mesoporous Fe3O4
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nanocomposite that improves interventional embolism when used in combination with
thermal ablation and multimodal imaging [36].
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Figure 1. Antivascular therapy combined with nanoparticles to enhance chemotherapeutic drug
delivery. (A) Schematic representation of hydrogel-based dual drug delivery for local treatment.
Adapted with permission [26]. Copyright © 2023 Elsevier Ltd. (B) MSNs synthesized, functionalized,
and loaded with NH2, PBA, and DA, respectively. These MSNs have a pH-responsive bond between
PBA and DA that enables them to release the drug in acidic pH upon arrival in the tumor microen-
vironment. Adapted with permission [28]. Copyright © 2023 WILEY-VCH Ltd. (C) Antitumor
mechanism of PRL-PD/FRU-cRGD. Adapted with permission [29]. Copyright © 2022 American
Chemical Society. (D) Design and characterization of a thrombin-functionalized DNA nanorobot.
Adapted with permission [30]. Copyright © 2018 Nature Publishing Group.

Existing oncology treatments, such as chemotherapy, immunotherapy, and photother-
apy, are limited. The increase in the IFP limits the delivery of antitumor drugs and their
penetration into tumor tissue, and hypoxia reduces the sensitivity of tumor cells to drugs.
In addition, the acidic microenvironment of tumors can also damage the cytotoxic function
of immune cells [3]. Given the limitations of monotherapy, recent studies have focused on
combination therapy to enhance anticancer effects. In this review, to provide a reference
for the rational design of versatile nanomedicine-based therapies involving antivascular
therapy, we systematically summarize the results of the application of different nanoplat-
forms in combination antivascular therapy regimens and various cancer treatments in
recent years.

2. Immunotherapy

In recent years, immunotherapy has played a key role in tumor treatment, but its devel-
opment is still hindered by many factors. Studies have shown that antivascular therapy can
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improve the immunosuppressive microenvironment and increase infiltration by immune
effector cells. Table 1 describes existing combination antivascular therapy and immunother-
apy strategies and the mechanisms of action of antivascular drugs; these strategies can
achieve selective drug delivery and drug accumulation in the tumor microenvironment
when combined with nanotherapy.

Table 1. Combined therapeutic paradigms of antivascular therapy and immunotherapy.

Antivascular Therapy Immunotherapy Disease Outcomes Ref.

Axitinib (VEGFR-TKI) IMT (IDO inhibitor) Melanoma
Increased proportion of tumor- infiltrating

T lymphocytes (CTLs and Th cells);
inhibition of Tregs and TAMs

[37]

Bevacizumab (targets
VEGF-A/VEGFR-2) aPD-1 mAb Colon adenocarcinoma

Increased infiltration by CD8+ T cells;
upregulated IFN-γ expression;

increased amount of aPD-1 mAb delivered
to the tumor

[38]

CA4P (ECs) aPD-1 mAb Breast cancer
Increases the efficacy of aPD-1 mAb;

increase infiltration by CD4+ and CD8+ T
cells

[39]

Tetrathiomolybdate (Inhibits
NF-KB signaling.) Breast cancer Enhances immune activation [40]

Endostar (recombinant human
endostatin) NSCLC Increased IFN-γ and IL-17 expression;

decreased TGF-β1 expression [41]

FSEC (anti-angiogenic
peptide)

DPPA (immune
checkpoint block peptides) Breast cancer Increased infiltration by CD8+ T cells [42]

Gold nanoparticles (inhibit
endothelial Smad2/3

signaling)

Gastric carcinoma and
breast adenocarcinoma

Increased infiltration by CD3+ and CD8+

T cells [43]

pshVEGF-A(VEGF-A) PshPD-L1 Melanoma Remission of ICB-induced adaptive
resistance [44]

Sorafenib (multi-target kinase
inhibitors) PD-L1 antibody HCC Increases the efficacy of anti-PD-L1

antibodies [45]

CD8+ T cells play a crucial role in antitumor immunological therapy because of
their direct antitumor cytotoxic function. Programmed death 1 receptor (PD-1) is an
immunosuppressive receptor located on T cells that can bind to programmed cell death-
Ligand 1 (PD-L1) located on stromal cells, inhibiting the activation of T cells and making
them incapable of attacking. PD-L1 is highly expressed in tumor-infiltrating lymphocytes
and inhibits the immune-killing function of CD8+ T cells. Immune checkpoint inhibitors
(ICIs) are effective as tumor treatment because they block the binding of PD-L1/PD-1. ICIs
directly block the effect of PD-1 on CD8+ T cells, decreasing their proliferation [46–48].
However, there is a risk of toxic side effects with ICIs; for instance, it is easy to cause
immune-mediated side effects, causing endocrine system diseases [49].

VEGF overexpression in tumors inhibits the migration of cytotoxic T lymphocytes
(CTLs) and antigen presentation, thereby hindering T-cell activation and promoting the
recruitment and activation of immunosuppressive cells [50]. In 2020, the FDA approved
ICIs in combination with anti-angiogenic drugs for the treatment of patients with inoperable
HCC or patients with HCC ineligible for transplantation [51]. Some studies have shown
that antivascular strategies combined with immune checkpoint blockade can effectively
improve the efficacy of immunotherapy [45,52]. VEGF can prevent T cells from infiltrating
tumors by promoting endothelial nonreactivity; thus, it inhibits the anticancer effect of
ICIs and leads to the apoptosis of CD8+ T cells. Bevacizumab significantly reduces VEGF
expression in tumors by inhibiting the binding of VEGF-A to VEGF receptor-2 (VEGFR-
2) [53], increasing infiltration by and the cytotoxic function of CD8+ T cells in tumors [54,55].
In addition, bevacizumab, in combination with ICI therapy, decreased the expression of PD-
L1, showing a long-lasting antitumor effect [55]. Feng’s team designed a tumor-targeting
gene complex nanoparticle that co-delivers pshVEGF-A and pshPD-L1. By downregulating
VEGF-A and PD-L1 to block immune checkpoints, pshVEGF-A, as an anti-angiogenic
drug, improves the tumor immune microenvironment [44]. The selective blockade of
VEGFR-2 using apatinib inhibits the VEGFA-mediated proliferation and migration of ECs
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and enhances the antitumor effects of anti-PD-1 mAbs [56,57]. Cho established an RGD-
modified lipid nanoparticle to deliver small interfering RNA (siRNA) to tumor endothelial
cells (TECs) to knock down the expression of VEGFR-2. Combined with aPD-1 mAb
reduces the number of tumor-infiltrating lymphocytes (TILs) and enhances infiltration by
CD8+ T cells. This combined strategy normalizes the tumor vasculature, which successfully
suppresses tumor growth [38]. Response rates in advanced HCC are limited due to a
deficient number of CD8+ T cells due to the tumor burden. Bao designed CA4-NPs that
bind to the VEGF/VEGFR-2 inhibitor DC101. CA4-NPs reduce tumor burden by selectively
destroying established blood vessels. DC101 can decrease the high expression of VEGF
after VDA therapy; temporarily normalize tumor blood vessels; increase the number of
CD8+ T cells within the tumor; and significantly increase the levels of IFN-γ, TNF-α, and
IL-2 after treatment. Having a number of CD8+ T cells that is proportional to the tumor
burden enhances the efficacy of anti-PD-1 therapy (Figure 2A) [41].
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Figure 2. Antivascular therapy combined with nanoparticles can relieve immunosuppressive microen-
vironment. (A) MSNs synthesized, functionalized, and loaded with NH2, PBA, and DA, respectively.
MSNs have a pH-responsive bond between PBA and DA that enables them to release in acidic pH
upon arriving in the tumor microenvironment. Adapted with permission [41]. Copyright © The
authors. (B) The therapeutic hydrogel (CM@Gel) combines with a vascular disrupting agent, CA4P,
to alleviate tumor hypoxia after selective blockade of tumor nutrient sources [39]. Copyright © 2023
Elsevier Ltd. All rights reserved.

Increasing evidence shows that the tumor immune microenvironment (TIME) largely
determines the treatment outcome of cancer immunotherapy and plays a nonnegligible
role in tumor immune monitoring and immune avoidance [58–60]. Antivascular therapy
combined with nanostrategies can facilitate immunotherapy by improving the abnormal
microenvironment of tumors [61–65]. Zhou designed a nanoplatform using axitinib (a
tyrosine kinase inhibitor) that inhibited cell signaling to inhibit tumor cell growth and
proliferation, promote tumor vascular normalization, and overcome immunosuppression,
enhancing the transport of immune cells into the tumor parenchyma and improving the
effect of immunotherapy [37]. Huang established AuNPP-FA, AuNPs that can inhibit
endothelial Smad2/3 signaling, increase pericyte coverage, and upregulate VE-cadherin
on ECs by upregulating SEMA3A and downregulating VEGF-A expression to strengthen
tight junctions and normalize tumor vasculature. Increased infiltration by CD3+ and CD8+

T cells in tumors improves immunotherapy [43]. Taleb designed a bifunctional peptide-
assembled nanoparticle composed of an anti-angiogenic peptide (FSEC) and an immune
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checkpoint-blocking peptide (DPPA). FSEC induced significant anti-angiogenic effects in
a mouse model of breast cancer, debulking blood vessels to allow adequate infiltration
by immune cells to be achieved and restore immunosuppression in the TME [42]. Luo’s
team designed a therapeutic hydrogel simultaneously loaded with MnO2 nanosheets and
the vascular-destroying agent combretastatin-A4 phosphate (CA4P). On the one hand,
CA4P blocks the nutrient oxygen supply of the tumor by destroying the ECs of the tumor
vasculature and alleviates the immunosuppression caused by hypoxia. On the other
hand, MnO2 nanosheets react with hydrogen peroxide (H2O2) within tumors to produce
oxygen to alleviate the tumor hypoxia caused by CA4P. This highly effective combined
method can also activate host immune responses by recruiting immature dendritic cells
into tumors, increase intratumor infiltration by CD4+ and CD8+ T cells, and significantly
enhance the efficacy of a-PD1 therapy (Figure 2B) [39]. Zhou synthesized a polymeric
copper chelator that inhibits angiogenesis by inducing copper deficiency. It was designed
as a nanoparticle that can achieve controlled release and targeted transport. This combined
approach enhances immune activation in breast cancer [40]. Current research focuses
on anti-angiogenic strategies that limit antigen presentation and VEGF-inhibited T-cell
activation by inhibiting VEGF expression.

Vascular therapy combined with immunotherapy can inhibit the formation of new
blood vessels or destroy existing blood vessels to block the nutrient and oxygen supply
of tumors, reverse the inhibition of T cells induced by the immunosuppressive microenvi-
ronment, and increase infiltration by lymphocytes. In addition, some antivascular drugs
combined with immunotherapy can decrease the expression of PD-L1, enhance sensitivity
to ICIs, and exhibit increased antitumor effects.

3. Chemotherapy

Chemotherapy is one of the main treatments for cancer. Chemotherapeutic drugs
can eliminate cancer cells and inhibit tumor growth, and cancer patient survival time
can be prolonged with chemotherapy in the early stage, but as the disease progresses,
chemotherapy resistance commonly develops, increasing the likelihood of recurrence and
metastasis [66,67]. Studies have shown that antivascular therapy can solve the challenges
of blood perfusion and high IFP in tumors, prolong the half-life of chemotherapy, and
improve the efficiency of drug delivery. Table 2 describes existing antivascular therapies
combined with chemotherapy strategies and the mechanisms of action of the included
antivascular drugs.

Table 2. Combined therapeutic paradigms of antivascular therapy and chemotherapy.

Antivascular Therapy Chemotherapy Disease Outcomes Ref.

CA-4 (targets ECs) Dox Melanoma/breast cancer Assists chemotherapeutic drugs in
eradicating the tumor cells [68]

CA-4 (targets ECs) MMP9-DOX Breast cancer Induces hypoxia to amplify MMP9
signaling in tumors [69]

CA-4 (targets ECs) CDDP Breast cancer
Increases the retention time to improve

the accumulation of drugs within
the tumor

[70]

cRGD-folate-heparin
nanoparticles (targets

endothelium-dependent
vessels/antivascular mimicry)

CDDP Ovarian cancer Promotes CDDP to effectively inhibit the
development and metastasis of cancer [71]

Curcumin (VEGF)
combretastatin A-4 phosphate

(VEGFR2)
HCC Inhibits tumor metastasis [72]

DA (targets ANG1/VEGF/KL2) DOX Breast cancer Increases blood flow perfusion and
reduces IFP [28]

DMXAA (targets ECs) DOX Cervical cancer Enhances tumor suppression [26]

Erlotinib (EGFR TKI) Topotecan Breast cancer Prolongs TVN and increases drug
delivery efficiency [73]
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Table 2. Cont.

Antivascular Therapy Chemotherapy Disease Outcomes Ref.

Fruquintinib (targets VEGFR-1,
-2, and -3) DOX Breast cancer Achieves deep delivery of drugs into

tumor tissue [29]

LMWH (targets bFGF/VEGF) GA Breast cancer Increases blood flow perfusion and
reduces IFP [74]

LMWH (targets bFGF/VEGF) Paclitaxel/Gemcitabine HCC Induces simultaneous drug delivery and
normalization of tumor vessels [75]

Silybin (targets the NF-κB
signaling pathway) Paclitaxel A549 lung cancer Chemosensitization [76]

Thrombin (tumor vessel) DOX HCC Blocks the blood supply to tumors and
inhibits cancer cell proliferation [77]

The IFP in tumors is higher than that in normal tissues, which compresses blood
vessels and inhibits the delivery of chemotherapeutic drugs. Therefore, reducing the IFP by
normalizing the vasculature is key to enhancing the efficacy of chemotherapy [5]. Some
current studies are using nanocarriers to achieve the combined application of antivascular
drugs and chemotherapeutic drugs [72,78–84]. It has been reported that moderate-dose
anti-angiogenic drugs can kill small nonfunctional blood vessels to normalize the tumor
vasculature, resulting in increased the accumulation of and penetration by the chemother-
apeutic drug and a significant improvement in the oxygen concentration within solid
tumors [85]. Zhang designed a pH-triggered size-switchable nanodrug delivery system
loaded with fruquintinib, which inhibits angiogenesis by binding VEGFR-1, -2, and -3
and reducing the IFP, and the system overcomes the problem of the poor permeability of
large nanoparticles in tumor tissue and achieves deep delivery of DOX into breast cancer
tissue [29]. Taleb constructed mesoporous silicon nanoparticles (MSNs) and utilized a pH-
sensitive bond between DA and phenylboronic acid (PBA) to encapsulate DA in synthetic
MSNs to make release in the tumor’s acidic microenvironment possible. Alternatively,
increasing blood flow perfusion, reducing IFP, is an effective strategy that can improve
the efficacy of chemotherapy by increasing the delivery of and penetration by chemothera-
peutic drugs [28]. Low-molecular-weight heparin (LMWH) exerts an antivascular effect
by binding to bFGF and VEGF. Tian developed an amphiphilic nanomaterial, the LyP-1-
LMWH-Qu (PLQ) conjugate. LyP-1 can target tumors, and PLQ nanoparticles can inhibit
the expression of P glycoprotein (P-gp) in tumor cells, reverse drug resistance, and inhibit
tumor cell proliferation and angiogenesis. Combination chemotherapy and antivascular
therapy reduce the tumor microvascular density, increase pericyclic-cell cover, and reduce
the IFP, thereby promoting penetration by chemotherapeutic drugs into breast cancer tissue
(Figure 3A) [74]. Du used nanomedicine lipid derivative conjugates to bind to LMWH to
improve the delivery of chemotherapeutic drugs such as gemcitabine and paclitaxel [75].

A recurring problem with chemotherapy is that tumor cells are prone to developing
resistance to chemotherapeutic drugs [86,87]. Multidrug resistance describes a situation in
which cancer cells have developed resistance to more than one anticancer drug, despite the
fact that these drugs have very different molecular structures and mechanisms (MDR) [88].
In order to treat tumors where multiple drugs have failed, some nanocarriers have been
created [89–91]. The combination of chemotherapy with antivascular strategies has been
successful in increasing the sensitivity of tumor cells to chemotherapy and effectively
inhibits tumor metastasis and recurrence [92,93]. Huo used the dextran deoxycholic acid
(Dex-DOCA) amphiphilic polymer as a delivery system to encapsulate paclitaxel (PTX)
and silybin (SB), forming (PTX + SB) NPs with synergistic antitumor effects. SB can exhibit
anti-angiogenic activity and increase the sensitivity of tumor cells to chemotherapeutic
drugs by modulating the ERK, Akt, and STAT3 pathways. In addition, SB can increase PTX
toxic effects in solid tumors, thereby significantly increasing drug availability in deep tumor
cells. Dex-DOCA is able to deliver PTX and SB in a predetermined synergistic ratio, thereby
prolonging the half-life of the drug in blood circulation and enhancing its accumulation
inside the tumor [76]. Tumors metastasize and migrate through endothelial-dependent
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blood vessels (EDVs) that have formed in solid tumors and vascular mimicry (VM) areas
that have formed because of the proliferation of highly aggressive tumor cells. Luo’s team
designed a self-assembling nanoparticle (VE-DDP-Pro) that releases VE-DDP and employed
both integrin αvβ3 and integrin α5β1 to modulate the AKT/mTOR/MMP-2/laminin and
AKT/mTOR/EMT signaling pathways; furthermore, the knockdown of MMP-2 inhibited
VEGF release, simultaneously having effects against both VM areas and EDVs, thus greatly
improving the efficacy of cisplatin in ovarian cancer [71]. Chen’s team designed a polylactic
acid–glycolic acid (PLGA) nanocarrier loaded with hypoxia-activated prodrug (HAP) and
Vadimezan. HAP can improve Vadimezan’s vascular destruction potency, and this combi-
nation strategy enhances the efficacy of chemotherapy [94]. Restoring the permeability and
perfusion capacity of the tumor vasculature can increase the ability of chemotherapeutic
drugs to reach the deep sites of tumors.
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Figure 3. Antivascular therapy combined with nanoparticles enhances chemotherapeutic drug de-
livery. (A) NPs@DA can affect endothelial cells and pericytes to normalize the structure of vessels
and enhance the delivery of chemotherapeutic drugs to tumor cells. Treatment with the pH-sensitive
NPs@DA system enhances the effect of therapy in mouse tumor models. Adapted with permis-
sion [74]. Copyright © 2018 Elsevier Ltd. (B) Schematic illustration of efficient coencapsulation of PTX
and SB into Dex-DOCA amphiphilic polymers and the use of PTX + SB NPs as a robust nanoplatform,
which achieves prolonged circulation, eradication of stromal components, and normalization of
tumor vessels for enhanced drug accumulation and efficacy in solid tumors. Adapted with permis-
sion [73]. Copyright © 2020 American Chemical Society. (C) Schematic illustration of the preparation
of DRN and the shell crosslinking structure, including a description of programmable drug release
characteristics in vivo. Adapted with permission [70]. Copyright © Royal Society of Chemistry.
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Jain proposed a new concept, tumor vascular normalization (TVN), which can improve
chemotherapy outcomes by reshaping the tumor microenvironment and enhancing drug
delivery [95]. However, a serious challenge currently facing chemotherapy is the transient
effect of TVN, which presents challenges related to the administration of chemotherapeutic
drugs in the TVN window. As a solution, we need to come up with new ways to keep
the TVN effect going for a longer period of time. GBM neovascularization is primarily
mediated by VEGF signaling, but alternative mechanisms, such as anaerobic glycolysis, can
be quickly activated as a bypass. Li developed an anionic liposome nanosystem containing
the chemotherapeutic drug topotecan (TPT), the sensitizer indocyanine green (ICG), and
the antivascular drug erlotinib (ERL). ERL is a tyrosine kinase inhibitor that has been
found to be capable of normalizing the tumor vasculature by downregulating VEGF while
inhibiting the epidermal growth factor receptor (EGFR). However, persistent anti-VEGF
therapy leads to hypoxia-inducible factor-1α (HIF-1α) upregulation, which eventually
leads to the development of tumor hypoxia and drug resistance. Combination with the
chemotherapeutic drug TPT can effectively prevent the production of HIF-1a and ultimately
prolong TVN. ICG-mediated sonodynamic therapy (SDT) can reduce the expression of
VEGF. This combination strategy can prolong TVN so that chemotherapeutic drugs can
have longer-lasting effects on tumors (Figure 3B) [73]. Nie’s team synthesized a chitosan-
based polymer nanoparticle loaded with both DOX and thrombin. The combination of
chemotherapy and vaso-blocking therapy can produce the synergistic effects of blocking
the blood supply to tumors and inhibiting cancer cell proliferation [77].

VDAs cause the degradation of the basement membrane and ultimately induce the
massive central necrosis of tumor tissue. Chemotherapeutic drugs are responsible for
killing the tumor cells that proliferate around the lesion. The combination of a VDA
and chemotherapeutic drugs has greater antitumor activity than either as a single agent,
leading to extensive and broad tumor necrosis [96]. Traditional chemotherapeutic drugs
easily trigger angiogenesis in the later stages of treatment, resulting in tumor metastasis
recurrence. Nie’s team designed MSNs coated with platelet membranes that bind the
VDA to the anti-angiogenic agent. Platelet membranes can target damaged sites of tumor
blood vessels, leading to effective vascular destruction [31]. Liu developed a dual-carrier
drug-targeting lamellar nanoparticle that simultaneously delivers CA4 and Dox, which
target two different cell populations within the tumor; the system significantly enhanced
the drug-induced killing of tumor cells in mouse melanoma models [68]. Jiang used
the sequential delivery of CA4-NPs and matrix metalloproteinase 9 (MMP9) to enhance
tumor therapy. CA4 can enhance the expression of MMP9 in tumor tissue by destroying
immature tumor blood vessels and causing a hypoxic microenvironment that significantly
promotes the release of DOX prodrugs. The combination of CA4-NPs with MMP9-DOX-
NPs showed significant antitumor efficacy in situ in 4T1 tumor-bearing mouse models [69].
Ding developed a pH-lowering dual-reactive drug release system for the programmable
release of CA4 and CDDP nanocarriers, which enables the release of CA4 at perivessel sites
in tumor tissues to destroy blood vessels to be achieved; this cargo is absorbed by cancer
cells inside the tumor tissue, and the reducing conditions surrounding cells trigger the
release of CDDP and promote the apoptosis of cancer cells (Figure 3C) [70]. Darge used
a VDA (DMXAA) and DOX to synergistically improve chemotherapy and hydrogels to
sequentially release drugs locally, effectively inhibiting tumor growth [26].

Vascular therapy combined with chemotherapy can effectively inhibit blood flow per-
fusion and decrease the high IFP, which promotes deep infiltration by the chemotherapeutic
drugs into tumor tissues, targets tumor blood vessels to induce vessel normalization, pro-
longs TVN, and increases the delivery efficiency of chemotherapeutic drugs. Antivascular
drugs enhance chemotherapy sensitivity by inhibiting hematopoietic pathways. VDAs, in
combination with chemotherapeutic drugs, can target different cell populations within the
tumor, leading to widespread tumor necrosis.
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4. Phototherapy

Phototherapy for tumors mainly includes photodynamic therapy (PDT) and photother-
mal therapy (PTT). Studies have shown that the combination with antivascular therapy can
overcome the problem of insufficient reactive oxygen species (ROS) production with PDT
therapy, and combination PTT therapy can increase the near-infrared absorption of tumors
so that PTT therapy can kill tumor cells with less laser energy. Numerous studies have
investigated the potential of combining antivascular therapy and phototherapy [97–105].
Table 3 describes existing strategies combining antivascular therapy and phototherapy and
the mechanisms of action of the included antivascular therapies.

Table 3. Combined therapeutic paradigms of antivascular therapy and phototherapy.

Antivascular Therapy Phototherapy Disease Outcomes Ref.

Bevacizumab (targets
VEGF-A/VEGFR-2) PDT Colorectal cancer Inhibits tumor growth and recurrence [106]

Candesartan (Ang II receptor
blocker) PDT HCC Reduces the secretion of VEGF and restores a

normal oxygen microenvironment [107]

CA4 (targets ECs) PDT Breast cancer Disrupts the vasculature [108]

CA4 (targets ECs) PTT Breast cancer Restricts the nutrient supply of tumor cells to
achieve the “attack + guard” strategy [109]

Cetuximab (targets EGFR) PTT Breast cancer Decreases the requirement for laser energy and
reduces damage to normal tissue [110]

Celecoxib (targets cyclooxygenase-2) PTT Colorectal cancer Reduces the risk of tumor metastasis after
PTT treatment [111]

cRGD-CSOSA (targets
neovascular ECs) PDT Glioblastoma Promotes the production of ROS [112]

DMXAA (targets ECs) PDT Breast cancer
Overcomes the challenges related to hypoxia of

traditional type II PDT and inhibits tumor
metastasis

[113]

DMXAA (targets ECs) PTT/PDT Cervical cancer Achieves complete tumor ablation [114]

DMXAA (targets ECs) PTT Colon cancer

DMXAA promotes aggregation of gold
nanoparticles with NIR absorption to increase

absorption and enhance the photothermal
ablation of PTT

[115]

HBA (targets VEGF) PTT/PDT Colorectal cancer Reduces the secretion of VEGF [116]
Infrared laser irradiation (ECs) PTT Cervical cancer Induces avascular necrosis of tumors [117]

Sorafenib (VEGFR/PDGFR TKI) PTT/PDT OSCC Increases photothermal conversion efficiency
and ROS production [118]

TNP-470 (VEGF) PDT Prostate carcinoma Effectively reduces tumor growth
and metastasis [97]

PDT uses a combination of photosensitizers, light, and oxygen molecules to treat
cancer and is widely used in the treatment of various diseases due to its noninvasive
characteristics [119]. The highly toxic ROS produced by the energy transfer between
photosensitizers and molecular oxygen lead to cell death and tumor elimination. The
lethality of singlet oxygen in tumors is insufficient, resulting in a high recurrence rate after
PDT treatment [120]. In addition, tumor hypoxia limits the production of ROS; thus, the
therapeutic effect of PDT is limited. Tumor cells that survive PDT produce angiogenic
factors and excess glutathione (GSH), deplete the ROS produced during PDT treatment,
and impair the killing effect of PDT. These additional factors increase the likelihood of
tumor recurrence and metastasis [119]. Numerous studies have investigated the potential
of combining anti-angiogenic therapy and photodynamic therapy. When bevacizumab was
administered after PDT to inhibit neovascularization and reduce the density of microvessels
in the tumor, it improved the effectiveness of PDT and significantly inhibited tumor growth
and recurrence [106]. Min designed multifunctional biomimetic MOF nanoparticles as
carriers for PDT reagents and apatinib. In tumor tissue, a layer of MnO2 deposited on the
MOF nanoparticles can react with glutathione to consume excess GSH. When the MnO2
shell is degraded, apatinib is released to neutralize PDT-induced vascular reconstruction,
and this combined strategy improves the efficacy of PDT [107]. Eunkyeong Jung designed
a fluorescent borate polysaccharide (HA-FBM) nanoparticle that can be heated under laser
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irradiation to release HBA to inhibit the expression of VEGF, thereby improving the oxygen
restriction induced by PDT (Figure 4A) [116]. Type II PDT relies on singlet oxygen (1O2)
produced by the photosensitizer upon irradiation. Given the hypoxia-related challenges of
tumor treatment, Chen et al. focused on type I PDT based on superoxide radicals (O2

−)
and designed a bifunctional organic nanoconjugate (BDPVDA) as an organic superoxide
radical (O2

−) nanocarrier; this carrier releases the VDA to induce blood vessel rupture to
cut off the oxygen supply induced by type II PDT and block tumor metastasis pathways.
The contraindications of PDT and VDA treatment were thus resolved [114]. Liu designed
a nanodrug (CeCA) consisting of CA4 and the photosensitizer chlorine e6 (Ce6). CA4
can enhance the vascular destruction induced by PDT, and Ce6 synergistically acts with
PDT under light to produce a large amount of 1O2. CeCA increases the lethality of PDT
against tumor cells and blocks EC migration and angiogenesis [108]. Liang designed acidic
TME-responsive unsupported carbon nanoconjugates (DAA NPs) by combining DMXAA
and a photosensitizer, which achieved complete tumor ablation [114].
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(A) Schematic diagram of HA-FBM nanoparticles as phototherapeutic agents. Adapted with per-
mission [116]. Copyright © 2021 American Chemical Society. (B) Schematic diagram of the peTVD
strategy. Adapted with permission [115]. Copyright © 2020 The authors. (C) Schematic illustra-
tion of an injectable NC hydrogel for the codelivery of CA4 and PB in synergistic photothermal
and vascular-disrupting therapy. Adapted with permission [109]. Copyright © 2019 American
Chemical Society.
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PTT converts light into thermal energy to kill tumor cells and is widely used in tu-
mors because of its noninvasive nature and high efficacy [121]. The inefficient conversion
of photosensitizer light into heat and poor photothermal stability make standalone PTT
ineffective [122]. Zou added the anti-angiogenic drug sorafenib to T8IC, an organic semi-
conductor, using nanoprecipitation to form TS nanoparticles, which generated ROS with
high photothermal conversion efficiency [118]. Li designed CuS-Ab NPs loaded with
cetuximab to target EGFR to inhibit angiogenesis and tumor growth and to promote the
accumulation of CuS NPs in tumors; these NPs reduce the laser energy required for PTT
therapy and reduce damage to normal tissue [110]. Cyclic peptide c (RGDfk) can be ad-
ministered in combination with integrin αvβ3 to inhibit angiogenesis, and Liu constructed
cRGD-modified glycolipid-like micelles (cRGD-CSOSA) to overcome the insufficient in-
stability of ICG as a photosensitizer for phototherapy. The binding of cRGD-CSOSA/ICG
nanoparticles promotes the production of ROS and improves the efficacy of phototherapy
in GBM [112]. Hong bound fibrinogen to AuNPs to generate fAuNPs and used DMXAA
to trigger the coagulation cascade in tumor blood vessels to induce the aggregation of
fibrinogen. The fAuNPs could thus assemble into insoluble clots in the tumor blood vessels,
and given that fAuNPs exhibit absorption peaks in the NIR spectrum, the strategy enhances
the photothermal ablation induced by PTT. This combination therapy also reduces the
side effects caused by the long-term administration of DMXAA, effectively destroying
tumor blood vessels (Figure 4B) [115]. Liang co-delivered CA4 and Prussian blue (PB)
in hydrogel for combination anticancer therapy and PTT to induce vascular rupture. PB
is activated using near-infrared radiation to strongly attack most cancer cells, and CA4
limits the energy supply; this strategy overcomes inadequate tumor growth suppression
due to limited laser penetration depth and provides proof of concept for the “attack +
guard” strategy (Figure 4C) [109]. Zhang designed an MCNCD nanoparticle carrying
a nonsteroidal anti-inflammatory drug (celecoxib) to inhibit cyclooxygenase-2 (COX-2)
from disrupting the PG2I/TXA2 balance, ultimately inducing intravascular thrombosis
and reducing the risk of tumor metastasis after PTT treatment. Furthermore, MCNs have
high photothermal conversion efficiency, which enhances the PTT effect [111]. Gao’s team
developed a nanocarrier that uses near-infrared laser activation. After the near-infrared
laser irradiation, the local temperature increase of the nanoparticles in the targeted tumor
blood vessels causes the instant rupture of tumor vascular ECs, resulting in the destruction
of neovascularization. Photothermal therapy and antivascular therapy are fused to induce
the avascular necrosis of tumors in this study [117].

Vascular therapy combined with phototherapy can elicit anti-angiogenic effects to
reverse the increase in VEGF seen after phototherapy, target blood vessels, and alleviate the
hypoxic microenvironment of tumors to overcome the insufficient ROS production of PDT
therapy. Some vascular targeting strategies can also increase the near-infrared absorption
of tumors, enabling PTT to kill tumor cells with less laser energy.

5. Radiation Therapy

The role and status of radiation therapy in tumor treatment are becoming increasingly
prominent, and radiation therapy has become one of the main therapeutic strategies for
treating malignant tumors. Tumor hypoxia and high IFP in the microenvironment prevent
drugs from easily reaching the tumor, contributing to radiological resistance [123,124].
However, increasing the radiation dose and using radiosensitizers to enhance the effect
of radiotherapy can increase toxicity in vivo and damage healthy tissues [125]. Several
studies have investigated the potential of combining antivascular therapy and radiation
therapy [126–129]. Yoon et al. conducted a clinical trial in which sorafenib was combined
with radiation therapy to improve the overall survival of patients with liver cancer [130].
Zheng designed a heat-sensitive hydrogel (SOR-LUF-SeNPs) that can achieve the local and
sustained release of sorafenib within tumors, and the combination of this hydrogel with
chemoradiotherapy increased the apoptosis of HepG2 cells in the long-term treatment of
HCC [131]. Wang and his team designed Au@SA-QBA, which produces 8HQ in response to
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H2O2; reduces the expression of VEGF, bFGF, and Ang-2; increases pericyclic-cell coverage
and blood flow; normalizes tumor blood vessels; and significantly inhibits tumor growth in
combination with radiotherapy [125]. Wang designed a hydrogel loaded with endothelial
suppression (ES) that inhibits neovascularization by modulating receptors of angiogenesis
factors on the cell membrane, alleviating tumor hypoxia, increasing perfusion to improve
drug delivery efficiency, and increasing radiotherapy sensitivity. The systemic toxicity
induced by ES can be overcome by administering the drug via injection, which showed
excellent antitumor effects in mouse models of Lewis lung carcinoma (LLC) [132]. Some
nanoparticles also have their own antivascular effects; for example, Zhang synthesized
an H1/pHGFK1 nanoparticle as an angiogenesis inhibitor for GBM therapy; HGFK1
inhibits angiogenesis by regulating the EGFR and bFGF signaling pathways, increasing
the resistance of glioblastoma cells to radiotherapy [133]. Tian synthesized a CaBP-PEG
nanoparticle that depletes TAMs while inhibiting angiogenesis, correcting the abnormal
tumor microenvironment to enhance the effect of cancer radioisotope therapy [134]. Minafra
developed a solid nanoparticle (Cur-SLN) containing curcumin that inhibits VEGF and
IL-8 and improves the efficacy of radiotherapy [135]. Gold nanoparticles have been shown
to inhibit angiogenesis by influencing the expression of growth factors and are effective
radiosensitizers [136–138]. Yang designed a new gold nanoparticle sensitizer that inhibits
HIF-1α-mediated angiogenesis and maximizes the tumor attenuation effects of radiation
therapy. In addition, gold nanoparticles enhance the vascular damage caused by VDAs,
reducing the oxygen supplied through blood vessels, which results in increased hypoxia
and enhances the effect of radiation therapy [139]. Wu designed iron oxide nanoparticles
coupled to azademethylcolchicine (CLIO-ICT), a powerful VDA that binds to tubulin and
causes a release of serotonin from platelets, disrupting the tumor vascular system. VDA
therapy combined with radiation therapy increases radiation sensitivity, and VDAs can
kill cancer cells in hypoxic areas with low radiosensitivity to prevent tumor recurrence
after radiation therapy [140]. Vascular therapy combined with radiation therapy can
improve radiotherapy drug delivery efficiency and radiosensitivity by increasing blood
flow perfusion and reducing IFP. In addition, VDAs combined with radiotherapy overcome
the insufficient lethality of radiotherapy in tumor sites with low radiation sensitivity.

6. Interventional Therapy

Transcatheter arterial embolization (TAE) is a technique that employs the transcatheter
vascular injection of embolic agents to occlude a vessel [141]. TAE, in combination with
chemotherapeutic drugs (transcatheter arterial chemoembolization (TACE)), is the gold
standard for the treatment of unresectable hepatocellular carcinoma (HCC) [11]. It is
challenging to achieve total artery embolism with TAE, as one of the most widely used
treatments for solid tumors, such as liver cancer; thus, postoperative recurrence and metas-
tasis are common. Some studies have demonstrated that antivascular therapy combined
with TAE can achieve the effective long-term embolization of tumor blood vessels, resulting
in the ischemic infarction of tumors [142,143]. Shi’s team prepared a TF-nanogel (made from
PIB-encapsulated tTF-pHLIPs) that diffuses into the peripheral hepatocellular carcinoma
(HCC) vasculature via a temperature-sensitive sol–gel phase transition and thus achieves
the embolization of blood vessels. Furthermore, tTF-pHLIPs trigger the coagulation cascade
to induce thrombosis formation, thus blocking additional arteries. TAE administered via
PIB nanogels and the tTF-pHLIP-mediated vascular blockade strategy have achieved long-
term vascular occlusion in rabbit models carrying VX2 tumors, effectively inhibiting the
tumor recurrence and metastasis seen with TAE alone [144]. Due to the persistent hypoxic
environment of tumors and the high expression of VEGF after TAE treatment, apatinib can
inhibit the growth of residual tumors after embolization, because it inhibits VEGFR-2, and
can thus achieve the embolization of blood vessels [145]. Zhou used PIB nanogel-loaded
apatinib combined with TAE to inhibit the growth of rabbit VX2 liver tumors, overcoming
the VEGF overexpression caused by TAE treatment and the issues related to hypoxia after
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surgery. The study proved that TAE combined with apatinib could be used to continuously
embolize blood vessels and improve the long-term efficacy of TAE [146,147].

In radiofrequency ablation (RFA), electrode needles are inserted directly into the tumor
or target tissue under the guidance of imaging equipment, generating local heat energy
to ultimately induce coagulation in the tumor [148]. However, insufficient RFA treatment
promotes tumor angiogenesis and accelerates disease progression [149]. Due to the high
vascular density of tumors, substantial heat loss is common, which reduces the efficacy
of radiofrequency ablation. A series of studies have proven that RFA, combined with
antivascular therapy, is superior to RFA alone [150,151]. Li and her team synthesized a
kind of RF-responsive divalent gold nanoclusters, which they administered in combination
with TAE and radiofrequency ablation (DV GC@PNA RFA). DV GC@PNA RFA effectively
reduced the VEGF overexpression caused by hypoxia after TAE and improved tumor cell
sensitivity to heat [152]. Yuan designed a nanocube (Fe2O3-PDA-Dox) that they combined
with CA4P to treat HCC. CA4P increased the permeability of tumor blood vessels and
enhanced the effects of TACE combined with photothermal ablation (pTACE) [153].

Vascular therapy combined with interventional therapy, such as TAE, can achieve the
long-term occlusion of tumor blood vessels and prevent tumor recurrence and metastasis.
Anti-angiogenic drugs can also inhibit VEGF overexpression after TAE treatment and
improve sensitivity to the heat generated by RFA.

7. Conclusions and Prospects

The growth of solid tumors is highly dependent on tumor neovascularization. The
complex vascular network ultimately creates therapeutic resistance, which decreases the
effects of single-treatment modalities; challenges include the immunosuppressive state
and high IFP of the tumor, which prevent deep tumor penetration by the drugs. In ad-
dition, the overexpression of VEGF in the tumor greatly increases tumor resistance. Due
to the lack of surrounding cells, the oxygen content of the tumor microenvironment is
low, decreasing the effectiveness of aerobic therapy. The appropriate use of nanotechnol-
ogy to achieve the combination of antivascular therapy and conventional treatment can
effectively solve the above problems and improve the efficiency of tumor treatment. In
addition, different therapeutic approaches can be combined using nanoplatforms. The
effectiveness of tumor treatment has been shown to be maximized in some studies by
combining chemoradiotherapy and immunotherapy. This opens up novel therapeutic
avenues for cancer patients [154,155]. Gemcitabine (GEM) and 1-methyltryptophan (1MT)
amphiphilic biprodrug (GEM-1MT) were self-assembled into nanoparticles by Luan’s team
in an aqueous solution to kill tumor cells and reduce immunosuppression in the tumor
microenvironment [156]. Using a platinum@polymer-catechol nanobraker, Dai’s team was
able to mediate radioimmunotherapy and reduce melanoma’s tumorigenesis, angiogenesis,
and radioresistance.

There are also new treatments being developed for cancer. For example, gene therapy
refers to the method of treating diseases by using vectors to transduce exogenous ther-
apeutic genes into cells and then altering the original gene expression of cells with the
transcription and translation of exogenous genes [157]. In addition, tumors can be con-
trolled or treated with hormonal drugs [158]. Emerging treatments such as these can bring
a new entry point for combination therapy. Nanoplatforms can also provide new ideas
for tumor diagnosis. For example, Yang’s team reports a structural and molecular fusion
magnetic resonance imaging (MRI) nanoprobe for the differential diagnosis of benign and
malignant tumors [159].

If you are a doctor or part of the healthcare community, this review could speed
up the process of finding promising cancer treatments. We believe that chemotherapy
and immunotherapy are the most widely used pharmacotherapies for tumors in clinical
practice and that chemotherapy may also be the first option when cancer spreads and
metastasizes. Chemotherapy with antivascular therapy has been slowly introduced to
patients. Their synergistic action improves the efficiency of tumor treatment. Additional
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efficacy can be brought to various targeting regimens with the combination of immunother-
apy and antivascular therapy, which is more likely to be clinically available. This is not
just a drug stack; the effects of the drugs in this combination therapy complement one
another. However, the effectiveness of a treatment plan can vary based on factors such
as patient response, drug interactions, and side effects. For this reason, it is important to
consider which antivascular drugs may work better in combination therapy. For example,
both sorafenib and bevacizumab can be used as antivascular agents for combination im-
munotherapy, but bevacizumab has been shown to be superior to sorafenib in prolonging
progression-free survival in a phase III clinical trial [160,161]. The combination of nano- and
antivascular drugs has entered clinical trials. CRLX101 is a nanoparticle–drug conjugate.
In a sequential phase II clinical trial, the team found that CRLX101 in combination with
bevacizumab improved the objective response rate in recurrent ovarian cancer [162]. In a
phase I-IIa clinical trial, CRLX101 in combination with bevacizumab was found to improve
progression-free survival in metastatic renal cell carcinoma [163]. In a phase III clinical trial,
carboplatin–pegylated liposomal doxorubicin–bevacizumab was found to improve overall
survival in patients with recurrent ovarian cancer [164]. However, most of the research
related to nanodrug combination therapy strategies is still in the experimental stage and
always meets failure when they are put into clinical trials. In terms of biosafety in human
bodies, it is particularly important to monitor the complex tumor microenvironment in
real time to assess a variety of characteristics related to treatment resistance. In addition,
factors such as big-scale manufacturing as well as batch-to-batch consistency are essentially
important for the successful translation of the antivascular nanomedicine from bench to
bedside. The research and clinical translation of nanomedicines is both a challenge and
an opportunity. In recent years, new intelligent antitumor vascular nanodrugs have made
significant scientific progress and will likely play an increasingly important role in tumor
treatment in the future. Using multiple methods of synergistic therapy is an indispensable
treatment strategy for middle and advanced tumors, and the combination of nanomedicine
can improve the efficiency of drug delivery, reduce drug side effects, and improve the
efficiency of tumor treatment. With the continuous advancement of technology and the
deepening of research, we believe that in the near future, more combinations of nanodrugs
and antivascular drugs will enter the clinic setting and that they will achieve more excellent
therapeutic effects, achieve the long-term and high-quality survival of tumor patients, and
bring more hope and confidence to tumor patients.
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