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Abstract: Therapeutic proteins garnered significant attention in the field of disease treatment. In
comparison to small molecule drugs, protein therapies offer distinct advantages, including high
potency, specificity, low toxicity, and reduced carcinogenicity, even at minimal concentrations. How-
ever, the full potential of protein therapy is limited by inherent challenges such as large molecular
size, delicate tertiary structure, and poor membrane penetration, resulting in inefficient intracellular
delivery into target cells. To address these challenges and enhance the clinical applications of protein
therapies, various protein-loaded nanocarriers with tailored modifications were developed, including
liposomes, exosomes, polymeric nanoparticles, and nanomotors. Despite these advancements, many
of these strategies encounter significant issues such as entrapment within endosomes, leading to
low therapeutic efficiency. In this review, we extensively discussed diverse strategies for the ra-
tional design of nanocarriers, aiming to overcome these limitations. Additionally, we presented a
forward-looking viewpoint on the innovative generation of delivery systems specifically tailored
for protein-based therapies. Our intention was to offer theoretical and technical support for the
development and enhancement of nanocarriers capable of facilitating cytosolic protein delivery.

Keywords: protein therapy; cytosolic protein delivery; nanocarriers; penetrating peptide;
cell-penetrating poly(disulfide)s

1. Introduction

Protein is a kind of organic macromolecules composed of amino acids linked by
peptide bonds, which is the material basis of life. Proteins are regarded as the important
component in biological system such as cell signaling pathway, cell metabolism, gene
transcription and translation, and cell division and proliferation. Protein-based therapy
is a promising approach for treating diseases caused by abnormalities in key cellular
proteins. This therapy offers greater specificity and potency than small-molecule drugs,
as proteins often require a complex structure for specificity. Additionally, some proteins
play a critical role in signaling pathways, and yet cannot be targeted by small molecules,
making them “undruggable”. Protein-based therapy is, thus, an attractive option for
addressing such protein–protein interactions (PPIs), as macromolecules such as proteins or
peptides can effectively inhibit them. In this way, it provides a link between small-molecule
inhibitors and large protein targets. Therefore, protein was the potential candidate for new
drugs [1–10].

In recent years, specific proteins such as adrenocorticotrophic hormone, monoclonal
antibodies, enzymes, cytokines, and peptides were developed as therapeutic agents for
conditions such as anti-inflammation, cancer metastasis, indigestion diseases, and viral

Pharmaceutics 2023, 15, 1610. https://doi.org/10.3390/pharmaceutics15061610 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics15061610
https://doi.org/10.3390/pharmaceutics15061610
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://doi.org/10.3390/pharmaceutics15061610
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics15061610?type=check_update&version=1


Pharmaceutics 2023, 15, 1610 2 of 25

infections [11–18]. Notably, five out of the top ten best-selling drugs in 2021 were protein
antibodies, according to statistics on top companies and drug sales [19]. Consequently, the
demand for protein drugs steadily increased in the pharmaceutical market.

In comparison to gene drugs, protein drugs have the advantage of directly targeting
the desired sites, enabling the regulation of biological activities without the complications
associated with gene mutations and low therapeutic efficiency resulting from gene ex-
pression during the treatment process. However, the majority of protein drugs currently
available on the market are developed based on the structure and characteristics of ex-
tracellular targets. These targets include protein receptors located on the cell membrane
surface (e.g., G protein-coupled receptors, GPCRs; cluster of differentiation 4, CD4; epi-
dermal growth factor receptor, EGFR; insulin receptor) or secreted proteins (e.g., tumor
necrosis factor-alpha, TNF-α; prostaglandin 2, PG2; interleukin 4, IL-4; interferon-gamma,
IFN-γ) [20–28]. On the other hand, the poor membrane permeability and large size of
protein drugs pose challenges for their effective internalization into cells. Consequently,
most biological signaling pathways or enzymes within cells are not viable drug targets
due to these limitations. The importance of intracellular protein transportation extends
beyond the development of protein drugs, encompassing advanced biotechnology and
molecular cell biology. For instance, CRISPR/Cas9, a common gene editing tool, requires
efficient transport into cells, involving zinc finger endonucleases and recombinases [29–31].
Consequently, there is significant value in designing novel and efficient strategies for the
internalization of proteins into cells (Figure 1).
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2. The Strategies for Cytosolic Protein Delivery

There are several challenges associated with transporting proteins into the cytosol. The
primary obstacle is the cellular uptake of proteins. To enhance delivery efficiency, proteins
can be tagged or conjugated with specific molecules such as cell-penetrating peptides
(CPPs) [32–36], cell-penetrating poly(disulfide) (CPDs) [37–44], or protamine. While these
approaches showed high delivery efficiency, a greater challenge lies in facilitating the
process of lysosomal escape for the delivered proteins. In most cases, transported proteins
are easily captured by cytosolic endosomes, which are disrupted by proteases within
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the endo/lysosomal structure. As a result, the amount of protein accumulated in the
cytosol decreases, leading to reduced protein delivery efficiency. In recent years, significant
progress was made in improving the efficiency of lysosomal escape for delivered proteins,
offering great promise for further clinical applications.

Cytosolic protein delivery strategies encompass various approaches, including phys-
ical methods (Table 1), endosomolytic agents, liposomes, exosomes, nanomotors, cell-
penetrating peptides, and cell poly(disulfide). Physical methods involve the puncturing of
the cell membrane through techniques such as electroporation [45–49], nanoneedles [50–54],
and microfluidic constrictions [55–58]. However, these methods present challenges for
clinical application due to specialized instrumentation requirements. Endosomolytic agents
can damage the endo/lysosomal membrane, facilitating the release of captured proteins
within cells through endocytosis-mediated pathways [59–63]. Disruption of endosomes can
be achieved by membrane-disturbing agents such as pH-responsive peptides and polymers
modified with lipids or aromatic structures. These molecules exhibit unique properties that
change their conformation or morphology in the acidic lysosomal space, leading to lysis
of the endo/lysosomal membrane. For example, Futaki et al. reported the transportation
of antibodies into cells, followed by their release in the cytosol using pH-sensitive pep-
tides. By grafting one to two glutamic acid groups onto the hydrophobic region of cationic
peptides, novel endosomolytic peptides were developed. In the endocytosis pathway, the
pH-sensitive groups can become protonated due to the low pH in lysosomes, inducing
lysosomal membrane disruption and the subsequent release of trapped proteins from
lysosomal contents [59,64,65].

Other strategies for cytosolic protein delivery involve protein carriers such as lipo-
somes, exosomes, nanomotors, and organic polymers [66–74]. These materials typically
load proteins through non-covalent interactions or covalent conjugation. Proteins, being
biological macromolecules, possess specific charge characteristics that can be altered by
changes in solution pH, as well as three-dimensional structures with significant sizes.
Although only a few sites on proteins can be modified with delivery vectors, complexes
formed by non-covalent interactions between proteins and vectors may disintegrate, releas-
ing native proteins in response to specific stimuli under certain physiological conditions [75].
The disintegration of these complexes poses a challenge to achieving high intracellular
delivery efficiency of proteins in the extracellular environment. To address this, chemical
modifications (such as aconitic acid or phenylboronic acid) or genetic fusion conjugation
(using anionic GFP or polyglutamate) were applied to enhance the interaction between
proteins and vectors [76].

The attachment of membrane-penetrating groups to the original protein can promote
the permeation of cargo proteins and, then, entry into the cytosol. The generally applied
functional membrane-permeated groups contain cell-penetrating peptides (CPP) [77–79],
cell-penetrating poly(disulfide) (CPD), and the transduction domain [80]. It is the general
strategy to construct the conjugates of proteins with CPP or CPD by non-covalent and
covalent integration. For example, arginine-enriched CPPs could combine with cargo
proteins and, subsequently, penetrate into the cytosol via electrostatic interaction with
negatively charged membrane. Additionally, proteins can also be grated onto the CPDs
via electrostatic interaction or covalent binding, and then improve the intracellular protein
delivery with thiol-mediated endocytosis. These strategies demand the application of
chemical modification or genetic fusion on the original protein, which may have a negative
effect on the bioactivity and functionality of protein. For instance, the proteins fused
with transduction-promoted CPPs have poor serum stability and low endo/lysosomal
escape efficiency. To solve this problem, dynamic covalent linkers are applied to combine
the original proteins with cell-penetrating groups. The novel conjugates of protein and
polymer have the ability to release the cargo under special conditions such as lysosomal
acid, protease, and glutathione (GSH) [39]. In this review, we desire to summarize the
recent evolution of cytosolic protein delivery strategies, focusing on the representative
cases of different materials and the novel strategies for intracellular protein delivery to
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supplement the previous researches. So, this perspective mainly contains fields of liposome-
based carriers, nanomotor, exosome-based nano vectors, cell-penetrating peptides-based
nanocarriers, and cell-penetrating poly(sulfides)-based nanocarriers (Table 1).

Table 1. Summary of Different Protein Delivery Methods.

Strategies Working
Principle Protein Cargos Advantages Difficulties Ref.

Physical
methods Membrane

disruption

Dose-control;
Uniform

intracellular
delivery

Nvasive electrodes;
Low cell viability;

Genetic perturbation;
Technical restriction

electroporation
β-galactosidase,

ProSNA a,
Cas9-RNP b,

[81]

Nanoneedles BMP2 c [82]

Microfluidic
constrictions

Saporin,
Cytochrome C,

Herceptin, IgG d,
BSA e

[83]

Endosomolytic
agents

Damage the
endo/lysosomal

membrane, release
the captured

protein in cells

Good
biocompatibility;
Potential organ
or cell targeting

properties;
Specificity;

Better
endosomes

escape

Endosomal capture

Liposomes
Membrane fusion

BSA Protein size limitation;
Only deliver negatively charged

proteins;

[84]
SNARE f [85]

ovalbumin [86]
Exosome

Membrane fusion
SIRPα g

Complex preparation process;
[87]

Ndfip1 h [88]
BDNF i [89]

Nanomotor Membrane
permeation

Cas9/sgRNA
complex Toxicity;

Environmental issues
[66]

Caspase-3 [90]

Cell-penetrating
peptides

Membrane fu-
sion/transduction

LAT1 j Specific delivery;
High

intracellular
delivery

Efficiency;
Low cytotoxicity

Endosomal capture;
Proteolytic instability;

Immunogenicity;
Internalization mechanisms to be

demonstrated

[91]
TG6–protein
conjugates k [92]

Ppm1B l [93]
cytochrome C [94]

Cell
poly(disulfide)s

Membrane fu-
sion/transduction

β-galactosidase
Membrane
permeating;

Bioactive

Off-target;
Metabolic barrier;

Toxicity;
Endosomal capture;
Big size of protein

[95]
BSA, RNaseA,

Cetuximab
BSA, anti-MTCO2 [96]

Fluoropolymers Membrane fu-
sion/transduction

BSA,
β-galactosidase,
porin, a cyclic

hendecapeptide
Dopamine

Hydrophobicity;
Lipophobicity;

Good
chemical
stability;

Bio-inertness;
Low surface

energy;
Phase

segregation

Toxicity;
Environmental issues;
Blood circulation time;
Exact mechanisms of;
The endocytosis and

Endo/lysosomal escape processes
to be demonstrated

[97]

a protein spherical nucleic acids (ProSNA); b Cas9-ribonucleoprotein complex (Cas9-RNP); c bone morphogenetic
protein 2 (BMP2); d immunoglobulin G (IgG); e bovine serum albumin (BSA); f soluble N-ethylmaleimide-sensitive
factor attachment protein receptor (SNARE); g signal regulatory protein α (SIRPα); h L-domain-containing protein
(Ndfip1); i brain derived neurotrophic factor (BDNF); j l-type amino acid transporter 1 (LAT1); k a dendritic small
molecule TG6 with one rigid planar core and four flexible arms with one guanidinium on each arm; l protein
phosphatase 1B (Ppm1b).
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3. Nanocarriers-Mediated Protein Delivery
3.1. Liposomes

Researchers successfully used liposomes to deliver therapeutic proteins such as an-
tibodies, cytokines, and enzymes into mammalian cells. The phospholipid bilayer could
retain the biological activity of proteins in the cavity, which could shield the damage to the
extracellular matrix and endo/lysosomes in the cell to proteins [98–100]. These liposomes
enter the cell through the endocytosis-mediated pathway. After the vesicles are wrapped
by endo/lysosomes, therapeutic proteins can be released into the cytoplasm as a result
of disruption and disruption of the endo/lysosome. Xu et al. successfully developed an
efficient and safe carrier to deliver active proteins into the cytoplasm, providing ideas for
protein-based therapy in the future. A novel protein delivery carrier can be synthesized
by combining cationic liposome-like materials, and the method of reversible chemical
modification of protein is used to improve the negatively charged density of cargoes for
binding with cationic carriers. Two representative toxic proteins, ribonuclease A (RNase
A) and saporin (SA), were applied to kill cancer cells via liposome-based cytosolic protein
delivery in the experiment. The combinatorial liposomes can efficiently transport proteins
into the cytoplasm of cancer cells and inhibit cell proliferation. The research shows that
the electrostatic and hydrophobic interactions between liposomes and proteins play an
important role in the nanocomposites formed by proteins and liposomes. Among them,
the liposome EC16-1 protein nanoparticles can effectively inhibit cell proliferation in vitro
(Figure 2) [101].
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Membrane fusion liposomes are a special class of liposomes. These monolayer lipo-
somes can quickly merge with the cell membrane and, then, transport the substances in the
liposome cavity to the cytosol [102]. Csiszar et al. successfully developed a novel method
for using fusion liposomes to efficiently deliver proteins. Both the positively charged carrier
and negatively charged protein formed a protein-liposome complex through electrostatic
and hydrophobic interaction. Liposomes can efficiently merge with the cell membrane and
release intact proteins into the cytoplasm [103]. Proteins such as green fluorescent protein,
RNase, saporin, and phycoerythrin can be successfully transported into mammalian cells.
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It is worth noting that proteins with positive charge cannot be transported into the cyto-
plasm through this strategy. Because positively charged proteins and cationic liposomes
with similar charges repel each other, they are restricted from forming liposome-protein
complexes. Subsequently, Jiang et al. successfully designed and synthesized a delivery
system, which avoided the electrostatic repulsion between the protein and the bilayer
phospholipid of fusion liposome [104], thus overcoming the delivery challenge of protein
with positive charge. After this, cytochrome C was loaded into the cavity of mesoporous
silica nanoparticles, the outer layer of which was modified with a fusion liposome bilayer.
Even with the application of endocytosis inhibitors in this cell experiment, the amount of
mesoporous silica nanoparticles (MSN) delivered into cells almost did not decrease, which
indicated that MSNs-based protein delivery depended on the membrane fusion-mediated
pathway. The results confirmed cytochrome C was successfully released in cells, leading
to efficient apoptosis. However, proteins with large size are difficult to enter into cells via
this system.

3.2. Exosomes

Exosomes are naturally secreted vesicles of several cells and tissues, which comes
from cell compartments and participate in the transmission of information from one cell to
another. It was proved that exosomes are used to encapsulate and deliver foreign macro-
molecules into the cytoplasm [105]. For example, Wu et al. first prepared the prodrug of
cisplatin with lauric acid. Human serum protein and lecithin were mixed together in a cer-
tain proportion to prepare nanoparticles by nano-precipitation method, and then accurately
characterized by fluorescence spectrum. Recent studies reported that macrophages can
preferentially target the lesion site of breast cancer, and the exosomes can be secreted by
mouse-derived mononuclear macrophages RAW 264.7, and the secreted exosomes can wrap
the above prepared nanoparticles [73]. This high-performance delivery system, known as
NPs/Rex (Figure 3), has excellent physical and chemical properties, high colloidal stability,
and a redox-triggered release function. The study of cell dynamics proved that nano prepa-
ration entered the cytoplasm through multiple ways to avoid the trap of endo/lysosomes,
and successfully degraded in the cytoplasm, then releasing the original drug and entering
the nucleus to exert its bioactivity. Subsequently, a breast cancer cell experiment was carried
out, and the results showed that the nanoformulation had a strong inhibitory effect on cell
proliferation. For the application of the experiments in vivo, the exosomes wrapped with
nanoparticles have good blood circulation and a strong inhibitory effect on the growth of
cancer cells in the mouse breast tumor model. In recent years, Xu et al. reported an easily
applicable and multifunctional method to modify exosomes, and then connect them for
intracellular protein delivery [106]. The designed strategy is to use the active group azide
to modify and label the active protein or glycoprotein involved in the metabolic process
of secreting and synthesizing exosomes, and then modify and functionalize exosomes
through biorthogonal click chemical reaction. Azide-modified exosomes connect a series of
small molecules or proteins, thus effectively promoting exosomes to enter the cytoplasm.
Metabolic engineering of exosomes can promote their multifunctionality through chemical
modification, thus expanding the application of exosomes. At the same time, it provides a
novel and powerful tool to study the multiple roles of exosomes in organisms and enhance
the potential of the biopharmaceutical application of exosomes.
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3.3. Nanomotor

Nanomotors are miniscule devices that imitate biological motors, constructed from
a few nanoscale components and programmed to perform mechanical activities when
exposed to certain stimuli such as light, sound, magnetism, electricity, and heat. So,
nanomotors were suggested as the next generation of nanocarriers in the drug delivery
due to their autonomous motion and associated mixing hydrodynamics, especially when
acting collectively as a swarm [66]. In the protein delivery field, nanocarriers have great
application prospects. Recently, Chen et al. published that gold nanowires driven by
ultrasound can be used for the transport of oligonucleotides [107]. The nanomotor quickly
punched and passed through the cell membrane and then delivered small interfering
RNA (siRNA) into the cytoplasm, resulting in the obvious 94% down-regulation of the
target protein. Inspired by this, Wang et al. further used ultrasonic-driven nanomotors
to transport caspase-3 into the cytosol of gastric adenocarcinoma cells. The outer layer of
gold nanowires was modified with a pH-sensitive polymer loaded with caspase-3. The
outer polymer can maintain the native caspase-3 in the extracellular acidic environment
without premature release and degradation of cargoes. Under ultrasound stimulation,
these gold nanowires can be driven and rapidly migrate, which promotes cell uptake of
protein cargo. In the cytoplasmic environment, the polymer can be rapidly degraded,
and then release caspase-3, which can induce apoptosis of 80% of cancer cells within a
few minutes. The similar nanomotor was able to deliver Cas9/sgRNA complex for the
knockout experiment of green fluorescent protein. After 2 h of cell culture, the nanomotor
loaded with Cas9 sgRNA led to the down-regulation of 80% green fluorescent protein [66].
In addition, Sánchez et al. designed an enzyme-powered nanomotors, which can be
disrupted by laser irradiation. The urease-powered motion and swarm behavior improve
translational movement compared to the passive diffusion of nanocarriers. Meanwhile, the
synergistic effect of active motion and mechanical disruption (light-triggered nanobubbles)
of a biological barrier represents a clear advantage for the improvement of therapies [108].
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4. Non-Endocytic Protein Delivery
4.1. Physical Methods

Physical methods are considered the most straightforward and traditional manners
to accomplish the cytosolic delivery of proteins. A few strategies were developed, such
as microinjection and electroporation [109–111]. The main mechanism of these methods is
to destroy the target cell membrane in vitro applications, so that the therapeutic proteins
can be delivered into the cytosol with immediate bioavailability. For instance, Park et al.
developed a novel microneedle system that involves physically attaching active pharma-
ceutical ingredients particles to the biocompatible adhesive surface of the microneedles
named particle-attached microneedles, which can provide a wide range of applications
for dosing drugs and vaccines [112]. In addition, various physical methods were used
in the field of protein delivery. Notwithstanding, these physical techniques also pose
some challenges, such as low-efficiency of throughput, disruption to cells, and requiring
specialized instrumentation to physically puncture cell membranes, which limit their utility
for largescale and pharmaceutical applications. Moreover, for human diseases, the volume
of tissues that can be dosed by physical methods is very limited, and such manners can also
lead to the outsourcing of cell contents, leading to corresponding biosafety issues [113].

4.2. CPP-Modified Protein Delivery

Cell-penetrating peptides (CPPs), regarded as protein transduction domain, are short
positively charged peptides composed of 5–30 amino acids, which can pass through the
cell membrane, then achieve the delivery and release of the cargo into the cytoplasm
under physiological pH condition. A wide range of CPPs were developed and designed
with arginine-enriched CPPs, with polyarginines and HIV-1 TAT being the most widely
used for research. Recently, CPPs were always the subject of a heated debate because
of their high intracellular delivery efficiency and low cytotoxicity [114,115]. Due to the
ability of these peptides to penetrate into the cell membrane, they are regarded as a
promising and potential tool for internalization into cell. In order to study why CPPs
with positive charge can penetrate across cell membranes, a lot of relative studies were
conducted. The mechanism for CPPs-mediated cellular uptake of cargos was a hot topic
of intense investigation [116]. Initial studies indicated that CPPs were translocated across
cellular membrane via direct penetration mechanism, which avoid the endocytosis and
the participation of sepical receptors. However, in 2003, Richard et al. highlighted the
likelihood of errors in the results of direct penetration experiment. Since then, research on
the active transportation of CPPs was conducted, with the majority of both older and more
recent studies suggesting endocytosis as the primary route of entry for CPPs into cells [117].
The cellular uptake mechanism of CPPs is debated. Thus, a progression of results indicated
that cell-penetrating peptides are taken up by cells through energy-independent direct
penetration and energy-promoted endocytosis, making these CPPs convenient for entering
the cytosol of mammalian cells through a variety of mechanisms. The endocytosis efficiency
was attributed to the cell penetrating peptide itself (peptide length and physicochemical
properties), as well as the conditions of cell internalization (peptide concentration, lipid
components and membrane zeta potential). Changes in these elements can lead to the
transformation of the main internalization mechanisms. The difference between CPP-
cargo and CPP is that the physiochemical property of the cargo also affects the cell uptake
mechanism. Therefore, it is still difficult to predict the delivery efficiency of this specific
CPP–cargo conjugation [118].

The transportation of essential small molecules such as amino acids, sugars, and ions
is carried out by integral membrane protein pumps and channels. For macromolecules, the
different system is needed to pass through cellular membrane, which requires energy. En-
docytosis is an active process in which macromolecules are taken up into the cell in vesicles
that are separated from the plasm membrane and involves two stages: endocytosis uptake
and endo/lysosomal escape. Arginine-enriched peptide has the ability to penetrate across
the biological cell membrane and reach the cytosol and nucleus in the direct penetration
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manner. The experimental results indicated that the cytosolic delivery of CPPs still happen
at low temperature. The energy-mediated endocytosis of CPPs would be prohibited below
4 °C conditions. Therefore, the CPP direct penetration was the main way of cell internaliza-
tion. The guanidine grafted onto the CPPs can bind with the anions on the surface of the
cell via electrostatic interaction and hydrogen bonds. The non-covalent interaction effects
induced the CPP aggregation on the cell surface, which was convenient for the endocytosis.
Once the cell penetrating peptides are transported into the cytoplasm via forming com-
plexes with membrane phospholipids, they subsequently release the CPP from complexes
through replacing lipids with the intracellular anions. Cardoso’s group confirmed that
guanidine groups can bind with fatty acid on the cell surface by non-covalent interaction,
followed by enhancing the cell internalization of arginine-enriched peptides [119]. Trans-
membrane pH gradient variation is a driving force, which can promote the cellular uptake
of polypeptides. In addition, the energy-independent direct penetration was also related
to various factors including peptide density, sequence and the lipid component. If the
direct penetration efficiency is too slow, the competitive endocytosis-mediated mechanism
begins to operate, and the CPPs would be intercepted in the endo/lysosome, while direct
penetration into cytoplasm of cells occurs in some cases, mainly at a high concentration of
CPPs. Generally, CPPs with high concentration promote the entry of cargos into the cytosol
with direct penetration manner. It is accepted that most CPPs and CPP-cargo complexes
are taken up by cells through endocytosis pathway.

Therapeutic agents should be delivered into the cytosol of cells to exert their bioactivity.
Because of the poor permeability of the cell membrane, free cargos such as proteins,
peptides, and nucleic acids were restricted from entering the cell. Since CPPs have the ability
to deliver different cargoes without obvious cytotoxicity, they are applied to enhancing the
cytosolic delivery efficiency of relative drugs. Therefore, wide biomedical application of
CPPs include anticancer, vaccines, antimicrobials, and anti-inflammation, and regarded
as the vector to deliver nucleotides, peptides, and proteins. The recent studies indicated
the CPPs were applied to induce anti-inflammatory effect. According to the literature,
nuclear factor-κB (NF-κB) is a protein complex that has an important effect on adjusting the
gene transcription related to inflammation, such as enzymes, chemokines, and cytokines.
NF-κB incontrollable activation leads to different inflammatory disease includes viral
infection, rheumatoid arthritis, and enteritis. In this regard, different strategies were used
for improving the abnormal NF-κB protein. Wang et al. evaluated that NF-κB was inhibited
by anti-inflammatory peptides termed AIP6, which has the ability of cell-penetrating
properties. AIP6 can also combine with the subunits of NF-κB named p65 to adjust its
bioactivity, thus achieving the desired anti-inflammatory effect [120].

Recent studies about HIV-TAT peptides indicated that the intracellular delivery ef-
ficiency of arginine-enriched molecules is promoted with increasing structural rigidity.
Cyclic TAT peptides demonstrated higher cellular internalization efficiency compared
with their linear and more flexible analogue molecules [121]. To study whether CPPs
can promote cellular internalization of proteins through endocytosis pathway. Hacken-
berger et al. designed and synthesized different ring and linear GFP–CPP conjugation
with alkynyl-tagged GFP and azide modified CPPs [122]. The results indicated that the
cyclic CPP–GFP conjugation could be efficiently taken up by living cells, which can enable
protein to reach the cytosol and nucleus, but its linear analog could not assist the GFP to
enter the cell. Depending on the promising data, this method was used to deliver mono-
clonal antibodies. The authors designed and developed an unified method to construct
the special membrane-penetrated nanoantibodies that can be efficiently taken up by cells.
Nanoantibodies are applied to replacing traditional monoclonal antibodies. Because of
their with relatively large size, they may be difficult to penetrate across the membrane
with the CPPs-assisted manner. The authors designed a GFP targeted protein, and the
special site was modified with a cyclic CPPs. The experimental results show that these
nanoantibodies were convenient for the entry into the cell and interacting with intracellular
GFP (Figure 4). CPP-nanoantibody conjugates can tag and control antigens or ligands
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interacting with them. For example, two nanoantibodies fused with GFP were used to
track and relocate polymer enzyme clamp (PCNA) and tumor inhibitor P53 in the nucleus.
In addition, CR10-nanoantibody can enhance intracellular delivery of respective antigens
and antigen-conjugated proteins, such as Mecp2 fused with GFP. When CR10 induced
the redistribution of the antigen in the nucleus, and CR10 nanoantibody with a cleavable
disulfide can be disrupted for releasing antigens and their partners by intracellular GSH
stimulation. These nanoantibodies can be efficiently delivered into cells and, subsequently,
interact with the GFP-PCNA protein complex to realize the track and relocation of targeted
protein in the nucleus [123].
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Figure 4. Synthesis of cell-permeable antigen-binding proteins. (a), X-ray structure of GBP4 (1) bind-
ing to its antigen GFP. The variable antigen-binding CDRs (complementary determining regions)
1–3 are highlighted in blue, yellow and red, respectively. The loops of the conserved nanobody
framework that are the most distal to the antigen-binding interface and, thus, best for site-specific
functionalization are highlighted in light green (PDB ID: 3G9A)37 and GFP is drawn in dark green.
(b), Scheme for the synthesis of Cys–cR10 (3). Trt, trityl. (c), Synthetic strategy of GBP–cCPPs.
The full length nanobody (1A or 2A) is expressed as an intein–CBD fusion and is reacted with the
Cys-containing CPPs (3 or 4) by MESNA-induced ligation. Comprising Pt(lau), HSA, and lecithin,
these were coated with exosomes isolated from RAW 264.7 cells. Reproduced with permission from
ref. [123]. Copyright 2017 Nature.

In order to enhance the interacting affinity of cationic polymers and proteins, re-
searchers choose polymers enriched with guanidine. Because guanidine can form strong
electrostatic interaction and hydrogen bonds with the carboxyl groups of glutamic acid or
aspartic acid in protein. The affinity between guanidine and carboxyl is stronger than that
between ammonium salt and carboxyl [124,125]. Because of the special biological properties
of guanidine, polymers enriched with guanidine can be used as protein adhesive, and Aida
et al. used it to regulate the biological function of the active protein [126]. If highly inten-
sive guanidine groups are modified on the polymer, the cationic polymer will significantly
enhance its binding with proteins through multivalent electrostatic effects. In addition,
guanidine can interact with phospholipid bilayer to promote cell uptake. Arginine-rich
peptides, polymers, and nanoparticles have relatively good membrane translocation ef-
fects. For example, cell-penetrating peptides are convenient for conjugating or assisting
cargoes to complete the process of intracellular delivery [127]. According to the above
mentioned rational design strategies, Cheng et al. successfully developed three kinds of
polymers (Figure 5). Each dendrimer contains an average of 60 guanidines, benzoic acid,
and 4-guanidine benzoic acid. The last one can efficiently promote the intracellular proteins
delivery in these polymers [128]. Guanidine’s were applied to combine with proteins, and
guanidine linked phenyls possess an important effect in the process of endo/lysosomal
escape. In addition, the guanidine–π fore among molecules or the electrostatic interaction



Pharmaceutics 2023, 15, 1610 11 of 25

between guanidine groups is indispensable for the stability of the complex, and it is also a
key factor of protein delivery in the cytosol. Bioactive proteins including β-glucosidase and
p53 can be transported via DGBA (phenyl guanidine dendrimer) into the cytosol, and then
released, still maintaining the original biological activity of the protein. In addition, DGBA
can also efficiently deliver bioactive peptides into the cytosol, and apoptosis-promoting
peptides can efficiently enter the cytoplasm of cancer cells, inducing a large number of
cancer cells to apoptosis.
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Despite the potential of CPPs for protein delivery, certain limitations remain to be
addressed, such as the lack of cell specificity. To overcome this, it is necessary to create
delivery systems that can target tumors and be permeable to cell membranes, enabling
site-specific delivery and internal trafficking. Such systems could be designed using tumor-
targeted peptides, or through multi-component delivery systems that enhance the delivery
and release of proteins. In addition, the positive charge of CPP is often responsible for
causing extreme cytotoxicity and hindering its ability to deliver proteins. So, further
research and improvement are required to explore the effects of exogenous substances
on the membrane penetration mechanism of CPPs when they are connected to them, as
well as the entry sites and targeting properties into the cell, metabolism, and degradation
with endo/lysosomes. Additionally, in vivo studies of CPPs must be further explored to
fully realize the potential of peptide-based protein delivery systems [129,130]. All in all,
with in-depth research on interdisciplinary applications, CPPs will have an increasingly
significant role in the treatment of animal and human diseases.

4.3. CPD-Based Intracellular Delivery of Native Proteins

CPDs, which are synthetic analogs of CPPs, are characterized by disulfide bonds
instead of a peptide skeleton. In addition, CPDs can be grown on substrates through
surface initiated ring-opening disulfide-exchange polymerization. Compared to CPPs,
CPDs can enter cells and deliver cargo to the cytosol via thiol-mediated pathways with-
out being trapped in endocytic vesicles. Furthermore, CPDs can be degraded in the
cytosol by glutathione (GSH)-assisted depolymerization in a short time and have min-
imal cytotoxicity, making them suitable for intracellular delivery of thiol-containing or
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modified cargos [131,132]. The strategy of applying organic polymers to develop and
prepare therapeutic agents is promising. Recently, CPDs were elaborately designed and
produced. It was widely recognized as the great potential cell penetrating candidate
molecules that tremendously expands the diversity of biomaterials. The designed CPDs
were achieved through substrate-initiated ring opening disulfide-exchange polymerization
in solution by Matle’s group in 2013 [133,134]. They conducted a series of studies, in which
the cyclic tension played a role in the thiol-based cell uptake promoted by cyclodisulfide
polymers. As the ring tension increased, the cell uptake efficiency of CPDs were further
increased. According to the reports, carbon-sulfur–sulfur-carbon (CSSC) dihedral angle
was eight degrees, leading to the obviously different uptake efficiency of CPDs by cells. The
uptake efficiency enhanced by high cyclic tension was superior to that promoted by linear
disulfide tension [135]. The exchange from thiol to disulfide of the membrane would affect
the uptake behavior of cell [136]. So, the decrease in disulfide to thiol led to an increase in
uptake efficiency. These data indicate that dynamic covalent exchange affects the uptake of
CPDs by cells.

In recent years, poly(disulfide)s with positive charge were developed for intracellular
gene delivery. The cationic poly(disulfide)s were explored and synthesized through Michael
addition reaction of amino groups instead of disulfide-exchange polymerization on the
surface of solid substrates. In less than 5 min, the CPDs were directly obtained on solid
substrates under physiological pH and 25 ◦C conditions. The siCPD can be divided into
three parts: an inducer, a monomer, and a terminator [137]. The monomer contains not only
a disulfide bond for ring-opening disulfide polymerization, but also a cationic guanidine
group to ensure membrane permeability. The synthesis of CPDs can be carried out rapidly
at room temperature and neutral pH value. Through the application of CPDs containing
fluorescent probe inducers, we found most of the simplest yet active CPDs, which, upon
cultivation with cells, can reach the cytoplasm in several minutes, and then degrade
rapidly to release the original biological molecules. After the depolymerization of CPD, the
membrane disturbance stopped, and the toxicity was very low even at high concentration.
The author further confirmed that the intracellular delivery of CPDs is not sensitive to
endocytosis inhibitors, and less dependent on temperature, but is greatly affected by a
thiol blocker. Hence, CPDs need to solve the two main limitations of endocytosis mediated
delivery strategies: the escape of endo/lysosomes and the toxicity of biomaterials [131].
Subsequently, it was found that CPDs enhanced the efficiency of cell internalization through
dynamic covalent disulfide substitution with thiol on the cell membrane, and entered the
cytoplasm by avoiding the endocytosis pathway [138]. Subsequent studies indicated that
even the monomer itself, or its tension-enhanced analogues, such as diselenolanes and
epidithiodiketopiperazine, can enter cells with high efficiency. With the increase in protein
molecular weight, most CPP-assisted delivery strategies tend to penetrate into the cell
through endocytosis, and eventually be trapped by endo/lysosomes in the cell, unable to
escape the fate of degradation.

The unique characteristics of CPDs polymers make them highly effective in promoting
cellular uptake of cargo molecules. Recent research by Yao et al. focused on synthesizing
a library of CPDs, enriching the delivery system, and expanding the application of CPDs
for cell internalization of protein drugs. Their approach aims to reduce the probability
of endo/lysosomal capture while preserving the bioactivity of the delivered proteins. To
achieve this, protein–CPDs conjugation was designed and developed through covalent
reactive modification or non-covalent interactions between proteins and CPDs.

For instance, initiators such as nitrilotriacetic acid (NTA), biotin, and tetrazine were
incorporated onto CPDs polymers, which can then be incorporated into proteins modified
with His, avidin, and trans-cyclooctyne (TCO) through non-covalent or covalent bonds.
Antibodies can react with trans-cyclooctyne (TCO) and, subsequently, graft onto the cor-
responding CPDs with initiators including tetrazine via biorthogonal chemical reactions.
These multi-functional CPDs-based methods gained recognition for their application in
cytosolic protein delivery due to their special and potential properties: (1) simplified
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modification: biorthogonal modifications can be easily completed by simply mixing the
components in aqueous solutions under mild conditions. (2) Enhanced delivery efficiency:
engineered proteins and antibodies demonstrate improved cellular delivery efficiency
using CPDs-based methods, primarily due to direct translocation instead of relying on
common endocytosis pathways. (3) Improved biocompatibility: CPDs exhibit excellent
biocompatibility, making them suitable for protein delivery applications.

In a related study, Matile et al. developed a potential protein delivery strategy based on
the non-covalent affinity effect between biotin and streptavidin. However, methods involv-
ing chemical or gene-engineered modifications may impact the structure and bioactivity of
proteins [136]. As an alternative, a CPD-coated nanocapsule composed of biodegradable
organosilicon was successfully designed. This nanocapsule contains therapeutic antibod-
ies, fluorescence dyes, and quenchers, allowing their delivery into the cytosol of cells
while evading lysosomal capture and enabling on-demand release of native proteins un-
der hypoxic-responsive conditions. The nanocapsule’s surface is further modified with
mitochondria-targeted triphenylphosphonium (TPP) for precise disruption of the mitochon-
dria. It is important to note that robust conditions used during nanocapsule preparation
can potentially damage the bioactivity of the cargo proteins.

To overcome these challenges, Yao et al. further explored new protein-conjugation
chemical methods that enable easy labeling of proteins with CPDs (Figure 6). Glycans
present in mammalian proteins such as antibodies and glycosylated proteins can be modi-
fied to label the target proteins using post-translational modification (PTM) approaches.
In particular, the traceless-tagging approach can be applied to modify both glycosylated
and non-glycosylated proteins. Additionally, norbornene biorthogonal tags can be used to
modify proteins, allowing self-degradation after CPD-enhanced cellular internalization,
thereby releasing functional proteins. The norbornene bifunctional crosslinking agent
(NBL), containing a disulfide bond, reacts with primary amines and can also connect CPD
with norbornene through a biological orthogonal reaction. Similarly, PTM-labeled glyco-
proteins can be delivered and released into cells, followed by the rapid depolymerization of
CPD while maintaining the native biological activity of the original protein with minimal
impact on glycoproteins [139,140].

The cancer therapy approach, chemotherapy combined with the protein therapy, has a
bright future. However, simple combination dosing or conventional preparation has not
met people’s expectations yet. It is attractive and essential to develop novel cargos delivery
strategies by taking advantage of the respective properties of protein and chemical drugs.
Lu et al. designed and synthesized the multi-functional protein–drug-polymer conjugation
based on GSH and acid responsiveness. The building blocks including interferon-α2b
(IFN), polydisulfide reacted with Dox, and polypeptide (PEP) were integrated into a novel
conjugation, termed IFN-polyDox-PEP. Especially, IFN-polyDox-PEP can self-assemble to
form the stable nanoparticle with 122 nm with increasing the molar ratio of DOX and IFN
to 103/1. Following aggregation into tumor and intracellular delivery of IFN-polyDox-
PEP, it can release IFN because of conjugation disrupted by matrix metalloprotease in the
tumor microenvironment, then complete the release of Dox upon GSH and acid stimulative
response of CPDs. The developed IFN-polyDox-PEP nano preparation indicated better
inhibition efficiency of tumor growth than that with the simple combination of Dox and
IFN-polypeptide conjugation, which was on behalf of a potential strategy for synergistic
therapy upon effective chemo–protein conjugation (Figure 7) [141].
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Figure 6. Overview of CPD-facilitated intracellular delivery of proteins (including antibodies) and
native small-molecule drugs. (A) Newly developed initiators (I1/I2/I3), monomer (M), terminator (T),
the polymerization/depolymerization process of CPDs, and the two-step approach for “conjugation”
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ligation reaction is highlighted. Reproduced with permission from ref. [139]. Copyright 2015
American Chemical Society.
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5. Fluoropolymers for Cytosolic Protein Delivery

Polymers with specific compositions and topologies can be synthesized using various
methods such as atom transfer radical polymerization, reversible addition-fragmentation
chain transfer polymerization, and ring-opening metathesis polymerization. Additionally,
these polymers can be easily modified with functional ligands for specific purposes and
combined with degradable monomers or backbones for safety. Notably, cationic polymers



Pharmaceutics 2023, 15, 1610 15 of 25

showed great potential in cellular uptake and endosomal escape. The main challenge in
this field is to produce stable complexes of cargo proteins using cationic polymers. These
polymers are commonly used as carriers in gene delivery, as they bind and condense nucleic
acids such as plasmid DNA and siRNA into nanoparticles due to their interaction with the
negatively charged nucleic acids [142]. However, this approach is not suitable for proteins,
as their net charge depends on both isoelectric point (pI) and the pH of their environment.
Even for those proteins with low pI values, the number of net negative charges is not
enough for the cationic polymers to form stable complexes. Stability of complexes is often
compromised due to the presence of salts, polyanions, and phospholipids in physiological
conditions. This is why there are numerous cationic polymers developed for gene delivery,
but only a few for cytosolic protein delivery [15,143]. To address this, it is necessary to in-
crease the binding affinity between the polymers and proteins, and/or reduce the repulsion
between cationic polymers in the complexes. To this end, functional ligands can be attached
to cationic polymers to form a stable complex with the cargo proteins [144,145]. Fluoropoly-
mers are applied to construct amphiphilic polymers with a series of characteristics, which
are used for intracellular proteins delivery [146–148]. Among them, the main reason for the
obvious difference between fluoropolymer and hydrocarbon amphiphilic polymer is the hy-
drophobicity and lipophobic of fluoroalkane chain [149–152]. Therefore, in this review, we
mainly discussed fluoropolymers-based delivery systems. First of all, fluoropolymers have
self-assembly behavior in aqueous solution, which makes it possible for fluoropolymers
and proteins to co-assemble to form stable complexes [153–155]. Secondly, the fluoropoly-
mer has excellent efficient cell membrane permeability, and the hydrophobicity effect
of fluoroalkyl chain improves the binding affinity of cell membrane [156]. However, in
the process of endocytosis or direct membrane penetration, the lipophobic of fluoroalkyl
chain can avoid the fusion of amphiphilic polymers and phospholipids [157]. Fluorinated
cationic polymers improved the efficiency of various aspects in gene transportation, such
as loading nucleic acid fragment ability, blood circulation, cell uptake, and endo/lysosomal
escape [158–163]. Guan et al. successfully developed a bola small molecule [164]. The
two ends of this small molecule are hydrophilic groups composed of lysine, histidine,
and tryptophan, and the middle is a fluoroalkyl chain. The small molecule self-assembles
with siRNA in aqueous solution to form nanoparticles, which is used for targeted gene
therapy of adipocytes in adipose tissue with remarkable effect. The results showed that
nanomaterials could rapidly release siRNA in adipocytes and hepatocytes, thus inducing
70% GAPDH gene knockout.

Furthermore, fluoropolymers will bring new inspiration to the process of intracellular
proteins delivery. To demonstrate this speculation, Cheng et al. synthesized a series of
diverse fluoropolymers, which were synthesized by grafting fluoroalkane chains with dif-
ferent lengths and densities onto polyethyleneimine. Compared with commercial reagents,
eleven kinds of polymers have better effects, seven of which are fluoropolymers (Figure 8).
It is exciting that fluoropolymer F4-1 can efficiently deliver bovine serum protein into the
cell. However, the hydrocarbon chain analogue without fluorineA4-1 could not promote
the efficiency of intracellular proteins delivery. Fluoropolymers can promote the intra-
cellular protein delivery efficiency compared to non-fluoropolymers, which should be
ascribed to the role of fluorine in fluoropolymers [157]. More specifically, fluoropolymers
are mixed with proteins to form uniform and relatively small nanoparticles. The influence
of nanoparticles formed by fluoropolymer on the protein activity is relatively small, which
is attributed to the fact that the fluorosis chain can not only resist fouling, but also effectively
enhance cell membrane penetration efficiency. In addition, fluoropolymers exhibit lower
toxicity than polymers without fluorine. These characteristics explain why fluoropolymers
have relatively high efficiency in intracellular protein delivery.
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For fluoropolymers, longer fluoroalkane chains and higher grafting ratio will improve
the efficiency of cytosolic protein delivery [165–167]. However, too much fluorine in the
polymer can also lead to the failure of protein intracellular delivery. Because, in the absence
of protein, fluoropolymers will self-assemble to form stable vesicles. Therefore, polymers
with different length of fluoroalkane chains and degrees of fluorination should be carefully
evaluated and screened to achieve the best polymer. Although the screened fluoropolymers
generally have a positive charge, they can enhance the efficiency of cytosolic anionic and
cationic biomolecules delivery in different cell lines. The fluoropolymer can combine
with the negatively charged groups of proteins with high pI value through electrostatic
interactions, then further assemble to form nanoparticles through fluorophobic effect
among fluoroalkane chains.

Recently, Liu et al. developed fluorocarbon-modified chitosan (FCS) for efficient
delivery of various therapeutic proteins, such as immune checkpoint blockade antibodies.
The results showed that at a 5-fold dose oral delivery of anti-programmed cell death
protein-1, or its combination with anti-cytotoxic T-lymphocyte antigen 4 using this method,
could achieve comparable antitumor therapeutic responses to those administered that
administrated by intravenous injection of corresponding free antibodies in various types
of tumor models [167]. In addition, Cheng et al. synthesized and developed a library
of fluorine modified polymers for cytosolic cargoes delivery (Figure 9). The optimal
fluoropolymer A6-2 without cytotoxicity could enhance the intracellular delivery efficiency
of proteins such as β-galactosidase, bovine serum albumin (BSA), a cyclic decapeptide, and
saporin. Moreover, the transported proteins and peptides remained native bioactivity after
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delivery and release in the cytosol. Because of the poor cell membrane permeability of
saporin, it has little cytotoxicity on cancer cells. The A6-2 inefficiently deliver the saporin
into the cytosol, which led to limited cell apoptosis. Compared to the A6-2/saporin with
boring IC50 value of 13.2 nm, the hyaluronic acid coated A6-2/saporin with promising IC50
value of 3.3 nm could contribute to notable cell apoptosis. The prepared nanomaterials
can transport saporin into the tumor tissue and efficiently inhibit the growth of tumors
in vivo [97].
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6. Challenges and Future Directions

In recent years, researchers developed various strategies to investigate a cytosolic
protein delivery system, which is biocompatible, biodegradable, and dynamically function-
alized. Meanwhile, these nanocarriers showed great promise for facilitating the current
and next generations of treatments. Nevertheless, there still remain quite a few challenges
including the following points:

• Once the protein structure was changed, and its therapeutic function would be lost.
So, some barriers still need to be overcome during the preparation of proteins loaded
nanocarriers, either covalent or noncovalent strategies. The development of nanocarri-
ers in organic solvents could alter the structure of protein drugs.

• The materials chose to formulate the platform must be considered cell amicable. Most
of these materials were validated in vitro and verified for biocompatibility and nontox-
icity on various cells, which may not precisely predict the in vivo toxicity. Hence, there
is a need to examine the in vivo results of exposure to nanomaterials before loading
any therapeutic proteins, especially for materials that are not biodegradable.

• The mechanism of elimination and excretion of nanocarriers should be considered
seriously. Because of many of them are resistant to elimination routes, for the large
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size and higher chemical stability. For example, semiconductor quantum dots injected
into mice could remain intact over 2 years in mouse tissues.

• Though many of nanocarriers could be endocytosed into the endosomes, it is difficult
for them to escape into the cytosol. High efficiency of endosomal escape is still a
challenge for nanocarriers.

• The mechanism of the endocytosis-independent uptake of NPs summarized in this
review was established by bioimaging, co-localization, and endocytosis inhibition
to delicate endocytic efficiency of the nanocarriers. We are still convinced that the
CPD technologies hold vast potentials either in routine laboratory or future clinical
practices. However, there may be anxiety about the haptenization of cellular proteins
and undesirable immune responses to neoantigen for the rearrangement of disulfide.

• Therapeutic protein drug delivery mediated by electrostatic interaction may lead
to incomplete drug release, resulting in lower treatment efficiency. Therefore, the
next-generation of delivery carriers needs to further optimize the impact of the car-
rier’s charge.

• Most studies cited in this review often used a mouse model to verify the biological
activities of proteins loaded by nanocarriers, whether these therapeutic protein drugs
showed biological activities after being delivered into targets in clinical trials need to
be further verified. Although some of the protein drugs were used for clinical therapy,
the protein-based nanomedicine research is still at an early stage of development and
meets various challenges.

So far, several potential strategies were mentioned to develop protein-loaded nanocar-
riers aimed at enhancing drug encapsulation and improving endosomal escape efficiency
of the protein drugs. Moreover, the symbiosis of diverse materials break new opportunities
for protein-loaded multifunctional nanocarriers. For instance, CPD-based technologies
gain significant benefits from their endocytosis-independent. In summary, the potential for
protein-loaded nanocarriers in this field is tremendous. Based on current study advances
and clinical trials, degradable backbones and increased endosomal escape efficiency are
two of the most favorable structural properties for the future development of nanocarriers.
As well as safety and potency, next-generation protein-loaded nanocarriers with extra
functionalities such as targeting and immunomodulation will be important for specific
applications. Although, more and more novel biomaterials or delivery vehicles are being
used in this exhilarating field, there are still vast opportunities for strategies optimization
and innovation to enable the broader delivery of therapeutic drugs.
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