
Citation: Onishchenko, N.R.;

Moskovtsev, A.A.; Kobanenko, M.K.;

Tretiakova, D.S.; Alekseeva, A.S.;

Kolesov, D.V.; Mikryukova, A.A.;

Boldyrev, I.A.; Kapkaeva, M.R.;

Shcheglovitova, O.N.; et al. Protein

Corona Attenuates the Targeting of

Antitumor Sialyl Lewis X-Decorated

Liposomes to Vascular Endothelial

Cells under Flow Conditions.

Pharmaceutics 2023, 15, 1754.

https://doi.org/10.3390/

pharmaceutics15061754

Academic Editors: Franco Dosio

and Xiaowei Zeng

Received: 17 April 2023

Revised: 23 May 2023

Accepted: 12 June 2023

Published: 16 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Article

Protein Corona Attenuates the Targeting of Antitumor Sialyl
Lewis X-Decorated Liposomes to Vascular Endothelial Cells
under Flow Conditions
Natalia R. Onishchenko 1,†,‡ , Alexey A. Moskovtsev 2,†, Maria K. Kobanenko 1, Daria S. Tretiakova 1 ,
Anna S. Alekseeva 1 , Dmitry V. Kolesov 2 , Anna A. Mikryukova 2, Ivan A. Boldyrev 1 , Marina R. Kapkaeva 3,
Olga N. Shcheglovitova 3, Nicolai V. Bovin 1 , Aslan A. Kubatiev 2, Olga V. Tikhonova 4

and Elena L. Vodovozova 1,*

1 Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences,
ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; natalia.r.onishchenko@gmail.com (N.R.O.)

2 Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, ul. Baltiyskaya 8,
125315 Moscow, Russia

3 N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Healthcare of the
Russian Federation, ul. Gamaleya 18, 123098 Moscow, Russia

4 Institute of Biomedical Chemistry, ul. Pogodinskaya 10, 119121 Moscow, Russia
* Correspondence: elvod.ibch@yandex.ru
† These authors contributed equally to this work.
‡ Current address: Center for Soft and Living Matter, Institute for Basic Science, UNIST-gil 50 bldg. 103,

Ulsan 44919, Republic of Korea.

Abstract: Previously, we showed in the human umbilical vein endothelial cells (HUVECs) model
that a liposome formulation of melphalan lipophilic prodrug (MlphDG) decorated with selectin
ligand tetrasaccharide Sialyl Lewis X (SiaLeX) undergoes specific uptake by activated cells and in an
in vivo tumor model causes a severe antivascular effect. Here, we cultured HUVECs in a microfluidic
chip and then applied the liposome formulations to study their interactions with the cells in situ
under hydrodynamic conditions close to capillary blood flow using confocal fluorescent microscopy.
The incorporation of 5 to 10% SiaLeX conjugate in the bilayer of MlphDG liposomes increased their
consumption exclusively by activated endotheliocytes. The increase of serum concentration from
20 to 100% in the flow resulted in lower liposome uptake by the cells. To elucidate the possible
roles of plasma proteins in the liposome–cell interactions, liposome protein coronas were isolated
and analyzed by shotgun proteomics and immunoblotting of selected proteins. Proteomic analysis
showed that a gradual increase in SiaLeX content correlated with the overall enrichment of the
liposome-associated proteins with several apolipoproteins, including the most positively charged one,
ApoC1, and serum amyloid A4, associated with inflammation, on the one hand, and a decrease in the
content of bound immunoglobulins, on the other. The article discusses the potential interference of
the proteins in the binding of liposomes to selectins of endothelial cells.

Keywords: nanosized liposomes; lipophilic prodrug; melphalan; Sialyl Lewis X; endothelial cells;
microfluidics; proteome

1. Introduction

Today, liposomal formulations of anticancer drugs are used to treat a whole number
of tumor diseases in clinics [1–4]. Parenteral administration of drug-loaded nanosized lipo-
somes permits the alleviation of systemic toxicity of small-molecule antitumorials through
lower concentration of the free drug in blood and tendency of nanoparticles to accumulate
in tumors’ impaired vasculature (enhanced permeability and retention effect, EPR) [5,6].
Yet ligand-mediated targeting of tumors continues to be a challenge owing, first of all, to
the vascular and interstitial barriers [1,7,8]. Further, spatial and temporal heterogeneity in
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tumor tissue caused by the growth of multiple genetic subpopulations prevents the success
of therapy that specifically targets individual clones of malignant cells [9]. Targeting the
cells of angiogenic endothelium, which support the survival and growth of tumor tissue,
could resolve these obstacles. The strategies include targeting vascular endothelial growth
factor/receptors [10–12], αvβ3 integrin receptors overexpressed on endothelial cells in vari-
ous types of cancer [13–15], as well as vascular cell adhesion molecule-1 (VCAM-1) [16–19]
and intercellular adhesion molecule-1 (ICAM-1) [20,21].

Selectins (carbohydrate-binding cell adhesion molecules) have evolved as a promising
target for delivery to the tumor endothelium [22,23]. They are expressed on the surface
of activated endothelial cells (E- and P-selectins), circulating leukocytes (L-selectin), and
activated platelets (P-selectin). Selectins play a key role in inflammatory reactions and
the development of metastases, according to a mechanism that sequentially includes the
events of leukocyte rolling, their firm adhesion, and trans-migration through the endothe-
lium. [24,25]. Selectin ligands include a variety of sialylated and fucosylated glycans
containing tetrasaccharide Sialyl Lewis X (SiaLeX, Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ)
as a common epitope [26]. Several studies have been reported on drug delivery to tumors
and inflammatory foci using immunoliposomes with engrafted anti-E-selectin mAbs (for
example, [27]; reviewed in [22]). SiaLeX conjugated onto liposome surface has also been
used for targeting activated endothelial cells [28]. The complexity of synthesis stimulated
studies with liposomes decorated with a simpler SiaLeX glycomimetic [29,30].

Previously, we showed that liposomal formulation of a melphalan lipophilic prodrug
(MlphDG, Figure 1) could cause severe injuries to tumor vessels in the Lewis lung carcinoma
model when equipped with a diglyceride conjugate of SiaLeX in the bilayer [31]. It is most
likely that endothelial cells were disrupted by the cytotoxic action of melphalan generated
intracellularly, since prodrug-free SiaLeX-liposomes did not cause vascular damage [31]. Our
further study on the human umbilical vein endothelial cell (HUVEC) model revealed specific
interactions between SiaLeX-targeted MlphDG liposomes and activated HUVECs expressing
E-selectin on their surface, which resulted in rapid internalization of the liposomes [32]. Con-
current destabilization of the liposome membranes presumably facilitates esterase hydrolysis
of the lipophilic prodrug with the release of the cytotoxic agent. Importantly, resting HUVECs
(i.e., not stimulated by a cytokine) bound only a small number of SiaLeX-liposomes, which
kept the membrane intact [32]. Thus, the approach promises selective delivery of drug-loaded
liposomes to the angiogenic endothelium of tumors.
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Our liposomal formulation bears a significant amount of phosphatidylinositol (PI)
equal to the MlphDG load. PI can increase the circulation half-life of nanosized liposomes,
presumably due to its voluminous, highly hydrated head group [33,34]. Pegylation of
liposomes, widely used to stabilize them in the bloodstream, often causes adverse reactions
against PEG (reviewed in [35,36]). Recently, we showed that an equimolar amount of PI and
MlphDG favors liposome stability and integrity under the impact of plasma proteins [37,38].
The formulation showed good hemocompatibility and did not activate the complement
system, either without SiaLeX-conjugate in the bilayer or with it [39].

In complex in vivo environments, a number of factors interfere with targeting. Par-
ticularly, hydrodynamic parameters are key elements of the endotheliocyte environment,
yet their effects on the uptake of delivery vehicles are poorly studied. Another important
factor affecting the interactions of nanoparticles with cells is the protein corona, that is,
a layer of proteins and lipoproteins that instantly covers the carrier in the presence of
serum (or plasma) proteins, under both static and flow conditions [40–42]. Pioneering
works on the effect of flow conditions on liposome protein corona reported differences in
the compositions of proteins deposited on pegylated cationic liposomes [43], as well as
the internalization rate thereof by cancerous cells [44] under static and flow conditions.
Several studies utilized microfluidic chips for precise control of conditions under which the
nanoparticles and biologic fluids interact under flow [45,46]. Very few studies proposed
the microfluidics approach for simultaneous in-flow corona generation on nanoparticles
and their interaction with cells [47,48].

The goal of this work was to study the binding capacity of the SiaLeX liposomal for-
mulation of MlphDG to endothelial cells in a model of blood flow. We used a microfluidic
device that allowed us to create controlled hydrodynamic conditions for cultured endothe-
lial cells and demonstrated the persistence of increased absorption of SiaLeX liposomes by
activated HUVECs with an increase in SiaLeX ligand content. Liposome–cell interactions
were probed in human serum flow. To take into account the possible contributions of
the protein corona to liposome–cell interactions, we isolated liposome–protein complexes
formed during the incubation of MlphDG liposomes in plasma and studied corona pro-
teins by methods of classical biochemistry and modern proteomics. Proteomic analysis
revealed differences between targeted and plain samples, which could be the reason for the
weakening of liposome–cell interactions observed in the presence of plasma proteins.

2. Materials and Methods
2.1. Chemicals and Materials

Phosphatidylcholine from egg yolk (ePC; USP grade, Lipoid E PC S) was purchased
from Lipoid GmbH (Heidelberg, Germany); raw soybean phosphatidylinositol (PI, a kind
gift from Lipoid) was purified by chromatography on silica gel and characterized by
1H-NMR spectroscopy as an individual phospholipid. Dioleoylglycerol ester melphalan
conjugate (MlphDG) [49], diglyceride conjugate of SiaLeX [50] and 1,3,5,7-tetramethyl-
BODIPY-labeled phosphatidylcholine (TMB-PC) [51] were synthesized as previously re-
ported. Bovine serum albumin (BSA) and Tris were purchased from PanEco (Russia),
Sepharose CL-4B for size-exclusion chromatography (SEC), from Sigma (Burlington, MA,
USA). The solvents were purified by distillation.

Buffer compositions were as follows: phosphate buffered saline (PBS; KH2PO4, 0.2 g/L;
NaH2PO4 × 2H2O, 0.15 g/L; Na2HPO4, 1.0 g/L; KCl, 0.2 g/L; NaCl, 8.0 g/L, pH 7.4); Tris-
buffered saline (TBS; NaCl, 4.39 g; Tris, 3.03 g; H2Odd, 500 mL), pH 7.97; Tris-HCl, pH 7.0
(30 mM Tris); SDS-PAGE sample buffer (0.075 M Tris-HCl, pH 6.8, 10% glycerin, 2% SDS, 5%
β-mercaptoethanol, 0.01% bromophenol blue).

Primary polyclonal rabbit antibodies to human component C3 (Cloud-Clone Corp.,
Houston, TX, USA), rabbit antibodies to human vitronectin and complement factor I
(Complement Tech., Tyler, TX, USA), sheep polyclonal antibodies to human C4BP (Abcam,
Cambridge, UK), monoclonal murine antibodies to immunoglobulins G and M, ApoA1
(IMTEK, Moscow, Russia), and polyclonal rabbit antibodies to human ApoH (Cloud-Clone
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Corp., Houston, TX, USA) were used. Rabbit antibodies to sheep IgG conjugated with
horse-radish peroxidase (Jackson ImmunoResearch, West Grove, PA, USA) and rabbit
antibodies to mouse IgG and mouse antibodies to rabbit IgG conjugated with horse-radish
peroxidase (Sigma-Aldrich, St. Louis, MO, USA) were used as secondary antibodies.

Blood samples from nine healthy donor volunteers were collected in vacuum tubes
over EDTA (Greiner Bio-One, Kremsmünster, Austria). The plasma was separated by
centrifugation at room temperature for 30 min at 1660× g (CM-6M, ELMI, Riga, Latvia).
The supernatants were pooled, transferred into fresh tubes, and centrifuged at 600× g for
another 10 min. Plasma aliquots were frozen in liquid nitrogen and stored at −70 ◦C.

In order to obtain the serum for microfluidic experiments, Becton Dickinson vacutain-
ers with a coagulation activator were used. The serum was frozen in liquid nitrogen and
thawed at 37 ◦C immediately before usage. Human recombinant tumor necrosis factor
alpha (TNF-α) was a kind gift received from Dr. L.N. Shingarova (IBCh RAS).

2.2. Preparation of Liposomes

Liposomes (large unilamellar vesicles) were prepared by lipid film hydration followed
by extrusion as described earlier [37,52]. Mixtures of ePC, PI, SiaLeX-conjugate and MlphDG
in the required molar ratios (Table 1) in chloroform–methanol (2:1) were dried by rotary
evaporation in round-bottomed tubes and then in vacuum at 7 Pa for at least 1.5 h. The
lipid films were hydrated with PBS (unless otherwise specified) under shaking at room
temperature for 2 h. Then, the suspensions were subjected to 5–7 cycles of freezing/thawing
(N2 liquid/+40 ◦C) and extruded 20 times through polycarbonate Whatman Nuclepore
membrane filters (Cytiva, Marlborough, MA, USA) with a pore size of 100 nm using a
Mini-Extruder setup (Avanti Polar Lipids, Alabaster, AL, USA). The resulting dispersions
were stored at 4 ◦C and used for experiments within 3 days.

Phospholipid concentrations in liposome dispersions were measured by the enzymatic
colorimetric phosphatidylcholine assay (Sentinel Diagnostics, Milan, Italy), as described
in [52]. Prodrug concentrations were measured by UV spectrophotometry after liposome
disruption with ethanol (λmax MlphDG 260 nm, ε 16,100 M−1cm−1).

To obtain fluorescently labeled liposomes for microfluidic experiments, 0.5 mol %
TMB-PC was added at the stage of lipid film formation.

2.3. Liposome Hydrodynamic Diameter and Zeta Potential Measurements

Hydrodynamic diameters of the liposomes were measured in diluted dispersions
(final lipid concentration 50 µg/mL in PBS) using a Brookhaven Particle Analyzer 90+
(Brookhaven Instruments Corp., Holtsville, NY, USA; helium-neon laser, 633 nm,
90◦ angle), 3 cycles of 1 min.

For reliable measurements of zeta potential according to the criteria of the Smolu-
chovski model [53], liposome samples with diameters of around 200 nm were prepared
in 10 mM KCl, 1 mM K2HPO4, 1 mM KH2PO4, pH 7.0 buffer (PB) using 200 nm polycar-
bonate membrane filters for extrusion. Samples of the liposomes (0.85 mL, 1 mg/mL total
lipids) were equilibrated for 1 min in cuvettes before measurements of 100 to 500 cycles per
sample were performed at 25 ◦C using Litesizer 500 (Anton Paar GmbH, Austria; 658 nm).
Measurements were completed in triplicate.

2.4. Determination of the Zeta Potential of Liposome–Protein Complexes

Liposomes of approximately 200 nm in size were prepared as described for the mea-
surements of zeta potential in Section 2.3. A 200-µL aliquot of frozen pooled plasma was
thawed on a water bath at 37 ◦C for 15 min and centrifuged at 12,000× g for 30 min. Then,
90 µL of supernatant was mixed with 90 µL liposome dispersion (20 mM) and incubated at
37 ◦C for 15 min. Proteolysis was stopped by adding ethanol solution of phenylmethyl-
sulfonyl fluoride (0.1 M, 1.8 µL) and 180 µL of thus obtained dispersion was applied onto
a Sepharose CL-4B column (1.0 × 27 cm) equilibrated with PB. After elution of the void
volume (~7 mL), 16 fractions of ~200 µL were collected. Liposome and protein elution was
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monitored by absorbance at 210 and 280 nm using the NanoDrop OneC spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA). Five fractions, most rich with liposomes,
were pooled, mixed, and transferred to a disposable Omega cuvette (Anton Paar GmbH,
Austria) without dilution to obtain a zeta-potential value. For each liposome sample,
incubation and further treatment were performed thrice.

2.5. Hydrodynamic Modeling: Fabrication of Microfluidic Chips

Microfluidic chips were produced using standard soft lithographic techniques [54].
Chip configuration was first designed in CAD. The chip consisted of four microchannels
with a broad middle part (see Figure 2a for the scheme). The broad part was 1.5 mm wide
and approximately 12 mm long. The height of all channels was 200 µm. Each channel had
three inlets: one for cell loading and bubble elimination and two for medium flow. Soft
lithography molds were micro-milled from plexiglass. We used polydimetisiloxane (PDMS,
Sylgard 184 Silicone Elastomer Kit, Dow Corning, Midland, MI, USA) as a material for
chip fabrication, with cover glass as a substrate. The prepolymer mixture was prepared
and cured according to the manufacturer’s instructions. Cured replicas were bonded to
glass substrates upon activation with oxygen plasma (Atto, Diener Electronic, Ebhausen,
Germany). Computational fluid dynamics analysis was used for the estimation of applied
shear stress. Volume flow rate and total atmospheric pressure were used as boundary
conditions for the inlet and outlet, respectively.
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2.6. Primary Culture of Human Umbilical Vein Endothelial Cells

Individual donor endothelial cells (HUVECs) were isolates from human umbilical cords
according to the methods of Jaffe [55] and Scheglovitova [56]. Umbilical cords were obtained
after normal parturition from five healthy donors following informed written consent.

Briefly, fresh umbilical veins were cannulated and filled with dispase solution
(2 mg/mL) (Gibco, New York, NY, USA) and incubated at 37 ◦C for 30 min. Then, the
veins were perfused with PBS. Cells were collected from the perfusate by centrifugation at
1000 rpm for 10 min, resuspended in Medium 199 (Gibco) supplemented with 10% fetal
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calf serum (HighClone, Logan, UT, USA), 200 µg/mL endothelial growth factor (Sigma),
100 µg/mL heparin (Moskovskii endokrinnyi zavod, Moscow, Russia), and 50 µg/mL
gentamycin (KRKA), and seeded into 25–75 sm2 (6-well plates) cultural flasks. Cells were
cultured in a humidified atmosphere of 5% CO2 at 37 ◦C. The confluent primary mono-
layers were washed and trypsinized (0.05% trypsin + 0.02% EDTA, Gibco). The cells were
resuspended into a complete medium, seeded in 48-well plates (140,000 cells/mL) (Costar,
Washington, DC, USA), and cultured for four days. Only the first subcultures were used
for further experiments.

2.7. Cell Culturing in Microfluidic Chips

In order to form a monolayer of HUVECs in a microfluidic chip, the confluent primary
monolayers were washed and trypsinized (0.05% trypsin + 0.02% EDTA, Gibco). The cells
were resuspended into a complete medium, and a suspension of 5 × 106 cells/mL was injected
into the channels of the chip precoated with 0.01% solution of collagen overnight at room
temperature, after which the chip was placed in a wet chamber in the incubator overnight.

The monolayers of HUVECs on the walls of microchannels were inspected under an
inverted microscope. The chip was connected to a dosing system, Nemesis (Cetoni, Korbußen,
Germany), which allows precise computer control of the flow rate with Teflon tubes. Temper-
ature control in the chip channels was carried out using a thermoelectric module guided by a
controller (RMT Ltd., Moscow, Russia) with a temperature feedback system.

2.8. Liposome Uptake by HUVECs in Microfluidic Chips under Flow

Cells in the chip were activated with 50 ng/mL TNF-α for 4 h at 37 ◦C before the flow
was applied.

Human blood serum or DMEM medium without phenol red (Fluorobrite) with 20%
FBS was mixed with fluorescently labeled liposomes to a final concentration of 50 µM by
lipids and then loaded into the syringes of the Nemesis dosing system. The mixture was fed
to fill the tubes leading to the chip. After that, the tubes were connected to the ports of the
chip and the flow was started into microchannels with a given volume flow rate. We used
non-pulsating constant unidirectional laminar flow with a flow rate of 100 µL/min in the
channels of the microchip. As a control, we used a flow of 0 µL/min, also referred to as “no
flow”. The no flow conditions mean that after the introduction of the liposome suspension
into the microchannel, there was no flow in this microchannel during the entire time of the
experimental exposure. We also used quasi-static conditions with the flow of 5 µL/min
to simulate a very low shear stress (<0.01 Pa), resembling the interstitial flow-induced
physiological shear of cells [57]. After 15 min of exposure to the flow, a 4% solution of
formalin in PBS was injected into the microchannels to fix the cells for 5 min. Then, the
channels were washed with 2 mL of PBS per channel.

For the subsequent segmentation of the image of the cell monolayer, labeling with
propidium iodide (PI, 1 µg/mL) and a lipophilic cationic dye 1,1’-dioctadecyl-3,3,3’,3’-
tetramethylindocarbocyanine perchlorate (DiI, 1 µM) was used. These probes were injected
sequentially into microchannels with pre-fixed monolayers of HUVEC cells.

The microchannels of the chip were visualized on a Nikon Eclipse TE 2000-u C1
confocal inverted microscope using the EZ-C1 software version 3.91. The images were
captured sequentially using 488 and 543 nm lasers and 515/30 nm and 570 LP detectors,
respectively, with 4×, 10×, and 20× Plan Fluor objectives. The parameters of image
acquisition (gain, exposure time, and laser power) were not changed within a series of
experiments but could vary between the series. Furthermore, 16-Bit monochrome images
were segmented using an ImageJ script and the mean fluorescence intensity of individual
cells was calculated. At least 3 fields were recorded with approximately 2700 cells per field.

In order to select the method of statistical analysis, the data were first checked for
normal distribution using the Kolmogorov–Smirnov test. The distributions of mean cell
fluorescence intensities after incubation with fluorescently labeled liposomes in microfluidic
chips under different experimental conditions were usually not normal, and nonparametric
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methods were used for their further analysis: the median test and the Kruskal–Wallis
test. Statistical analysis was performed with the Statistica software version 10.0 (StatSoft
Inc., Tulsa, OK, USA). Differences were considered significant at p < 0.05. The number of
repeated experiments in each series was at least three.

2.9. Liposome Uptake by HUVECs under Static Conditions

For the experiments under static conditions, 10 mM total lipid liposomes with 1 mol %
TMB-PC were used. A 600-µL aliquot of frozen pooled plasma was thawed on a water bath
at 37 ◦C and centrifuged at 12,000× g for 30 min. Then, 540 µL of supernatant was mixed
with 60 µL liposome dispersion and incubated at 37 ◦C for 15 min. Similarly, liposomes
were incubated in 90% FBS when indicated. Immediately after that, the liposomes were
dissolved in serum-free Medium 199 (PanEko, Russia) to 100 µM total lipids (final plasma
concentration in the medium was ~10% by volume).

HUVECs confluent monolayer in 48-well plates (seeding density 140,000 cells/mL)
was activated with 50 ng/mL TNF-α for 4 h at 37 ◦C, washed with DPBS (PBS with calcium
and magnesium salts, PanEco, Russia), and incubated with liposomes (with protein corona)
for various incubation periods. Then, the cells were washed with DPBS, resuspended in
0.02% EDTA solution (10 min, 37 ◦C) and then in 0.3 µg/mL PBS solution of propidium
iodide, and stored on ice prior to measurements on the flow cytometer.

Cell suspensions were analyzed on a FACScan (Becton Dickinson, Franklin Lakes, NJ,
USA) flow cytometer using the CellQuest software. The fluorescence signal was detected in
channels FL1 (515–545 nm), FL2 (565–610 nm), and FL3 (>650 nm), two runs of 10,000 target
events per sample. To exclude cell aggregates, debris, or dead cells from the analysis, target
events were gated by forward and side scattering (FSC/SSC) and the propidium iodide signal.

2.10. Isolation of Liposome–Protein Complexes from Plasma

A 600-µL aliquot of frozen pooled plasma was thawed on a water bath at 37 ◦C for
15 min and centrifuged at 12,000× g for 30 min. Then, 540 µL of supernatant was mixed with
60 µL liposome dispersion (40 mM) and incubated at 37 ◦C for 15 min. After the incubation,
proteolysis was stopped by adding an ethanol solution of phenylmethylsulfonyl fluoride
(0.1 M, 6 µL) and 500 µL of thus obtained dispersion was applied onto a Sepharose CL-4B
column (1.5 × 33 cm) equilibrated with PBS. After elution of most of the void volume
(~15 mL), 16 fractions of ~1 mL were collected. Liposome and protein elution was moni-
tored as described in Section 2.4. The four fractions that were most rich with liposomes
were pooled and concentrated (in several aliquots) down to 120 µL using the Vivaspin
2 concentrators (MWCO 300 kDa, Sartorius, Göttingen, Germany) by centrifugation for
~100 min at 740× g (CM-6M, ELMI) at room temperature. Before usage, membranes of
the concentrators were passivated with 1% BSA solution overnight at 4 ◦C and washed as
specified by the manufacturer.

As a negative control (when no protein corona is formed), a plasma sample was treated
in the same manner as the liposome–protein mixtures. Upon SEC separation of the plasma
control, protein concentration in fractions corresponding to the liposome elution was too
low for proteomics analysis (see further). For this reason, we combined the material of
three SEC elutions of control plasma.

2.11. HPLC-MS/MS Sample Preparation

Samples of liposome–protein complexes were processed with trypsin according to the
S-Trap™ (suspension trapping proteolysis) micro spin column [58]. All steps were performed
according to the digestion protocol recommended by the manufacturer. Briefly, to the samples
in the Eppendorf tubes (2 mL), 20 µL 100 mM triethylammonium bicarbonate (TEAB) buffer
was added and mixed with lysing buffer (10% SDS, 100 mM TEAB, pH 7.55) with ratio 1:1.
The dispersion was sonicated for 20 s thrice on ice and centrifuged at 13,000× g for 8 min at
10 ◦C for foam removing. Then, 2 µL 0.5 mM tris(2-carboxyethyl)phosphine hydrochloride
(Sigma-Aldrich) and 4 µL 400 mM 2-chloroacetamide were added to the sample solution
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tubes. The samples were incubated for 30 min at 80 ◦C and cooled to room temperature. After
the addition of 12% H3PO4 at a 1:10 ratio, the dispersion was pipetted, and 6-time volumes
(304 µL) of S-Trap protein binding buffer (90% aqueous methanol containing 10 mM TEAB,
pH 7.5) were added. The resulting mixture for each sample was shaken thoroughly and
applied twice (by 152 µL) onto S-trap filters and centrifuged for 4 min at 4000× g. Then,
each sample was washed with 150 µL S-Trap protein binding buffer 4 times at 4000× g
with flow-through removal. Trypsin solution in 50 mM TEAB was added to the samples
(trypsin to protein ratio of 1:25) and incubated for 1.5 h at 47 ◦C. After the incubation,
40 µL 50 TEAB and 0.2% formic acid were added to the S-trap filters and the samples were
centrifuged for 4 min at 4000× g. Then, obtained peptides for each sample were eluted in the
clean tubes with 35 µL 0.2% formic acid solution in 50% acetonitrile added and centrifuged
for 4 min at 4000× g. The hydrolyzates were dried in a vacuum concentrator (Eppendorf
Concentrator plus, Germany) and redissolved in 0.1% formic acid to a final concentration
of 1 µg/µL. Peptide concentration in samples was assayed using the Pierce™ Quantitative
Colorimetric Peptide Assay kit (Thermo Scientific, Waltham, MA, USA) according to the
manufacturer’s recommendations.

2.12. HPLC-MS/MS Data Acquisition and Analysis

Proteomic analysis of peptide mixtures was performed using the Ultimate 3000 RSLC-
nano (Thermo Scientific, USA) system equipped with a Q-Exactive HFX (Thermo Scientific)
mass spectrometer. One microliter of the peptide mixture was applied to an Acclaim µ-
Precolumn (0.5 × 3 mm, 5 µm) at a flow rate of 10 µL/min for 4 min under isocratic mode
using buffer C as a mobile phase (2% acetonitrile, 0.1% formic acid in deionized water).
Then, the peptides were separated using the Acclaim PepmapTM C18 (75 µm × 150 mm,
2 µm) (Thermo Scientific) column under the following gradient of B (80% acetonitrile in 0.1%
aqueous formic acid) in A (0.1% aqueous formic acid): 2% for 10 min, from 2 to 35% for 68 min;
from 35 to 99% for 2 min; 99% for 2 min; from 99 to 2% for 3 min. Total duration of the analysis
was 90 min.

Mass spectrometry analysis was performed under positive ionization mode using
the NESI source (Thermo Scientific). The following settings were used: emitter voltage
2.1 kV; capillary temperature 240 ◦C. Panoramic scanning was performed in the mass range
from 300 to 1500 m/z at 120,000 resolution. For tandem scanning, 15,000 resolution in
the mass range from 100 to the upper limit was determined automatically from precursor
mass, but not more than 2000 m/z was used. Precursor ions were isolated in the ±1 Da
window. The maximum number of resolved ions under the MS2 mode was set as not
more than 40, the limit of precursor choice for tandem analysis was set at 50,000 units, and
normalized collision energy (NCE) was 29. For tandem scanning, only ions with z form
2+ to 6+ were considered. The maximum time for precursor ion accumulation was 50 ms,
and for fragment ions, 110 ms. The AGC (Automatic Gain Control) value for precursor
and fragment ions was 1 × 106 and 2 × 105, respectively. All measured precursors were
dynamically excluded from tandem MS/MS analysis for 90 s.

Raw MS data files were analyzed using the MaxQuant v. 2.1.0.0 software with the An-
dromeda searching algorithm [59]. The UniProt FASTA human protein database (April 2022)
was used for identification. The following search parameters were used: cleaving enzyme,
trypsin; two missed cleavages allowed; monoisotopic peptide mass determination preci-
sion, ±4.5 ppm; mass determination precision in MS/MS spectra, ±20 ppm. Oxidation
of methionines and acetylation at the N terminus was considered possible, and cysteine
carbamidomethylation was a necessary modification. For validation of Peptide-Spectrum
Matches, FDR (False Discovery Rate) < 0.1% was used for peptide and protein identifica-
tions. Proteins were considered reliably identified if at least two peptides were detected.
LFQ (label-free quantification) and iBAQ (intensity-based absolute quantification) values
were used to evaluate protein quantities.

In order to evaluate the content of the proteins in each experimental group of samples,
the relative protein abundance, RPA (%), was calculated based on the iBAQ values. For
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this, the sum of the iBAQ values in the technical replicates for each protein was divided by
the sum of iBAQ values for all identified proteins in the sample and multiplied by 100%.
Statistical analysis of proteomic data was carried out using the Perseus v.1.6.15.0 software.
In order to compare proteins between samples, the protein iBAQ (to calculate relative
protein abundance or RPA %) or LFQ (to compare protein intensities between samples)
values of the samples were loaded into the program, including technical replicates. Four
groups were formed: control plasma, MLPH, 5SX, and 10SX (three or four replicates for two
independent samples each). The data were filtered out beforehand: possible contaminant
proteins and false positive identifications were removed; proteins identified by two or
more peptides and present in at least 70% of samples in at least one isolated group were
left for analysis. Then, data were log2-transformed and normalized using the z-score
function. Missing values were replaced from the normal distribution. In order to determine
statistically significant differences between the groups, the multi-sample ANOVA with
post-hoc Tuckey’s HSD test (FDR 0.05) was used. Statistically significant differences were
considered with a fold change > 2 and a value of q < 0.01.

2.13. Delipidization of Liposome–Protein Complexes, SDS-PAGE, and Immunoblotting

Delipidization was performed as described in [60] and in our recent study [52]. The
resulting protein samples were dissolved in 36 µL of 2× standard reducing buffer for
SDS-PAGE and boiled 2 × 2 min. SDS-PAGE was carried out in 6% concentrating and 12%
separating gels on a Mini Gel Tank (Thermo Fisher Scientific, Waltham, MA, USA) setup
for 47 min at 200 V. Precision Plus ProteinTMDual Color Standards (Bio-Rad Laboratories,
Inc., Hercules, CA, USA) was used as molecular weight marker. Proteins were visualized
by silver staining or transferred to a PVDF membrane using the Mini Gel Tank (Thermo
Fisher Scientific, Waltham, MA, USA) at 20 V for 60 min. After the end of the transfer, the
membrane was washed with TBS and, to prevent non-specific sorption, incubated in 5%
low-fat dry milk in TBS with 0.1% Tween 20 (TBS/T) for 1 h at room temperature. Then, the
membrane was washed with TBS/T (3 × 5 min) and incubated with primary antibodies
(anti-IgG, IgM, C3, C4BP, fI, Vne, HSA, ApoA1, ApoE, ApoH) in 0.5% BSA solution for
2 h at room temperature. After that, the membrane was washed with TBS/T (15 min and
3 × 5 min), incubated with secondary antibodies conjugated with horse-radish peroxidase
at 4 ◦C overnight, and then washed again with TBS/T 5 × 5 min. Immunodetection was
performed with Clarity™ ECL Western Blotting Substrate (Bio-Rad) reagent and a VersaDoc
4000 (Bio-Rad) system.

2.14. Statistics

For each liposome sample, incubation and further treatment were performed thrice. The
relevant data obtained in experiments under static conditions are presented as means ± SD.
Specific statistical tests and software used in microfluidic chip experiments and in proteome
analysis are described in Sections 2.8 and 2.12, respectively.

3. Results and Discussion
3.1. Characteristics of Liposomes

Liposomes loaded with the melphalan lipophilic prodrug, MlphDG, are formed on the
basis of natural phospholipids egg phosphatidylcholine and soybean phosphatidylinositol,
which provide for a fluid-phase bilayer. The composition allows for avoiding heating
during liposome preparation, which accelerates the degradation of alkylating groups of
the melphalan module. Fluid-phase bilayer can also facilitate the intracellular unloading
of liposomes. The composition, measured size, and zeta-potential values of the liposomes
used in this study are presented in Table 1.



Pharmaceutics 2023, 15, 1754 10 of 25

Table 1. Composition and physicochemical characteristics of the liposome samples.

Sample Name Liposome Composition,
Mol Ratio

D, nm 1

Average ± SD
PdI 1,

Average ± SD

Zeta-Potential, mV 2

Average ± SD

Liposomes Liposome–Protein
Complex

ePC ePC 120.0 ± 1.1 0.028 ± 0.020 −3.3 ± 0.4 N/A

MLPH ePC–PI–MlphDG,
8:1:1 130.2 ± 1.4 0.087 ± 0.044 −8.8 ± 0.8 −11.7 ± 0.5

5SX ePC–PI–MlphDG–SiaLeX,
7.5:1:1:0.5

122.7 ± 0.8 0.069 ± 0.025 −25.0 ± 0.9 −22.1 ± 0.5

10SX ePC–PI–MlphDG–SiaLeX,
7:1:1:1

102.7 ± 1.0 0.079 ± 0.042 −31.7 ± 1.5 −28.1 ± 0.6

1 As assessed using Brookhaven Particle Analyzer 90+ (Brookhaven Instruments Corp., Holtsville, NY, USA); PdI,
polydispersity index. 2 Data for ~200-nm liposomes; zeta-potentials were measured using Litesizer 500 (Anton
Paar GmbH, Graz, Austria).

When equimolar amounts of negatively charged PI and MlphDG with a protonated
primary amino group (pH 7.4, PBS) were included in practically neutral ePC liposomes
composed of zwitterionic phosphatidylcholine molecules, PI not only compensated for the
MlphDG charge but also shifted the electrokinetic potential of the liposomes to a more negative
value (−8.8 mV). Such a result can be explained by the structural nonequivalence of the PI
and MlphDG polar head groups and the different arrangement of their charged groups on
the surface of the lipid bilayer, where phosphates protrude into the aqueous phase somewhat
more than protonated amino groups. The inclusion of increasing amounts of SiaLeX conjugate
exposing the dissociated carboxyl group in the MLPH liposome bilayer led to a further
progressive increase in the negative charge of the liposomes (from −25 to −31.7 mV). When
liposomes were incubated with 50% human plasma and liposome–protein complexes were
separated from free proteins, we observed slight changes in liposome zeta-potentials (Table 1).
Adsorbed proteins have moderately shifted all values closer to the common value of −20 mV.
This value is typical of liposomes, and nanoparticles in general, covered with a layer of plasma
proteins irrespectively of the initial nanoparticle surface charge, which is thought to be due to
the fact that most plasma proteins carry net negative charge at physiological pH [61,62].

3.2. Hydrodynamic Conditions in Microfluidic Chips

The use of microfluidic technologies for the development and testing of targeted drug
transport to cells and tissues is becoming a widespread practice [63,64]. In this study,
microfluidic chips with four channels were designed (Figure 2a) to allow for repeated
measurements within a single experiment, while the surface area in each channel was made
large enough to ensure the formation of a monolayer of more than 10,000 HUVEC cells.

The magnitudes of shear stress vary in different parts of the vascular system. In the
arteries, the flow is highly pulsating, and the shear stress is in the range of 1–5 Pa. A similar
amplitude, although with less pulsation, is observed in the capillaries. In the veins, it is
0.1–0.5 Pa with minimum pulsation [65–67]. Similar values are reported for individual
elements of the vascular bed in other sources: mean shear stress often is <0.1 Pa in the large
veins; it can reach 6–8 Pa in small arterioles and 2–4 Pa in small venules [68,69].

The choice of hydrodynamic conditions for the microfluidic setup was made, taking
into account the venous bed origin of HUVECs. Moreover, the monolayer of endothelial
cells in the chip has less elastic mechanical compensation capabilities due to a lack of
interaction with other natural elements of connective tissue. Hydrodynamic calculations
showed that at a volume flow rate (hereinafter referred to as flow rate) of 100 µL/min, the
shear stress in the channel reaches 0.2 Pa (Figure 2b). Considering the above, we used a
non-pulsating constant unidirectional laminar flow with a flow rate of 100 µL/min as a
physiological flow in the channels of the microchip.
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3.3. Liposome Uptake by HUVEC Cells in Microfluidic Chips

The effectiveness of internalization by HUVEC cells of fluorescently labeled lipo-
somes under dynamic conditions was studied depending on a number of factors: the
presence/absence of the selectin ligand SiaLeX, activation by proinflammatory cytokine
TNF-α, flow rate, and medium composition.

Activation with TNF-α increased the accumulation of liposomes carrying 5% SiaLeX

ligand in cells under the flow of the medium supplemented with 20% FBS (Figure 3). Under
static conditions, the internalization of 5SX liposomes by activated cells was significantly
higher than under flow conditions (Figure 3c). Apparently, when the flow velocity at the
wall is nonzero, the time of contact between the ligand and the receptor decreases and
might not be enough for the formation of a bond.
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Figure 3. Monolayer of HUVEC cells internalizing 5SX liposomes. Images of microchannel fragments
with HUVEC cells after activation for 4 h with 50 ng/mL TNF-α: (a) under static conditions, (b) under
flow of 100 µL/min, or (c) under flow, without the activation. (d) Distribution of fluorescence intensities
of HUVEC cells internalizing 5SX liposomes; data on internalization under static conditions (NO FLOW)
or with a flow rate of 100 µL/min. Data are presented as medians, 25–75 percentiles, and ranges of
values without outliers. Kruskal–Wallis criterion and the median test were used to compare the groups.
The monolayer of cells seeded into the microchannels for 18 h was activated for 4 h with 50 ng/mL
TNF-α. Control cells were not activated (–TNF-α). Then, the cells in the chip were exposed to a flow of
liposome suspension in Fluorobrite with 20% FBS for 15 min.

Under the same conditions, the 5SX liposomes were internalized by activated cells
more efficiently than the MLPH ones (Figure 4a). In the absence of activation, there was
no difference in the uptake of the two types of liposomes (Figure 4b). This evidences
the contribution of receptor-mediated endocytosis during the internalization of SiaLeX-
liposomes by activated HUVEC cells under flow conditions.
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Under flow conditions in human serum, the efficiency of internalization of 5SX li-
posomes was higher than that of the SiaLeX-free ones, although the level of liposome
consumption decreased compared to the experiment in the growth medium (compare
Figures 4a and 5a). We assume that liposome internalization by cells is mediated by the
protein corona formed on the liposome surface in both FBS and human serum. Competition
for the receptors is higher in human serum due to the higher total protein concentration.
This could explain lower liposome uptake by cells in human serum, compared to 20% FBS.
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Figure 5. Comparison of distributions of fluorescence intensities of activated HUVEC cells internal-
izing: (a) liposomes with various content of the SiaLeX ligand: MLPH vs. 5SX and 10SX samples
min at a flow rate of 100 µL/min, and (b) 5SX liposomes at a flow rate of 0, 5, and 100 µL/min. A
monolayer of cells pre-seeded into the microchannels for 18 h was activated for 4 h with 50 ng/mL
TNF-α, then exposed to the flow of a suspension of liposomes in the blood serum of healthy donors
for 15 min. Data are presented as medians, 25–75 percentiles, and ranges of values without outliers.
Kruskal–Wallis criterion and the median test were used to compare the groups.

The 10SX liposomes were almost twice more efficiently captured by activated cells in a
flow of 100 µL/min compared to the liposomes without a ligand (Figure 5a). These results
support the involvement of specific interactions between SiaLeX-liposomes and activated
endothelial cells under the conditions of a dynamic flow of human serum and could be
translated to the situation in the blood vessels, although without taking into account the
participation of blood cells.

The flow of growth medium with 20% serum reduced the internalization of SiaLeX-
liposomes by activated cells in comparison with static conditions (Figure 3c). A similar
trend, although statistically not significant, was observed in human serum (100 µL/min vs.
0 µL/min; Figure 5b). Presumably, higher competition with the more abundant proteins
in human serum (compared to 20% FBS) leads to overall lower liposome uptake by the
cells. Against this low uptake, the difference between flow and quasi-static conditions is
less pronounced.

Unexpectedly, the uptake of SiaLeX-loaded liposomes into activated cells was more
efficient under human serum flow of 100 µL/min than under quasi-static conditions
(5 µL/min), although the difference was weakly expressed (Figure 5b). Cell accumulation
of 10SX under quasi-static conditions (5 µL/min) also was slightly, yet significantly, lower
than under flow conditions (100 µL/min, Figure 6a). There was no difference between flow
and quasi-static conditions in a medium without serum (Figure 6b), but the intensity of cell
fluorescence exceeded that acquired in serum (Figure 6a).
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preparation conditions and data presentation details.

In general, our results suggest that the protein corona can reduce the effectiveness of
receptor-mediated endocytosis in the flow and decrease the absorption of SiaLeX-liposomes
under serum conditions. Among the additional factors that may influence the cellular
uptake of SiaLeX-containing liposomes, the effect of the shear threshold could be noted.
In the flow, carriers modified by ligands with low affinities, such as SiaLeX or SiaLeA, are
thought to bind cell surface through “rolling” and not by strong adhesion, with lower
shear deformations being accompanied by low adhesion; thus, maximum binding occurs at
intermediate values of the flow velocity [70–72]. Apparently, with different densities of the
protein corona and, accordingly, different availability of the low-affinity targeting ligand
for interaction with the receptor molecule, the intermediate values of the flow velocity
accompanying the shear threshold are to be different. Thus, the same flow rates can
differently affect the particles, carrying different (due to the different density of shielding
protein corona) amounts of ligand available to the receptor, with respect to their interactions
with target cells.

3.4. Liposome Uptake by Activated HUVECs under Static Conditions

To test the effect of the protein corona on liposome–cell interactions under more
simple conditions, independent of the complex influence of flow rates and shear stress, we
conducted experiments under statics. When liposome uptake by activated HUVECs was
studied under static conditions without a microfluidic chip, the results were similar to those
discussed above. The level of consumption of liposomes incubated in human plasma was
yet again lower than that after incubation in FBS (Figure 7). Yang and co-authors noted that
not only the higher quantity of proteins in human serum perplexes liposome endocytosis,
but also free proteins from human serum can have higher affinity to cell receptors on the
human cells used in experiments than bovine serum proteins [73].

Previously, we observed an increased accumulation of SiaLeX liposomes by HUVECs
under serum-free conditions, with the growth of the SiaLeX content in the bilayer [32].
Here, we show that increasing the amount of SiaLeX facilitated liposome absorption by
endothelial cells in the presence of serum proteins independently of the source of the
proteins (see Figure S1 for combined data).
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3.5. Plasma Protein Binding by Liposomes: General Results of the Proteome Analysis

Since we observed a potential interference of the protein corona in the ligand-mediated
uptake of the MlphDG liposomal formulation decorated with SiaLeX by endothelial cells,
we analyzed the proteome of liposome–protein complexes formed in human blood plasma.
The best option would have been to compare the protein coronas formed under flow
conditions within the microfluidic chips that we used. However, the experimental setup
dramatically limited sample volume and, consequently, protein content in the samples of
liposome–protein complexes. Therefore, we explored the protein coronas formed under
static conditions.

To separate liposome–protein complexes from plasma, we relied on an SEC proce-
dure, taking into account considerations of Kristensen and co-authors regarding possible
contaminations with plasma proteins [74]. Namely, we centrifuged pooled EDTA human
plasma prior to incubation with liposomes to get rid of contaminating protein aggregates.
We did use ultrafiltration to concentrate liposome-containing fractions prior to protein
analysis, being aware of the possibility of lower protein recovery in the absence of lipo-
somes. However, in contrast to the above-mentioned work [74], we only used a single
300,000 kDa filtration step with no extensive washings. We estimated the protein content
in blank plasma samples in the liposome-corresponding fractions to be roughly a third of
the protein content in the peaks of the liposome-containing samples. For this reason, for
LC-MS/MS and Western blotting experiments, each plasma control sample was prepared
by joining three SEC runs. We then confirmed that there were no significant differences in
the peptide concentrations between liposome and control plasma samples assayed prior
to the LC-MS/MS analysis (see Figure S3). Thus, we consider the blank plasma sample a
valid control for contaminants.

According to LC-MS/MS, the control plasma sample consisted mainly of apolipopro-
teins and immunoglobulin fragments. These could contribute to the composition of li-
posomal coronas as contaminants. However, some of these proteins were depleted from
the liposomal samples (e.g., apolipoproteins E and A4) compared to the plasma control
according to LFQ intensities. All studied liposome protein coronas were also depleted
from von Willebrand factor (reported to belong to top-10 plasma contaminants upon
SEC separation by Kristensen and co-authors, together with immunoglobulin mu chain,
apolipoprotein B48/100, and several intracellular proteins), IgGFc-binding protein, galectin-
3-binding protein, and CD5L. They were enriched with albumin, apolipoproteins F and
M, cathelicidin, and ficolin-2. Apolipoprotein C1, serum amyloid A4 (SAA4) protein, and
immunoglobulin heavy constant gamma 1 chain were enriched on SiaLeX-containing li-
posomes. Proteins associated with the MLPH liposomes were more functionally diverse
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compared to other samples (see Figure 8 for relative protein contents in the samples and
Supplementary Table S2 for the results of the intersample comparison of LFQ intensities).
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Albumin was only observed to be associated with the liposomes (and not in blank
plasma samples), which speaks for its accumulation on the surface thereof. Relative
protein abundances (RPAs) of albumin, immunoglobulins, and complement proteins were
the highest for the MLPH sample compared to 5SX and 10SX. The contribution of total
lipoproteins gradually increases in the row HP < MLPH < 5X < 10SX. Also, within the
lipoprotein group, contributions of various apolipoproteins changed from one liposome
sample to another. Particularly, apolipoprotein C2, a component of VLDL (very low-density
lipoproteins) and chylomicrons, contributed roughly 20–30% of the protein in all liposome
samples (Table 2). Since it is also the most abundant protein in plasma fractions eluted from
the same column as liposomes (27.6 ± 5.4%; no significant differences in LFQ intensities
between 5SX/10SX and plasma control), one can suggest VLDL and chylomicrons are
eluted together with liposomes as contaminants.

Table 2. Relative protein abundances (RPA %) of top-10 proteins for liposome samples and plasma
control, mean ± SD.

Plasma Control MLPH 5SX 10SX

Gene Name * RPA % Gene Name RPA % Gene Name RPA % Gene Name RPA %

1 APOC4-APOC2 ** 27.6 ± 5.4 APOC4-APOC2 20.0 ± 9.8 APOC1 27.3 ± 4.1 APOC1 30.4 ± 1.1

2 IGHM 13.3 ± 2.9 APOC1 14.0 ± 0.8 APOC4-APOC2 24.2 ± 3.0 APOC4-APOC2 25.8 ± 1.8

3 APOE 9.3 ± 0.6 IGHM 11.0 ± 2.4 APOC3 8.4 ± 2.3 IGHM 8.1 ± 0.6

4 APOC1 7.1 ± 2.4 APOC3 8.0 ± 2.2 IGHM 7.7 ± 1.7 APOC3 6.8 ± 0.7

5 IGKC 7.0 ± 3.0 IGKC 6.3 ± 0.5 IGKC 4.2 ± 0.8 IGKC 4.1 ± 1.3

6 APOC3 6.6 ± 1.9 APOE 5.5 ± 0.5 APOE 4.1 ± 0.4 APOE 4.1 ± 0.5

7 IGLL5; IGLC1 3.8 ± 1.3 ALB 4.1 ± 0.5 ALB 3.5 ± 0.5 ALB 2.4 ± 0.2

8 IGJ 3.3 ± 1.0 APOD 3.2 ± 0.5 SAA2-SAA4 1.8 ± 0.3 SAA2-SAA4 1.7 ± 0.2

9 CD5L 1.7 ± 0.5 IGJ 2.4 ± 0.7 APOA1 1.4 ± 0.2 APOA1 1.4 ± 0.3

10 APOA2 1.5 ± 0.9 IGLL5; IGLC1 2.4 ± 0.5 APOM 1.4 ± 0.3 IGJ 1.4 ± 0.2

Note: See Supplementary Table S1 for the whole list of proteins and iBAQ values. * We report gene names rather
than protein names because the algorithm compares experimental spectra with calculated spectra of the peptides
that could have been produced if known human proteome genes (the UniProt FASTA human protein database)
had been translated and then processed under the conditions of the LC-MS/MS experiment. ** ApoC2 peptides
are considered to be derived from the ApoC4-ApoC2 read-through.

As for the growth of the lipoprotein fraction in samples 5SX and 10SX, this may be
attributed to the accumulation of the positively charged ApoC1 in the protein coronas
of liposomes decorated with polyanionic SiaLeX ligands on their surface. The RPA of
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ApoC1 in the corona of 5SX liposomes increased approximately two times in comparison
with the SiaLeX-free sample and continued to increase in liposomes 10SX. According to
the LFQ intensities, ApoC1 was significantly enriched on all liposomes, 5SX and 10SX
were also enriched compared to MLPH, and 10SX was enriched versus 5SX. ApoC1, the
smallest protein of all known apolipoproteins, 6.7 kDa, with a normal plasma concentration
of 0.04–0.07 mg/mL, is one of the most positively charged proteins of the human body
(pI 8.3) [75]. It is associated with both HDL (high-density lipoproteins) and VLDL. It
is possible that ApoC1 contributes most to the shielding of SiaLeX ligand from specific
interactions with E-selectin on activated endothelial cells, which we observed in the human
serum flow in a microfluidic device. Liposomes are characterized by lower content of
ApoE compared to blank plasma, which indicates VLDLs are more likely contaminants
of liposome–protein complexes isolated by SEC rather than particles interacting with the
liposomes. Notably, according to the LFQ intensities data, liposome protein coronas were
enriched with apolipoprotein M, a component of HDLs. Some of the protein constituents of
HDLs were enriched only in selected liposomal samples, particularly apolipoprotein C1 and
serum amyloid A4 (SAA4) protein on 5SX and 10SX and apolipoprotein C4 on 10SX. These
data suggest that HDL components are selectively adsorbed on liposome surfaces. SAA4,
constitutively expressed in the liver and secreted into plasma (~0.055 mg/mL) as part of
HDLs, serves as a precursor to the fibrillar tissue protein AA. The content of SAA4 increases
rapidly in the acute phase of inflammation in patients with venous thrombosis [76]. By
taking into account the connection of selectin expression with inflammatory processes, it
can be assumed that their ligand—SiaLeX—is somehow indirectly involved in interaction
with apolipoprotein SAA4.

Literature data on the protein corona proteome of anionic liposomes are scarce. An
early work by Caracciolo and co-authors suggests lower content of total apolipoproteins
(below 20%) and immunoglobulins (below 15%) for 100% POPG liposomes [77]. The au-
thors used low-speed centrifugation (14,000× g, 15 min) to isolate liposome–protein corona
complexes. While the technique could hardly result in the sedimentation of lipoproteins,
liposome–protein complexes also should have been isolated incompletely. This explains
the difference in the corona compositions with samples in the current study, in addition to
lipid composition-specific differences.

3.6. Plasma Protein Binding by Liposomes: Selected proteins

Along with the data of proteomic analysis, Western blotting (WB) provides verification
and refinement of data on the binding of individual proteins to liposomes.

Albumin is the most abundant serum protein, with a concentration of 35–50 mg/mL [78].
Human serum albumin (HSA) adsorption on the surface of liposomes can have ambigu-
ous outcomes: it can both prolong liposome circulation time [79] and induce macrophage
clearance and complement system activation [80,81]. Fleischer and co-authors [82] have
shown that if the protein binding to the nanoparticle surface requires/induces changes in
HSA secondary structure, the modified structure is recognized by a scavenger receptor SR-B1.
All liposome samples were significantly (p < 0.01) enriched with albumin compared to the
plasma control sample according to LFQ intensities obtained in the LC-MS/MS analysis
(Figure 9). Moreover, according to WB (Figure 10a), the following relationship of HSA content
in liposome-associated samples can be established: MLPH > 5SX > 10SX > plasma control.
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Figure 10. Western blots of liposomal protein corona components with anti-HSA (a), anti-IgG (b), and
anti-IgM (c) antibodies. +, positive control, human plasma diluted 1250-fold; −, negative control, buffer
and plasma mix treated the same way as the liposomes. IgG is presented by heavy and light chain bands,
and IgM is presented by a heavy chain and its fragment due to SDS-PAGE-reducing conditions.

The MLPH sample had the most prominent HSA band in WB, excluding diluted
plasma control (Figure 10). Previously we observed BSA binding to MLPH liposomes, but
there were no prominent changes in protein structure due to the presence of PI molecules
in the bilayer [37]. The addition of the SiaLeX conjugate decreased albumin adsorption
onto liposomes (Figure 10a).

Immunoglobulins are other major components of human plasma. In this study, we
were mostly interested in two classes, IgG and IgM, as they can initiate activation of the
classical pathway of complement and be recognized by macrophages when adsorbed onto
liposomes. Their plasma levels are 13.5 (IgG) and 1.5 mg/mL (IgM) [83]. Figure 10b shows
low IgG binding to the MLPH sample that becomes even less prominent upon the SiaLeX

conjugate addition to the bilayer. IgM band intensity for liposomes is comparable to the
signal in the negative control lane (Figure 10c). According to LC-MS/MS data, IgG heavy
chain gamma fragments 1 and 3 were enriched on 5SX over 10SX sample; IgM content
was higher on 10SX liposomes compared to MLPH; otherwise, there was no significant
difference between liposomal samples in terms of IgG and IgM adsorption.

Due to their large size, IgM pentamers can be concurrently eluted with the liposomes
in addition to liposome binding. The low amount of IgM detected in the WB most probably
reflects the low sensitivity of the combination of primary and secondary antibodies used (in
an independent run lacking a negative control due to the limited volume of the blank plasma
sample, significant IgM is observed associated with all liposome samples; see Figure S4).

Factor C3 is the most abundant protein of the complement system (1.2 mg/mL) [84]. It
plays a central role in the complement cascade development as it is involved in all three
activation pathways [85]. Classical, alternative, and lectin pathways lead to C3 conversion
to anaphylatoxin C3a and fragment C3b, which binds to foreign surfaces triggering the
amplification of complement cascade reactions. On the surface of the liposomes, we did not
detect either C3 or its cleavage fragments (Figure 11a). According to z-score normalized
log2 LFQ intensities, the 5SX sample was significantly enriched with C3 compared to 10SX,
MLPH, and control plasma. Yet, in agreement with the WB data, C3 was not found among
the top-10 proteins by the RPA values in the coronas of all liposomes (Table 2), its content
exceeding 0.1% only in the case of the 5SX sample.
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Figure 11. Western blots of liposomal protein corona components with anti-C3 (a), anti-C4BP (b), anti-
fI (c), and anti-vitronectin antibodies (d). +, positive control, human plasma diluted 1250-fold (a,b,d)
and 100-fold (c); −, negative control, buffer and plasma mix treated the same way as the liposomes.
C4b-binding protein and factor I were partially reduced to various chains during SDS-PAGE sample
preparations. The factor I fragments were assigned according to [86].

When the classical or lectin complement pathway is activated, it can be inhibited by
C4b-binding protein (C4BP). C4BP is a major effector protein in the complement cascade
with plasma levels of ~0.25 mg/mL. This protein consists of 7 identical α-subunits (75 kDa)
and 1 β-subunit (45 kDa), with an overall molar mass of about 500 kDa [87]. C4b-Binding
protein concentrated the most on MLPH liposomes without a targeting ligand (Figure 11b).
The same profile is observed in the LC-MS/MS intensities (Figure 9). According to z-score
normalized log2 intensities, MLPH liposome corona was significantly enriched with C4BP
subunits A (α) and B (β) compared to samples 5SX, 10SX, and control plasma. C4BP has
a flower-shaped structure with each α-chain and unique β-chain radiating out from a
central core, where they are linked by disulfide bonds. The β-chain-containing C4BP in
circulation is bound to vitamin K-dependent anticoagulant protein S (PS), forming the
C4BP–PS complex [87]. The n-Terminal γ-carboxyglutamic acid-rich domain of PS binds
negatively charged phospholipids exposed by activated endotheliocytes (or by platelets
during coagulation) through the complexation of Ca2+ cations [88]. Due to such structural
and functional properties of C4BP, its increased binding by MLPH liposomes can be
explained by their negatively charged surface; in the case of SiaLeX-liposomes, though
even more negatively charged, it is sterically difficult for a flower-like large complex of
C4BP–PS to be accommodated on their surface.

Another complement inhibitor, factor I, a ∼88 kDa heterodimer serine protease, cleaves
C3b and C4b (free or bound) in the presence of C4BP or factor H as a cofactor [89]. Its
average concentration in plasma is relatively similar to that of vitronectin (see below), 0.04
mg/mL [90]. Factor I was also detected on our liposomes by WB (Figure 11c). The addition
of SiaLeX does not appear to have affected factor I binding. Yet, factor I was not found
among differentially adsorbing proteins in liposome samples upon LC-MS/MS, nor did it
have RPA >0.1% in any of the samples (Table 2).

Vitronectin is a 75-kDa glycoprotein and yet another complement-regulating protein
that is bound to the liposome samples according to WB (Figure 11d). According to LC-
MS/MS data, low vitronectin binding was typical of all studied samples. Vitronectin
inhibits complement cascade at later stages than C4BP and factor I. It binds membrane
attack complex (C5b-7) and polymerization of C9, and formation of a pore in the lipid
bilayer, which would cause pathogen cell lysis. Its plasma level is low, at 0.034 mg/mL [85].
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Palchetti and others reported that vitronectin could be a targeting ligand on the surface of
liposomes due to its recognition by ανβ3 integrins overexpressing tumor cells [91–93]. Both
factor I and vitronectin are minor components of the protein corona, and their adsorption
does not differ between the liposome samples.

All in all, none of the studied liposomes should cause adverse reactions related to
complement system activation due to the binding of several cascade inhibitors and the
absence of C3 adsorption and cleavage. This agrees with the results of hemocompatibility
testing, where none of the melphalan prodrug-containing liposomes, including the SiaLeX-
targeted compositions, caused activation of complement [39].

Apolipoprotein A1 (ApoA1, 28.3 kDa) is the main component of HDLs that specialize in
excessive cholesterol transfer to the liver. Binding to lipoproteins is thermodynamically
preferable for ApoA1, but it also circulates as a free protein in plasma. ApoA1 level in
plasma is similar to that of C3 and is about 1–1.5 mg/mL, which makes it one of the most
abundant plasma proteins [94].

In the blot obtained with anti-ApoA1 antibodies (Figure 12a), there is a specific ApoA1
band at 25 kDa and a not specific one, a bit lower than 37 kDa for all liposomes samples.
We believe that the latter can be due to primary antibody cross-reactivity to ApoE (34 kDa).
Apolipoprotein E (ApoE, 34 kDa) is a part of several classes of lipoproteins; it is involved
in lipid metabolism throughout the body, including brain and nerve cells. Its plasma
concentration is identical to that of factor I, 0.04 mg/mL, which is more than 25 times less
abundant than ApoA1. Nonetheless, ApoE is a rather frequent component of the liposome
protein coronas [41]. Researchers attempt to utilize ApoA1 and ApoE recognition by brain
cells as a way for targeted delivery across BBB [95].
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mix treated the same way as the liposomes.

It should be noted that statistical analysis of LFQ intensities in the LC-MS/MS samples,
which is more appropriate for intersample comparisons than RPA values, as well as WB
data, shows that ApoE concentrations in liposomal samples were significantly lower than
those in the plasma blank, in contrast to the ApoC2 and ApoC3, for which no differences
with control plasma was noted. This favors the hypothesis that ApoC2 and ApoC3 are
present within the analyzed sample due to having been eluted together with liposomes
as part of VLDLs and chylomicrons. ApoE is probably eluted as a part of HDLs which
normally can be separated by SEC under conditions that we used [96], yet some of it either
contaminates the liposome–protein corona samples or is part of the coronas.

Apolipoprotein H, or β2-glycoprotein 1, is a 38.3 kDa phospholipid-binding protein
with a plasma concentration of 0.2 mg/mL. The main function of β2-glycoprotein 1 is to
bind phosphatidylserine on the surface of activated platelets and apoptotic cells. ApoH
dimers bound to phosphatidylserine are recognized by antiphospholipid antibodies, which
cause complement activation and attract phagocytes [97,98]. WB showed that none of
our samples accumulated ApoH (Figure 12b), and the positive control lane has the only
band corresponding to the protein dimer. At the same time, liposomal corona should
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be enriched with ApoH compared to the plasma blank sample, according to LC-MS/MS
data (Figure 9). Relative protein content according to iBAQ intensities obtained in the LC-
MS/MS experiment is 0.1% for the MLPH and 5SX samples and much lower for the other
two; ApoH absolute content in WB samples could have been below the limit of detection.

Taken together, using shotgun proteomics and WB, we detected four “protein corona
fingerprint” proteins, namely ApoA1, ApoC2, vitronectin, and IgG (identified by heavy
chain), which were shown to facilitate liposome interactions with tumor cells [91]. The data
on apolipoproteins in studied samples of liposome-associated proteins indicate that the
described SEC procedure, which was largely adopted from the study by Kristensen and
co-workers [74], most likely allowed us to separate small HDL particles, while larger VLDL
and chylomicrons are probably present in the analyzed samples as contaminants.

4. Conclusions

Modeling of shear stress applied to the endothelium in capillary blood flow showed
that targeting of activated endotheliocytes by SiaLeX-decorated fluid-phase antitumor
liposomes persists, although the effect is less pronounced than under static conditions.
In the flow of human serum, the interactions between the ligand on liposomes and cells
are further dampened. Protein corona contributes to the weakening of liposome–cell
interactions both in dynamic flow conditions and in statics. Liposome–protein complexes
formed in human plasma are enriched with apolipoproteins. The content of the latter
gradually increases with the increase in SiaLeX ligand content. Supposedly, apolipoproteins
could shield the ligand from the interactions with cell receptors. While ApoC2 as the
first or second most abundant protein in all liposome coronas could contribute to higher
liposome consumption by cells, the chance that ApoC2 merely co-elutes with liposomes
(as a component of VLDL or chylomicrons, which have sizes and densities close to our
liposomes) in the course of corona isolation, is high. At the same time, we found an increase
in the content of ApoC1 in the corona of liposomes in the row MLPH < 5SX < 10SX. We
hypothesize that ApoC1, together with other positively charged proteins, such as SAA4,
interacts with negatively charged SiaLeX residues on the surface of liposomes, competing
for interactions with selectins on endothelial cells. On the other hand, ApoA1, vitronectin,
and IgG found in coronas of all samples were shown to facilitate liposome interactions
with tumor cells [91]. The interactions involved in liposome internalization by tumor and
endothelial cells surely might be different. However, it is probably the interplay between
shielding of targeting ligands and protein corona components’ own interactions with cell
membrane that ultimately determine the intensity of the uptake. Elucidation of the role of
plasma proteins highly abundant in the protein coronas of the SiaLeX-bearing targeting
liposomes, identified in this study, in competition assays in tumor cells versus cells in the
bloodstream could provide new insights for selective targeting of anticancer liposomes and
their possible off-target effects.
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ple comparison of LFQ intensities; Supplementary Figure S1: Combined data on the uptake of SiaLeX lipo-
somes by HUVECs in serum-free conditions and in the presence of serum; Supplementary Figure S2: The
examples of photomicrographs of microchannels with HUVEC cells to Figure 3; Supplementary Figure S3:
Total peptides in samples of liposome–plasma protein complexes; Supplementary Figure S4: Western blot
of liposomal protein corona components with anti-IgM antibodies.
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