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Abstract: Silver nanoparticles (AgNPs) are ultra-small silver particles with a size from 1 to 100 nanome-
ters. Unlike bulk silver, they have unique physical and chemical properties. Numerous studies have
shown that AgNPs have beneficial biological effects on various diseases, including antibacterial, anti-
inflammatory, antioxidant, antiparasitic, and antiviruses. One of the most well-known applications is
in the field of antibacterial applications, where AgNPs have strong abilities to kill multi-drug resistant
bacteria, making them a potential candidate as an antibacterial drug. Recently, AgNPs synthesized
from plant extracts have exhibited outstanding antiparasitic effects, with a shorter duration of use
and enhanced ability to inhibit parasite multiplication compared to traditional antiparasitic drugs.
This review summarizes the types, characteristics, and the mechanism of action of AgNPs in anti-
parasitism, mainly focusing on their effects in leishmaniasis, flukes, cryptosporidiosis, toxoplasmosis,
Haemonchus, Blastocystis hominis, and Strongylides. The aim is to provide a reference for the application
of AgNPs in the prevention and control of parasitic diseases.

Keywords: silver nanomaterials; application; parasitic diseases

1. Introduction

Parasitic diseases, caused by parasitic worms in the bodies of humans and animals,
are mostly zoonotic. Parasites can be divided into three main categories. One is protozoa,
such as Plasmodium and Jagandii flagellates, and this type of parasite is wide-spread. The
second is invertebrates, and this type of parasite is the most numerous in terms of number
and species; common ones include endoparasitic flatworm, pork tapeworm, Chinese liver
flukes, ectoparasitic arthropod pubic lice, head lice, and Culex. The third is vertebrates,
and this type of parasite is very rare. Five of the six major tropical disease categories in the
joint UNDP/WHO Special Program for Tropical Diseases are parasitic diseases, and 11 of
the 17 neglected tropical diseases defined by WHO are parasitic, such as schistosomiasis,
encysticercosis, tape-worm/cysticercosis, foodborne trematode, leishmaniasis, etc. [1].

At present, the control of parasitic diseases mainly relies on drugs and vaccine immu-
nization [2]. Though these drugs and vaccines play a great role in the control of parasitic
diseases, at the same time, the problems of drug resistance, drug residues, worm strain
variation, vaccine side effect, and vaccine safety have also arisen [3,4]. Related studies
have shown that anti-parasitical drugs can turn almost all parasites into resistant strains,
and the degree of parasite resistance has been increasing and developing from single-drug
resistance to multi-drug resistance, which causes the therapeutic effect of anti-parasitic
drugs to be insignificant or even useless [5,6]. Even if the drug concentration is increased,
the purpose of controlling parasites cannot be achieved. Moreover, excessive drug doses
can cause damage to the hosts, as well as create cross-resistance and multi-drug resis-
tance [7]. Therefore, to control parasites, it is not only necessary to analyze the mechanism
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of drug resistance generation of various parasites and prevent or reverse the occurrence
of resistance, but also to require technological innovation to develop new, safer, less toxic
anti-parasitic drugs and new drug dosage forms [7] so as to more effectively reduce the
transmission of parasitic diseases and mitigate the damage to hosts [8].

In recent years, the rapid development and integration of biotechnology and nan-
otechnology, as well as their penetration and application in drugs, have greatly contributed
to the development of drug discovery [9,10]. The use of nanotechnology in combination
with traditional metal inorganic bactericides to develop new antiparasitic drugs is a good
choice [11], and the study of metal nanomaterial inhibition and insecticidal mechanism
provides a basis for the further development of new parasite inhibitors [12]. As inor-
ganic bactericidal materials, silver ions have a multilocation effect and wide range of
pathogens [13–15]. However, the application of silver-based materials is greatly limited by
the high material cost, unstable chemical properties of free silver ions, and high toxicity of
common silver products [16]. Sodium silver materials made by nanotechnology have the
advantages of high efficacy in killing pathogens, less resistance to germs, fewer dosages,
and chemical stability [17]. The use of AgNP materials for parasite control can provide new
substances for the chemical control of clinical parasitic diseases, and the study of the in-
hibitory effect of AgNPs on parasites and their mechanisms can provide a theoretical basis
for the further development of AgNPs parasiticides. This review focuses on the types and
characteristics of AgNPs and their application to parasitic diseases such as leishmaniasis,
flukes, cryptosporidiosis, toxoplasmosis, Haemonchus, Blastocystis hominis, and Strongylides.
We discuss its primary mechanism of action: the disruption of fluidity and integrity in
the parasite cell membrane, which leads to increased permeability and loss of intracellular
essence, and the release of reactive oxygen species (ROS), which leads to oxidative stress
and damage to cellular components [18,19].

2. Synthesis and Potential Applications of Silver Nanomaterials
2.1. The Properties of Silver Nanomaterials

Nanoparticles are particles with dimensions in the range of 1–100 nm scale in at least
one dimension in a three-dimensional space [20]. Materials composed of nanoparticles
have many specific properties, such as small size effect, volume effect, interface effect,
and macroscopic quantum tunneling effect. Therefore, nanomaterials are known as new
materials in the 21st century and are used in the fields of information, biology, medicine,
chemical industry, aerospace, energy, national defense, etc. Nanomaterials have broad
application prospects and, among which, AgNPs are by far the most abundant commercial-
ized nano-compound in the market used in various areas of daily life. Currently, 435 out of
1814 nanoproducts in 32 countries or regions worldwide contain AgNPs, accounting for
24% of the total [21].

AgNP is the abbreviation or common name for silver nanoparticles, which are particles
composed of silver atoms, usually in the size range of 1–100 nm. Like bulk silver materials,
the surface of AgNPs is oxidized and release free silver ions. However, AgNPs have
some characteristics that ordinary materials do not have, such as surface effect, quantum
size effect, small size effect, etc. [22]. Due to the small size effect and surface effect of
nanoparticles, the release rate of silver ions is significantly higher, and AgNPs can cause
direct damage to cell membranes through silver ions, increase the permeability of the cell
membrane, and enter many cells, eventually causing apoptosis or necrosis. Due to these
properties, the bactericidal effect of AgNPs is significantly higher than that of silver ions.

In addition, the toxic effects of AgNPs are related to their other characteristics, such as
shape, concentration, chemical coating, surface charge, etc. [23]. AgNPs have a wide variety
of morphologies, such as spherical, conical, disc, rod, cube, prism, ring, sheet, and triangular
prism [24]. Sharp and irregular shapes contribute to the occurrence of physical damage.
For example, in the coercion of Escherichia coli with triangular, spherical, and rod-shaped
AgNPs, the results showed that triangular AgNPs had a stronger antibacterial ability [25],
and the coercion of zebrafish embryos with spherical and flaky AgNPs showed that the
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flaky AgNPs exhibited a stronger toxicity [26]. However, the correlation between particle
shape and toxicity is not clear, as it may depend on multiple factors rather than one [23],
such as size effect, ionic effect, and surface modifiers that all significantly contribute to
the biotoxicity of AgNPs. During the manufacturing process of AgNPs, coatings are often
added to their surface to prevent aggregation, which helps increase stability and promotes
particle dispersion. There are various types of coatings that can change the morphology of
AgNPs and prevent the oxidation of silver ions. This modification has a direct impact on the
biotoxicity of AgNPs [27]. It was found that AgNPs modified by citrate and chitosan were
more toxic to bacteria than the unmodified ones, probably because these two modifiers
accelerated the release of silver ions from AgNPs [28]. The toxicity of AgNPs modified by
citrate is less than that of AgNPs modified by polyvinylpyrrolidone and polyethyleneimine
or with no coating on the surface [29]. The difference in toxicity between the different
coatings may be due to the changes of the surface charge type of the AgNPs caused by
coating. The positively charged AgNPs can adsorb directly onto the negatively charged
bacterial cell wall and, therefore, exhibit a stronger bactericidal effect than the negatively
charged AgNPs [30].

2.2. The Synthesis of Silver Nanoparticles

There are many ways to prepare nanomaterials, and the two most basic principles
at present are as follows: first, the splitting of large solids into nanoparticles; second, the
formation of particles by the aggregation of individual basic atoms and the control of the
growth of the particles to maintain them at nanometer size. According to the principle of
nanoparticle preparation, the preparation methods of AgNPs can be generally classified
into physical synthesis methods [31–34], chemical synthesis methods [35–39], and biological
synthesis methods (Figure 1) [40–45].
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Figure 1. Main synthesis methods of AgNPs.

The physical synthesis method includes mechanical grinding, laser ablation, evaporation–
condensation, electrical irradiation, gamma irradiation, lithography, arc discharge method,
etc. The mechanical grinding method produces local high pressure by high speed collision,
thus grinding the metal into a very fine powder, and the size of the nanoparticles depends
on the degree of abrasion [46]. The arc discharge method can prepare silver nanoparticles
in pure water without any surfactant or stabilizer by an arc-discharge device (Figure 2) [47].
When two silver electrodes form an arc in ionized water, the silver electrodes evaporate and
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form nanoparticles [32]. The laser ablation method uses a pulsed laser to instantaneously
heat a silver block immersed in water or an organic solvent; during the cooling of the
plasma, silver particles nucleate and grow, eventually forming nanosilver [48]. Under
the evaporation–condensation method, metallic silver is evaporated and condensed into
nanoparticles, which are further condensed into atomic clusters or nano-silver particles [32].
Gamma rays can induce a radioactive decomposition of solvents, generating dissolved
electrons that can reduce metal ions (such as Ag+) in a solution to form nanoparticles [49].
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Although the physical synthesis method is simple in principle, it is costly to prepare and
requires high precision in equipment, which is not suitable for large-scale production [50,51].

Chemical synthesis is the most commonly used method to synthesize silver nanoparti-
cles. This method reduces silver ions to elemental silver or silver nanoparticles by electron
transfer under certain conditions. Chemical methods can accelerate nanosilver prepara-
tion with the help of external energy processes, such as photochemical, electrochemical,
microwave-assisted, and acoustic methods [47]. In photochemical methods, light, usu-
ally ultraviolet (UV) light, is used to induce the reduction of silver ions to form silver
nanoparticles [52]. The photon energy provided by light can excite silver ions and promote
the reduction reaction [53] (Figure 3). The electrochemical method involves applying an
electromotive force to induce the reduction of silver ions to silver nanoparticles. This is
usually conducted in an electrochemical cell with silver electrodes. The applied potential
transfers electrons to silver ions, reducing them to silver atoms, which then aggregate into
nanoparticles [54]. Microwave-assisted synthesis uses microwave radiation to heat the
reaction mixture and promote the reduction of silver ions to nanoparticles [55]. In the
context of nanoparticle synthesis, ultrasound can be used to generate cavitation bubbles in
liquids. The collapse of these bubbles generates intense localized heat and pressure that
can reduce silver ions to nanoparticles [56].
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The chemical synthesis method uses reducing reagents to reduce silver ions to silver
atoms, which further aggregate into oligomeric clusters to produce metallic colloidal silver
particles [36,37]. Commonly used reducing agents include sodium borohydride, hydrazine,
ethylene glycol, and N,N-dimethylformamide, etc. [32]. In addition to reducing agents, the
chemical synthesis of AgNPs also requires polymers as stabilizers to enhance the stability
of AgNPs and avoid its agglomeration, such as polyvinylpyrrolidone, dodecanethiol, and
polyvinyl alcohol. However, the chemical synthesis of AgNPs faces a major problem,
namely, the toxicity of chemical reagents. Additionally, the selected reducing agents and
stabilizers have certain toxic effects on the organism, so the chemically synthesized AgNPs
are biotoxic, which also limits their application [57].

The biological method includes the plant method and microbial method (Figure 4),
which consist of proteins, sugars, and antioxidants derived from organic organisms such as
bacteria, fungi, yeast, and plants (tea, seaweed, mustard, etc.) instead of toxin-reducing
and stabilizing agents [58,59]; the possible mechanisms of their synthesis are enzymatic
and non-enzymatic reductions.
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In the botanical approach, various plant extracts are used to reduce silver ions to silver
nanoparticles. Bioactive compounds present in plant extracts, such as phenolic compounds,
flavonoids, terpenoids, etc., can act as both reducing agents and stabilizers. The process
is usually simple, cost-effective, and environmentally friendly. This approach can utilize
a wide variety of plant sources, including tea leaves, seaweed, mustard, etc. [41]. In the
microbial method, microorganisms such as bacteria, fungi, and yeast are used to synthesize
silver nanoparticles. Microorganisms can produce enzymes that reduce silver ions to
elemental silver. During this process, the nanoparticles are usually wrapped in a protein
layer that helps stabilize them. Specific strains of bacteria and fungi have been studied for
their ability to reduce metal ions and generate nanoparticles [60].

This biosynthesis is characterized by green and environmental protection, uniform
and very small particle size, good dispersion, difficulty to precipitate, etc. [61,62], but due
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to the reduction of particle size, the number of surface atoms increases, which easily leads
to the agglomeration phenomenon of nanoparticles [63,64].

Because AgNPs tend to self-agglomerate when used alone as an antimicrobial solution,
the antimicrobial effect is not fully realized, so AgNPs are often used for loading with
other materials [65], such as AgNPs-hydroxyapatite composites [66], Poly (vinyl alcohol)-
AgNP (PVA-AgNP) [67], AgNP-TiO2 composites [68], Ag/ZnO nanocomposites [69], etc.
The composite of AgNPs with other materials increases the compatibility for specific
applications extending the unique properties of AgNPs to a broader space. For example,
AgNP-TiO2 composites have good biocompatibility and high antibacterial activity [70],
and Ag/ZnO nanocomposites with silver nanoparticles loaded on ZnO surface showed
an inhibitory effect on Streptococcus mutans with better antibacterial activity than ZnO
nanorods [71].

2.3. Potential Applications of AgNPs

Research on AgNPs has shown promising results for in vivo applications. In vivo
studies have also demonstrated the antibacterial and anticancer properties of AgNPs. It
has been reported that AgNPs could exhibit a bioefficacy on a plant–parasitic nematode
against a root–knot nematode on bermuda grass [72] and Meloidogyne graminicola [73].
Subsequent studies have explicitly revealed promising results of AgNPs against Meloidogyne
incognita on eggplant, tomato, and okra [74]. In animal studies, AgNPs have been shown
to be effective in treating various infections, including skin, respiratory, urinary tract, and
parasitic infections [75]. In addition, AgNPs have been shown to inhibit tumor growth and
improve survival in animal models of cancer [76].

AgNPs are used in the field of medicine for applications in humans such as drug
delivery, cancer therapy, bioimaging, and dental technology. AgNPs are able to get more
attention in cancer therapy because of their unique physicochemical properties [77]. The
use of metal nanoparticles, compared to conventional anticancer tools, is a new combination
of therapeutic drugs and drug carriers with drug candidates, where side effects can be
prevented by targeted approaches [78]. In experiments targeting human cervical cancer
cells, AgNPs were extracted using Nepeta deflersiana (ND), yielding face-centered cubic
structures with an average size of 33 nm, by targeting human cervical cancer cells (HeLa)
for their anticancer potential by observing the cytotoxic response where the neutral red
uptake assay and morphological changes, cytotoxic concentrations on oxidative stress
markers, ROS production, and mitochondrial membrane potential parameters responded
to cytotoxicity depending on the concentration. Potential mitochondrial membrane and
glutathione levels decreased and AgNPs induced apoptosis, demonstrating that ND-AgNPs
have an anticancer ability and can be used to treat cervical cancer cells [79]. Nanoparticles
also have applications in cellular bioimaging and cell sensing, where they are selected
based on their optical effects in order to achieve effective contrast in cellular imaging and
other therapies [80]. AgNPs are also widely used in dentistry, where they are incorporated
into some dental biomaterials for reducing biofilm formation due to their antibacterial
activity, and are incorporated into root canal fillings to reduce Staphylococcus aureus and
Streptococcus mutans [81].

3. Antiprotozoal Effect of AgNPs
3.1. Leishmaniasis

Leishmaniasis is a protozoan disease caused by the leishmaniasis parasite and trans-
mitted through the bite of sand flies, mainly found in tropical and subtropical regions. There
are three main forms of leishmaniasis [82]: First, there is visceral leishmaniasis, also known
as black fever, which, if left untreated, causes death in more than 95% of cases. The second
is cutaneous leishmaniasis, the most common form, which causes mainly skin lesions
such as ulcers in exposed areas of the body. The third is cutaneous mucosal leishmaniasis,
which causes partial or total destruction of the mucous membranes of the nose, mouth, and
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throat. There are some problems in the treatment of leishmaniasis, such as toxicity and
drug resistance, which require the development of new drugs to improve treatment.

A previous study has shown that Teucrium stocksianum is one of the recommended
plants in the green synthesis method of AgNPs, and the anti-leishmanial effect of AgNPs
made from the leaves is the best [17]. Other studies have also found that there are other
plants that excel in antileishmanial. Additionally, a new plant, Moringa oleifera, was also
identified as a raw material for the preparation of AgNPs, as this plant is used to prevent
malaria, trypanosomiasis, schistosomiasis, and filariasis [83]. Moreover, the researchers
found that the average lesion size was reduced and contributed to complete healing in
14 days after the use of AgNPs, which was reduced by half compared to the 28 days needed
for standard drugs [83]. At the same time, there is also Iranian research showing that AgNPs
made of ginger have the same function [84]. Additionally, the inhibitory ability of different
concentrations on the number of promastigotes at 24, 48, and 72 h was observed, and high
concentrations of AgNPs could completely inhibit the proliferation of promastigotes at any
time period. In an anti-amastigote assay and flow cytometry assay, the participation of
AgNPs reduced the number of infected macrophages from a 30% infection rate to 14.75%
and increased the number of necrotic and apoptotic cells induced by AgNPs. The number of
previable cells was 99.59% and the number of apoptotic and necrotic cells after intervention
was 60.18% and 0.53%, respectively [83].

3.2. Flukes

Flukes belong to the class Trematoda of the phylum Platyhelminthes, and their bodies
are lobulated or lingual, with oral and ventral suckers. There are more than 30 species
of trematode parasites in the human body, and the common ones are Clonorchis sinensis,
Fasciolopsis buski, Paragonimus westermani, etc. Flukes affect animal health by reducing milk
production and jeopardizing meat health, reducing animal draught power, which in turn
increases the chance of animal morbidity and mortality. In infections, most flukes infect the
bile ducts of buffalo and water buffalo, while larvae cause intestinal bleeding and adults
cause bile duct hypertrophy and hyperplasia, affecting overall health [85].

Researchers in India investigated the effects of AgNPs on adult worms in vitro by
incubating worms in fetal bovine blood, controlling AgNPs at different concentrations and
observing worm motility in 4 h cycles until 16 h later while recording motility without
AgNPs intervention. The results showed that the motility of AgNP-treated flukes was
reduced compared to the untreated control [86]. Changes in the production of ROS by
flukes in the explants were also recorded, showing a concentration-dependent increase
in ROS production in AgNP-treated worm cells and an increase in light absorption levels
compared to control worms [86]. Other values, such as the estimation of superoxide
dismutase (SOD) activity, an oxidative enzyme whose role is to ROS, were significantly
reduced, and AgNPs inhibited this enzyme [86]. The effect on DNA fragmentation showed
that the treatment of worms with AgNPs could lead to apoptosis, and the level of protein
carbonylation was significantly increased after intervention with AgNPs, as measured by
the protein carbonylation reaction [86].

3.3. Toxoplasmosis

Toxoplasmosis is an infectious disease caused by Toxoplasma gondii, which is parasitic
in cells and travels with the bloodstream to reach various parts of the body. Toxoplasma
gondii can destroy the brain, heart, and fundus of the eyes [87], decrease immunity, and
cause various diseases. In an end-host cat, Toxoplasma gondii completes the intestinal stage
of development. The worm colonizes the intestinal epithelial cells to develop and proliferate
to form oocysts, which are then destroyed and returned to the intestinal lumen and are
excreted in the cat’s feces. Oocysts then enter the environment to develop into infective
mature oocysts over 2–4 days, posing a threat to other susceptible animals. Toxoplasma gondii
affects young cows more [88] due to the fact that colostrum and milk are consumed before
and after the cow gives birth. Colostrum and milk can be infected with eggs containing
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larvae [89]. Although most infected individuals are asymptomatic, the disease is considered
a significant health concern due to the occurrence of congenital transmission [90]. The
severity of Toxoplasma gondii disease also depends on the strain itself. The eggs hatch
into larvae in the small intestine [91], which then migrate to various tissues, such as the
liver, lungs, muscle tissue, and brain, causing damage to these tissues and organs [92].
Symptoms of infection include anorexia, weight loss, and, in severe cases, death, essentially
resulting in poor milk and meat quality in cattle, as well as reduced skin quality [93].
Several studies have shown that Toxoplasma gondii has developed the ability to control host
immune responses and that it can manipulate the host to reduce the amount of parasite
suppressor antigens and thus avoid recognition and clearance by the host [94].

Clindamycin is the first choice for the treatment of Toxoplasma gondii, but the drug
has a certain irritating effect on the stomach and intestines. Sulfonamides can inhibit the
metabolism of folic acid of the worms and thus inhibit the growth of Toxoplasma gondii [95],
but the drug can cause a deficiency of folic acid in the diseased animals [96]. Azithromycin
is more effective in the treatment of eye diseases caused by Toxoplasma gondii, but the efficacy
is only for eye diseases. Nanoparticles as drug carriers can reduce the toxicity and improve
the bioavailability of parasitic drugs [97]. Existing studies have demonstrated the potential
therapeutic ability against parasitic infections [98] of AgNPs, inhibiting the growth of
Toxoplasma gondii in vitro [99]. In addition to their potential role in biomedicine, AgNPs are
now an attractive option to fight parasites, particularly against Toxoplasma gondii, as AgNPs
can help macrophages fight pathogens [100]. It was found that ROS acts as an important
effector molecule that induces cells to eliminate pathogens, as well as signaling molecules
that amplify the antimicrobial response by activating the transcription factor nuclear κB
(NF-kB), which in turn enables the production of proinflammatory cytokines [101]. AgNPs
are able to reduce levels of the antioxidant glutathione in macrophages, which can also be
independent of immune regulation accumulates in mitochondria and reduce the formation
of adenosine triphosphate, which in turn disrupts the inner mitochondrial membrane, all
in a manner that increases ROS production [102], which then leads to the elimination of the
parasite. After incubation of adult T. vitulorum worms in 200 mg/L AgNPs for 48 h, light
and electron microscopy studies revealed disorganized cuticles damaged subcutaneous
blisters, and muscle layers in both male and female worms. Electron microscopy of the
treated worms confirmed wrinkled epidermal surfaces and disrupted surface structures.
Following the use of AgNPs in the study, nitric oxide levels were recorded in the worms,
and levels were significantly increased. Nitric oxide is highly reactive with other con-
centrated oxidizing molecules such as ROS, producing reactive nitrogen that can attack
biological systems, leading to severe irreversible damage to biomolecules and cellular dam-
age. However, the anti-creep efficiency of AgNPs against nematodes in vivo remains to
be investigated [103]. Further studies on the in vivo studies and potential value of AgNPs
against Toxoplasma gondii are needed [104].

3.4. Cryptosporidium

Cryptosporidium is a protozoan, which was considered to be an important major cause
of enteric parasitic infection, and it is a zoonotic disease that can infect humans, animals, and
birds with morbidity and mortality, especially among immune-deficient individuals [105];
so, it is considered a serious public health risk. It is also the most common cause of
diarrhea in children worldwide [106] because younger children are more susceptible to
Cryptosporidium infection [107,108]. Many birds, including chickens, geese, ducks, and
pigeons, are known to be biological reservoirs of Cryptosporidium [109]. The protozoan can
be transmitted to humans and animals mainly through the ingestion of contaminated food
and drink or through contact with excreta. When humans are infected, Cryptosporidium
may cause joint pain and intestinal disorders [110]. Infection with microbial pathogens
leads to apoptosis and programmed cell death, and cytochrome C (Cyto) also plays a key
role in the process of apoptosis, accelerating it [111].
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The antiprotozoal activity of the biosynthesized AgNPs on the viability of Cryptosporid-
ium parvum (C. parvum) oocysts was tested in vitro and in vivo. The results of in vitro
experiments showed that the biosynthesized AgNPs had an inhibitory effect on C. parvum
oocyst viability. Additionally, a significant decrease in C. parvum counts was observed after
3, 6, 12, and 24 h of storage for AgNP-treated control C. parvum oocysts at concentrations of
500 µg/mL and 1000 µg/mL, and no oocysts were detected after 48 h of storage for those
that were AgNP-treated. The results of the in vivo infectivity test showed that for mice
infected with AgNP-treated C. parvum oocysts, C. parvum oocyst counts were significantly
lower than that in the control group and showed no infection for AgNPs of 1000 µg/mL
for 48 h [109]. Similar results were obtained by Cameron, et al. [12].

Nitazoxanide (NTZ) is the only clinical drug used, but it is of limited use in some
patients [105]. The experimental animals selected by the researchers were rats, which
were gavaged orally using a solution of AgNPs at a dose of 5 mg/kg/mouse/day NTZ
and an oral dose of 100 mg/kg/mouse/day with a mixture of both AgNPs (5 mg/kg)
and NTZ (100 mg/kg) that were vortexed for one hour in a closed container beforehand.
Cryptosporidium levels were observed by collecting fecal pellets from mice, and the
shedding of Cryptosporidium oocysts was the criterion for the effectiveness of the drug.
The group treated with the mixture of NTZ and AgNPs showed a significant reduction in
parasite numbers after infection [112].

3.5. Haemonchus

Gastrointestinal parasitic nematodes are the most common economic infectious disease
in the world [113], with high infection rates and a prevalence in tropical environments,
with infants and preschool children being the most vulnerable groups, wherein worm
infections can be fatal [114]. Haemonchus contortus is a highly infectious parasitic nematode
of the gastrointestinal tract that can cause acute anemia, hemorrhagic enteritis, diarrhea,
etc. These symptoms can cause a reduction in dairy and meat production by livestock
and consequently economic losses [115]. Haemonchus contortus is transmitted through the
infected soil of various species and can lead to human infection [116].

Only a few drugs, such as benzimidazole, imidazothiazole, and ivermectin, have been
used in previous treatments for helminths [117]. The prevalence of parasitic infections, the
shortage of drugs, and the emergence of drug resistance have made clinical care difficult,
and there is an urgent need for a new drug to fill the gap. So, in 2020, some researchers
used carvacrol-coated chitosan nanoparticles [118] for antihelminthic activity against the
adult stage of Haemonchus contortus. Researchers in India have used Lansium parasiticum
to prepare AgNPs (LAgNPs), as this plant is common in countries such as India and
Bangladesh and is mainly used for food and timber purposes. The use of LAgNPs prepared
from this plant could open up new avenues for the development of modern medicine as
a novel antihelminthic drug. In the study, it was found that 100% of males and 80% of
females in samples treated with LAgNPs died after 12 h, but 0% of males and females
were paralyzed within one hour in the citric acid-coated AgNPs sample, and only 26% of
males and 11.3% of females died after 12 h. Therefore, LAgNPs were more effective against
the parasite and had more toxicity. The treatment of Haemonchus contortus with LAgNPs
showed a faster elevation of ROS and NOS (Nitric Oxide Synthase)-dependent stress in the
worms, through which parasite growth was inhibited [75].

3.6. Blastocystis Hominis

Blastocystis hominis (B. hominis) is a unicellular, specialized, anaerobic protozoan that is
found mainly in the human gut. It has a prevalence of up to 50% in Egypt [119]. Symptoms
of the disease include nausea, vomiting, abdominal cramps, exhaustion, and diarrhea, and
are more severe in children and immunocompromised patients. In the Egyptian researchers’
study, AgNPs were used with metronidazole added to their particles [119]. Metronidazole
is the drug of choice for the treatment of Mycobacterium avium, but since 1976, side effects,
treatment failure, and resistance have made the development of a new drug urgent [119].
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By comparing AgNPs, AgNPs + MTZ, and MTZ, the drug was introduced into the medium
with the parasite in four groups, one of which was a control group without the drug, and
the results showed that after three hours, the highest percentage of cyst reduction was
79.67% in the medium where AgNPs + MTZ were placed [119]. Nanoparticles releasing
ROS are able to damage the structure of glycoprotein and lipophosphoglycan molecules
and also inhibit ATP production and stop DNA replication, so AgNPs can ultimately kill the
source of infection and cause the parasite to terminate its infectious activity [120]. Therefore,
the combination of AgNPs and conventional drugs seems to the researchers to be a logical
direction for future research into the use of AgNPs in the clinic [121].

In a study, also from Egypt, curcumin, a traditional spice in Asian cuisine, was used to
prepare the nanoparticles. Quantities of curcumin and poly-D, L-lactide-co-glycolic acid
were dissolved in an acetone solution, kept under bath sonication conditions for 2 min, and
the emulsion was evaporated for 30 min and the organic solvent removed under magnetic
stirring to obtain the nanoparticles. Nanocurcumin can be freely dispersed in water and,
in this experiment, nanoparticles. MTZ and untreated controls were used to carry out
experiments using three graded concentrations and incubated at 37 ◦C for 24, 48, and 72 h.
The final result was that nanocurcumin at 10 mg/mL showed the highest inhibition rate
(92.5%) at 72 h.

3.7. Strongylides

Strongylides are the main nematode pathogen of horses and are also considered a
serious health problem for the herd. Additionally, in clinical treatment, researchers have
found the parasite to be resistant to various anthelmintic drugs, particularly benzimidazole,
praziquantel, and pyrantel [72]. Brazilian researchers have shown that nematophagous
fungi produce extracellular enzymes and AgNPs, which convert toxic metal ions into
non-toxic nanoparticles through the combination of enzymes and AgNPs [72]. In previous
studies, the insecticidal activity of AgNPs biosynthesized by fungal flagellates against the
symbiotic nematode Canis lupus was reported [122]. In the present study, Duddingtonia
flagrans AgNPs appeared blue in color and had a diameter of 10 nm, resulting in a 43%
reduction in larval numbers compared to the control group, which the researchers attribute
to the parasite’s resistance to commercial parasiticides, and could further demonstrate the
feasibility of using environmentally friendly D. flagrans fungal AgNPs to control robust
nematodes in the future [123].

4. Anti-Parasitic Mechanism of AgNPs

AgNPs can be one of the most promising technologies to combat pathogens due to
their extensive surface, the release of silver ions (Ag+), and the release of ROS, with strong
antibacterial and antifungal activity [47]. However, there is a little data on the mechanism
of AgNPs for parasitic worms inactivation [109], and the effect of AgNPs on parasites is
related to the entry of silver ions and the release of ROS; the released Ag ions can enter the
Cryptosporidium oocyst and demolish the sporozoites while nanosized particles of silver
can react with the cell wall, resulting in leakage [12]. Metallic silver can disrupt the cell
membrane or chemically bind to and deposit on the cell surface, which has a toxic effect
on the cell. AgNPs export silver ions, which are toxic to a range of parasites, including
protozoan parasites such as Plasmodium [124], and the silver ions released can bind to
the parasite’s cell membrane and then disrupt the fluidity and integrity of parasite cell
membranes, leading to increased permeability and loss of intracellular essential, disrupting
normal cell function and ultimately leading to cell death [12].

AgNPs induce the cell apoptosis and destroy parasites mainly through the generation
of ROS [125]. Most intracellular stress responses are caused by ROS-mediated toxicity,
and oxidative stress is considered the most likely mechanism for AgNP-induced cytotox-
icity. The release of silver ions can also cause ROS in the parasite, leading to oxidative
stress and damage to cellular components, which can cause the parasite cells to die and
eliminate the parasite [126]. A certain amount of ROS is present in the cell in a normal
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state, and it is maintained in balance with the antioxidant system. After AgNP stress, cells
rapidly produce large amounts of ROS, and the antioxidant system expresses a variety of
proteins that scavenge excess ROS, such as superoxide dismutase, catalase, glutathione
(GSH), thioredoxin, vitamin E, etc. Glutathione can bind and consume ROS; therefore, the
glutathione-regulated antioxidant system is considered to be a key defense system for cell
survival [127]. AgNPs reduce GSH levels by inhibiting GSH synthase, thus making the
cells unable to effectively scavenge intracellular ROS [127]. The imbalance between the pro-
duction of ROS and their degradation by the antioxidant system can cause oxidative stress,
which can lead to many serious adverse effects, such as DNA breakage, mitochondrial
damage, peroxidation of proteins and lipids, and ultimately apoptosis [128]. Intracellular
ROS overload directs cells to initiate the apoptotic program through p53, protein kinase B
(AKT), and mitogen-activated protein kinase (MAPK) signaling pathways. First, AgNP
stress causes cells to produce large amounts of ROS, leading to a downregulation of AKT
expression, which increases the expression of the pro-apoptotic kinase p38; meanwhile, a
decrease in the expression of the DNA repair enzyme PARP leads to a significant increase
in the expression of p53, which induces apoptosis (Figure 5) [129].
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In addition, silver ions can disrupt ATP synthesis and interfere with the metabolism
by breaking the electron transport chain. Silver ions can also interfere with the activity
of key enzymes and metabolic pathways in the parasite, leading to cellular dysfunction
and death [130].

At this stage, the exact mechanism of action of AgNPs against the parasite is still under
investigation, and there may be other effective ways of doing so. However, it is clear that
AgNPs have the potential to be a useful tool in the fight against parasitic infections [131].

5. Conclusions

The future of AgNPs is promising, with an increasing demand for their unique proper-
ties in various applications, and AgNPs are expected to play a significant role in a few areas,
such as antimicrobial applications, electronics, energy, medical applications, environmental
remediation, etc. This review has summarized recent developments in understanding
the antiprotozoal properties of AgNPs. The antiparasitic effect of AgNPs is achieved in
different ways, such as by disrupting the parasite’s cell membranes, reducing the ability of
metabolic activity, and inducing the parasite to be unable to reproduce properly. AgNPs
have potential problems in practice. First of all, in terms of their negative impact on the
humans, animals, and environment, if silver is released into the environment, it can be-
come a threat to human health and environmental safety. AgNPs may also have potential
effects on animal health, such as a toxic effect on the liver and kidneys. Additionally, the
stability of AgNPs is another challenge. Time may weaken the potency, and the reaction
with other substances in the environment will change their properties, which may lead to
the development of parasite resistance and reduce their clinical antiparasitic efficacy after
long-term high use of AgNPs. Therefore, further research and development are needed to
solve these problems of the safety, stability, and drug resistance of AgNPs and ensure the
safety and sustainable use of materials.
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