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Abstract: We have recently shown that the volatile anesthetics isoflurane and sevoflurane acutely
enhance the brain uptake of the hydrophilic markers sucrose and mannitol about two-fold from
an awake condition, while the combined injection of the anesthetic agents ketamine and xylazine
has no effect. The present study investigated two small-molecule hydrophilic drugs with poten-
tial neurotoxicity, the antibiotic agents ceftazidime and gentamicin. Transport studies using an
in vitro blood–brain barrier (BBB) model, a monolayer of induced pluripotent stem cell-derived
human brain microvascular endothelial cells seeded on Transwells, and LC-MS/MS analysis demon-
strated the low permeability of both drugs in the range of sucrose, with permeability coefficients
of 6.62 × 10−7 ± 2.34 × 10−7 cm/s for ceftazidime and 7.38 × 10−7 ± 2.29 × 10−7 cm/s for gen-
tamicin. In vivo brain uptake studies of ceftazidime or gentamicin after IV doses of 25 mg/kg
were performed in groups of 5–6 mice anesthetized at typical doses for surgical procedures with
either isoflurane (1.5–2% v/v) or ketamine/xylazine (100:10 mg/kg I.P.). The brain uptake clearance,
Kin, for ceftazidime increased from 0.033 ± 0.003 µL min−1 g−1 in the ketamine/xylazine group to
0.057 ± 0.006 µL min−1 g−1 in the isoflurane group (p = 0.0001), and from 0.052 ± 0.016 µL min−1 g−1

to 0.101 ± 0.034 µL min−1 g−1 (p = 0.0005) for gentamicin. We did not test the dose dependency
of the uptake, because neither ceftazidime nor gentamicin are known substrates of any active
uptake or efflux transporters at the BBB. In conclusion, the present study extends our previous
findings with permeability markers and suggests that inhalational anesthetic isoflurane increases
the BBB permeability of hydrophilic small-molecule endobiotics or xenobiotics when compared
to the injection of ketamine/xylazine. This may be of clinical relevance in the case of potential
neurotoxic substances.

Keywords: ceftazidime; gentamicin; blood–brain barrier; permeability; isoflurane

1. Introduction

The blood–brain barrier (BBB) maintains a stable microenvironment within the central
nervous system (CNS) and is essential to protecting the brain against the entry of harmful
endogenous substances and xenobiotics [1,2]. Some drugs of abuse (nicotine, cocaine,
methamphetamine) are known to cause BBB dysfunction [3,4], and in recent years, there
has been mounting evidence that volatile anesthetic agents in common clinical use, in-
cluding isoflurane and sevoflurane, increase the permeability of the BBB [5–10]. While
some of these studies investigated the influence of anesthesia on the BBB in the context of
surgery [10] or traumatic brain injury [9], others studied the effects of the agents alone [5–8].
In order to characterize the principal mechanisms underlying alterations in BBB integrity
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by anesthetic agents, initially applying a reductionist in vitro approach with liposomes
proved advantageous. Our group recently demonstrated increased fluidity in different lipid
membranes at clinical concentrations of isoflurane (1 mM) using fluorescence anisotropy
analysis [11]. In contrast, ketamine/xylazine at clinical concentrations does not affect lipid
membranes [6]. Proceeding with an in vivo animal model in mice, we found that short
exposure (30–45 min) to either isoflurane or sevoflurane, but not to ketamine/xylazine,
caused an increase in BBB permeability. Both isoflurane and sevoflurane displayed a
two-fold increase in the brain uptake clearance (apparent Kin) of the hydrophilic marker
[13C12]sucrose compared to either ketamine/xylazine anesthesia or an awake condition [6].
The expression of tight junction proteins (claudin-5, occludin and ZO-1) in the brain capil-
laries of these animals remained unchanged. Therefore, our data support the hypothesis
that volatile anesthetic agents like isoflurane alter the lipid structure of cell membranes,
transiently facilitating the brain uptake of otherwise poorly permeable, hydrophilic small
molecules. Considering that these experiments were performed under clinically relevant
concentrations of isoflurane, there is a possibility that potentially neurotoxic drugs, which
are normally restricted by the BBB, may gain enhanced access to the CNS under inhalational
anesthetics. In the present study, we assessed the permeability of the BBB to ceftazidime
and gentamicin, two small hydrophilic drugs. Their molecular structures are depicted in
Figure 1. Ceftazidime, a third-generation cephalosporin, is usually given together with
a beta-lactamase inhibitor, avibactam, to treat complicated urinary tract infections and
other infections caused by Gram-negative bacteria [12]. Cephalosporins are considered
relatively safe drugs, but several cases of neurotoxicity have been reported in the litera-
ture. Most case reports are related to the later generations of cephalosporins, cefepime
and ceftazidime, which are also strongly associated with renal impairment. The reported
neurological manifestations caused by ceftazidime ranged from confusion and halluci-
nations to myoclonus and seizures [13–15]. The mechanism of cephalosporin-induced
neurotoxicity has not been fully understood. It may involve γ-Aminobutyric acid type
A(GABA-A) receptor inhibition [16], but to determine the electrophysiological effects,
in vitro concentrations in the millimolar range were required [17]. Gentamicin, an amino-
glycoside antibiotic, has been mostly associated with ototoxicity and nephrotoxicity [18].
Potential neurotoxicity involves N-methyl-D-aspartate (NMDA) receptor activation and
may occur under pathophysiological conditions of increased BBB permeability [19,20].
Gentamicin is not a single compound, but is composed of a number of closely related
molecules [21]. According to the USP, gentamicin C2 and C2a are major components,
comprising 40% of the mixture. Gentamicin C2 and C2a are stereoisomers and have shown
stable transition with reproducible results compared to gentamicin C1a [22]. Consider-
ing the above aspects, gentamicin C2 + C2a was chosen as the analyte of choice in the
present study.

We first developed and validated highly sensitive and robust liquid chromatography–
tandem mass spectrometry (LC-MS/MS) methods for the detection of ceftazidime and
gentamicin in cell culture medium and in mouse plasma and brain. Subsequently, we used
analytical methods to measure the BBB permeability of these small hydrophilic drugs in an
in vitro BBB model using brain endothelial cells and in vivo in mice. For the in vivo study,
mice were exposed to anesthesia with either isoflurane or ketamine/xylazine.
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Figure 1. Structures of ceftazidime and the enantiomers gentamicin 2a and gentamicin 2. 
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IL, USA) and gentamicin injection USP was purchased from Fresenius Kabi (Lake Zurich, 
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Ceftazidime pentahydrate (>98% purity), formic acid (LC/MS grade, >98% purity), 
analytical-grade HFBA (heptafluorobutyric acid), TCA (trichloroacetic acid) and LC-
MS/MS-grade acetonitrile and water were obtained from Fisher Scientific (Waltham, MA, 
USA). Meropenem trihydrate (>98% purity) was purchased from Alfa Aesar (Ward Hill, 
MA, USA). Tobramycin was obtained from Sigma Chemical (St. Louis, MO, USA), CD-1 
mouse plasma from BioIVT Inc. (Westbury, NY, USA), heparin from APP Pharmaceuticals 
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Figure 1. Structures of ceftazidime and the enantiomers gentamicin 2a and gentamicin 2.

2. Materials and Methods
2.1. Chemicals and Reagents

Ceftazidime (Tazicef) for injection USP was obtained from Hospira Inc. (Lake Forest,
IL, USA) and gentamicin injection USP was purchased from Fresenius Kabi (Lake Zurich,
IL, USA).

Ceftazidime pentahydrate (>98% purity), formic acid (LC/MS grade, >98% purity),
analytical-grade HFBA (heptafluorobutyric acid), TCA (trichloroacetic acid) and LC-MS/
MS-grade acetonitrile and water were obtained from Fisher Scientific (Waltham, MA,
USA). Meropenem trihydrate (>98% purity) was purchased from Alfa Aesar (Ward Hill,
MA, USA). Tobramycin was obtained from Sigma Chemical (St. Louis, MO, USA), CD-1
mouse plasma from BioIVT Inc. (Westbury, NY, USA), heparin from APP Pharmaceuticals
(Schaumburg, IL, USA), isoflurane from Piramal Critical Care (Bethlehem, PA, USA) and
ketamine from Par Pharmaceutical Company Inc. (Spring Valley, NY, USA). All other
chemicals were analytical grade and obtained from commercial and reliable sources.

2.2. Animals

Male C57Bl/6J mice aged 8–12 weeks and with a weight range of 22–32 g were
purchased from Jackson Laboratories (Bar Harbor, ME, USA). The mice were housed in
ventilated cages in a temperature- and humidity-controlled room with a 12 h light/12 h
dark cycle and free access to standard rodent food and water. All animal procedures
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were approved and regulated in accordance with the Institutional Animal Care and Use
Committee at Texas Tech University Health Sciences Center and complied with the National
Research Council guidelines for the care and use of animals (National Research Council, 2011).

2.3. Mass Spectroscopic and Chromatographic Conditions

We modified published LC-MS techniques for ceftazidime [23] and gentamicin [24] as
follows. An AB SCIEX QTRAP® 5500 triple quadrupole mass spectrometer (MS) coupled
with a Nexera UPLC system (Shimadzu, Kyoto, Japan) was used for mass spectrometric
detection. The UPLC system accommodated an autosampler (Sil-30AC), pumps (LC-
30AD), a controller (CBM-20A), a degasser (DGA-20A5) and a column oven (CTO-30A).
Data acquisition and quantification were accomplished using Analyst software Version 1.7.
Gradient separation chromatography for ceftazidime was carried out on a 2.6 µm Accucore
C18 HPLC column (100 mm × 2.1 mm) (Thermo Fisher, Loughborough, UK; 17,126–102,130)
with 0.1% formic acid in water (Mobile Phase A) and 0.1% formic acid in acetonitrile
(Mobile phase B). A Kinetex 1.7 µm EVO C18 column (50 mm × 2.1 mm; Phenomenex,
Torrance, CA, USA) was used for the chromatographic separation of gentamicin C2 + C2a.
Analytical-grade HFBA (heptafluorobutyric acid) was used as an ion-pairing agent [25],
for the retention of gentamicin on a C18 column. The gradient elution was performed using
20 mM HFBA in water (Mobile Phase A) and 20 mM HFBA in acetonitrile (Mobile phase B).

The optimized LC-MS/MS analytical method conditions for ceftazidime and gentam-
icin are summarized in Table 1.

Table 1. The optimized LC-MS/MS conditions for ceftazidime and gentamicin.

Parameters Ceftazidime Gentamicin

Mass/charge ratio 547.1/468.1 464.2/322.1

IS mass/charge ratio 384.1/68.0 468.3/163.2

Injection volume (µL) 5 5

Run time (min) 6 5

Flow rate (mL/min) 0.4 0.5

Retention time (min) 1.93 1.80

Column temperature (◦C) 45 40

Mass spectrometer
detection

Ion spray voltage 5500 V 5500 V

Collision gas High High

Curtain gas 30 psi 30 psi

Temperature (◦C) 550 500

Ion source gas1 50 psi 50 psi

Ion source gas2 55 psi 55 psi

Declustering potential 80 V 100 V

Collision energy
(analyte/IS) 20 V/40 V 22 V/34 V

2.4. Preparation of Standards and Quality Controls (QCs)
2.4.1. Ceftazidime

Stock solutions of the antibiotic (1 mg/mL) were prepared by dissolving the powder
in cell culture medium or diluting the injection solution in saline. Quality controls and
standards were prepared by spiking plasma and diluted brain homogenate (1:9 w/v in
LC-MS-grade water) with ceftazidime to make 100 µg/mL and 1000 ng/mL, respectively.
The 100 µg/mL plasma sample was serially diluted with blank plasma, and each dilution
was further diluted 100-fold with LC/MS-grade water to yield final concentrations of 10, 20,
50, 100, 250, 500 and 1000 ng/mL. For the brain standard samples, the 1000 ng/mL standard
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was further diluted using the diluted blank brain homogenate to obtain concentrations
of 10, 20, 50, 100, 200, 400 and 1000 ng/mL. Amounts of 10, 100 and 1000 ng/mL were
used for QCs in both plasma and brain. For the in vitro permeability study, the stock
solution was processed by following the same protocol for the plasma standards and QCs,
but cell culture medium (EC—for hBMEC was used instead of blank plasma to achieve
concentrations of 10, 20, 50, 100, 250, 500 and 1000 ng/mL. All standards and QCs were
then subjected to the sample preparation process described below.

2.4.2. Gentamicin

For the plasma standard curve, 100-fold-diluted blank mouse plasma was spiked
with gentamicin to produce a concentration of 1000 ng/mL, which was further diluted
using 100-fold-diluted blank mouse plasma to achieve concentrations within the range
of 10–1000 ng/mL. In the case of the brain standard curve, standard concentrations were
prepared in LC-MS-grade water ranging from 100 to 10,000 ng/mL. These concentrations
were then used to spike blank brain tissue homogenized in water (1:9 w/v) to produce a
concentration range of 10–1000 ng/mL of gentamicin. Both plasma and brain standards
were then processed using the sample preparation process described below.

2.5. LC-MS/MS Sample Preparation Process
2.5.1. Ceftazidime

Plasma was diluted 100-fold in LC-MS/MS water, and brain was homogenized in
LC-MS grade water (1:9 w/v). A total of 50 µL of diluted plasma or brain homogenate
was added to 200 µL of water–acetonitrile (20:80 v/v), and then, vortexed for 5 min and
centrifuged at 15,000 rpm for 10 min. Next, 200 µL of supernatant was transferred to a new
tube and evaporated in a Vacufuge at 45 ◦C for 30–45 min until dry. Then, the concentrated
solutes were reconstituted in 100 µL of 5% acetonitrile with 0.1% formic acid spiked with
200 ng/mL of meropenem as the internal standard [26]. Again, the samples were vortexed
for 5 min and centrifuged at 15,000 rpm for 10 min. A final volume of 80 µL from the
supernatant was transferred to the HPLC autosampler vial.

2.5.2. Gentamicin

Deproteination of plasma samples was achieved by taking 40 µL of 100-fold-diluted
plasma in LC-MS/MS water and adding 80 µL of 100% acetonitrile containing 200 ng/mL of
tobramycin as the internal standard [22]. The precipitated samples were vortexed, followed
by centrifugation at 15,000 rpm for 10 min. A total of 40 µL supernatant was collected and
added to 40 µL of 20 mM HFBA in water, and the mixture was vortexed and transferred to
autosampler vials.

For brain samples, 200 µL of 10-fold-diluted brain homogenate spiked with gentam-
icin was treated with 200 µL of 5% TCA in water, and then, 800 µL of 100% acetonitrile
(containing 100 ng/mL of internal standard) was added. After vortexing and centrifuging
the precipitated samples at 15,000 rpm for 10 min, 1 mL of supernatant was collected in
a 1.5 mL centrifuge tube and completely dried in a Vacufuge at 45 ◦C. The dried sample
was reconstituted with 100 µL of 20 mM HFBA in water and vortexed for 5 min. Then, the
samples were again centrifugated at 15,000 rpm for 10 min, and 70 µL of supernatant was
transferred to autosampler vials.

2.6. Method Validation

All the stated method validation parameters were tested following bioanalytical
method validation guidance by the United States Food and Drug Administration [27].

2.6.1. Selectivity

Selectivity is the extent to which the method can determine ceftazidime or gentamicin
in the analyzed matrices without interference from matrix components. To ensure selectivity,
blank matrix samples containing no analytes were analyzed. Additionally, the interference
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among the transitions of analytes and internal standards was analyzed in both neat and
matrix samples.

2.6.2. Linearity

The linearity of calibration curves was assessed by determining the coefficient of
variation (r2). Linear regression analysis of the concentration–response curve using 1/x,
where x is the concentration, was carried out to obtain the coefficient of variation (r2).

2.6.3. Accuracy and Precision

Inter- and intra-day runs were performed to determine the accuracy and precision.
The quality control samples were analyzed against the calibration curve for both brain
and plasma matrices. Five replicates of each blank quality control, the LLOQ (lower limit
of quantification), and low, medium and high concentrations of the quality controls were
analyzed. Accuracy was calculated as a percentage of measured concentration over nominal
concentration. Precision was calculated as a percentage of relative standard deviations
(R.S.D.). The acceptable range for LLOQ was 80–120%, and for all other concentrations,
it should be within the range of 85–115% as specified. The accuracy and precision were
established in 3 independent runs for both the brain and plasma matrices.

2.6.4. Recovery

Recovery refers to the extraction efficiency of an analytical process, reported as a
percentage of the known amount of an analyte carried through the sample extraction
and processing steps of the method [27]. Five replicates of the LLOQ and medium and
high concentrations of the quality controls in each matrix were compared with the post-
spiked samples with equivalent concentrations processed through the sample preparation
method, starting with blank matrices (as a reference). The post-spiking concentrations were
calculated considering the wasted analyte amounts during the sample preparation steps
mentioned above. Recovery was calculated as the percentage of the ratio of the peak areas
of the samples to the peak area of the reference samples.

2.6.5. Freeze–Thaw Stability

For the freeze–thaw stability test, 100 ng/mL neat samples of ceftazidime and gen-
tamicin were subjected to three freeze–thaw cycles. One cycle is defined as a minimum of
12 h of freezing at −80 ◦C and thawing at room temperature. The samples that underwent
the freeze–thaw cycles were compared against the freshly prepared calibration curve and
quality controls.

2.6.6. Long-Term Storage Stability

For long-term storage stability tests, quality controls at the LLOQ and medium and
high concentrations of analytes in the brain and plasma (n = 3) were stored at −80 ◦C for
3 months. The stored samples were then compared against freshly prepared calibration
curves and quality controls of the respective matrices.

2.7. In Vitro Permeability Study Using iPSC-Derived Human BMECs
2.7.1. iPSC Differentiation Procedure

iPSC differentiation into human BMECs was performed using an established pro-
tocol [28]. IMR90-c4-induced pluripotent stem cell line was obtained from the WiCell
cell repository (WiCell, Madison, WI, USA). Undifferentiated stem cells at a density of
100,000 cells/mL were seeded on six-well tissue culture-treated plates coated with Ma-
trigel (C-Matrigel; Corning, Corning, MA, USA) in Essential 8 medium (E8 Thermo Fisher,
Waltham, MA, USA) containing 10 µM Y-27632 (Tocris, Minneapolis, MN, USA). Cells
were maintained in E8 until they reached the desired cell confluency. Then, differentia-
tion was initiated using the unconditioned medium (UM: Dulbecco’s modified Eagle’s
medium/F12 with 15 mM HEPES (Thermo Fisher, Waltham, MA, USA), 20% knockout
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serum replacement (Thermo Fisher, Waltham, MA, USA), 1% non-essential amino acids
(Thermo Fisher, Waltham, MA, USA), 0.5% Glutamax (Thermo Fisher, Waltham, MA, USA)
and 0.1 mM β-mercaptoethanol (Sigma-Aldrich, St. Louis, MO, USA)) and maintained
for 6 days. After 6 days, cells were incubated for two days with EC++ medium (human
serum-free endothelial medium (hESFM, Thermo Fisher, Waltham, MA, USA) supple-
mented with 1% bovine platelet-poor plasma-derived serum (PDS, Alfa Aesar, Ward Mill,
MA, USA), 10 ng/mL bFGF and 10 µM retinoic acid (Sigma-Aldrich)). After eight days
of differentiation, cells were removed via Accutase (Corning) treatment and seeded as
single cells on a 12-well Transwell® (polyester, 0.4 µm pore size; filter area of 1.12 cm2,
Corning) coated with a solution of collagen from human placenta (Sigma-Aldrich) and
bovine plasma fibronectin (Sigma-Aldrich) (400 µg/mL collagen IV and 100 µg/mL fi-
bronectin) at a density of 1,000,000 cells/cm2. After 24 h of seeding, EC—medium was
added (EC medium supplemented with 1% serum derived from platelet-poor plasma).
Purified brain endothelial monolayers were formed on day 10 of the experiment, and
permeability barrier function tests were performed 48 h after seeding on the Transwell
system. The barrier integrity of the hBMEC monolayer was ensured before performing the
permeability experiment by measuring transendothelial electrical resistance (TEER) using
a Millicell ERS electrode (Millipore, Bedford, MA, USA). After taking three measurements
for each insert, the average TEER was obtained.

2.7.2. Permeability Study on Transwell System

For the permeability experiment, 1 mg/mL of ceftazidime or gentamicin dissolved
in EC—medium was added to the upper chamber of the Transwell, including the control
wells without cells. The plate was incubated at 37 ◦C on a rocking plate. A total of 50 µL of
the samples were collected from the lower chamber of the Transwell at 0-, 30-, 60-, 90- and
120-min time points, and 50 µL of fresh warmed EC—medium was replaced at each time
point to maintain the same volume. The samples were prepared similarly to the plasma
sample processing procedure mentioned above and analyzed in LC-MS/MS, where the
plasma was replaced with a 100-fold-diluted EC—medium.

To calculate the permeability coefficient, P, the cleared volume was determined by
using Equation (1):

Cleared volume =
Cabluminal × Vabluminal

Cluminal
(1)

where C (abluminal) refers to the measured concentration in the abluminal compartment
at a given sampling time point, V (abluminal) refers to the volume of the abluminal com-
partment, and C (luminal) refers to concentration in the luminal compartment. The cleared
volume was calculated for the treatment groups (Transwells with hBMEC monolayer) and
blank filters (without hBMEC monolayer). Linear regression analysis after plotting the
cleared volume at each sampling time point over time allowed for the determination of
the permeability surface area (PS) product as the slope of the regression line. Then, the
permeability coefficient was obtained using Equation (2):

P =
PS
S

(2)

where P is the permeability coefficient, PS is the permeability-surface area product and S is
the surface area of the Transwell insert in cm2.

Finally, the permeability of the hBMEC monolayer was corrected for the permeability
of the filter insert:

1
Pcells

=
1

Ptotal
− 1

Pf ilter
(3)

where Pcells is the actual permeability of the monolayer, Ptotal is the measured, uncorrected
permeability of the monolayer and filter and Pfilter is the permeability of the empty filter.
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2.8. In Vivo Permeability Study under Isoflurane and Ketamine/Xylazine

For the in vivo permeability study, male C57BL/6 mice (n = 5–6) were anesthetized
using two different types of anesthetic agents: isoflurane and ketamine/xylazine. In the
first group, 3% v/v isoflurane with 70% nitrous oxide and 30% oxygen flowed through an
induction chamber at a rate of 1 L/min for the first few minutes until the animals were
anesthetized. Then, 1.5–2% v/v isoflurane was maintained via a silicone face mask during
the rest of the procedure. For the second group, ketamine/xylazine (100:10 mg/kg) was
injected intraperitoneally. After the surgical anesthesia stage was achieved, the jugular veins
were bilaterally exposed via incision of the neck for IV injections on one side and blood
collection from the contralateral side. Antibiotics (ceftazidime or gentamicin) were injected
intravenously at a dose of 25 mg/kg. Ceftazidime was administered as a bolus injection,
while gentamicin dose was administered via short infusion (≈5 min) with a constant flow
rate of 100 µL/min. A total of 50 µL of blood samples were collected at 1, 5, 10, 20 and
30 min after the drug injection. After the 30 min time point, the thorax was opened and a
PE50 catheter inserted into the left ventricle of the heart for transcardiac vascular perfusion
with a total volume of 20 mL at a flow rate of 2 mL/min, using phosphate-buffered saline
(PBS) with heparin (10 USP Units/mL). At the beginning of the perfusion, both jugular
veins were cut open to allow for the outflow of blood and perfusate. The outflow fluid
was visually inspected to ensure the appearance of clear perfusion fluid towards the end
of the perfusion. Animals in both groups were euthanized via decapitation, brains were
removed from the skulls (without olfactory bulbs, cerebellum and brain stem), meninges
were cleaned off and forebrains were weighed and homogenized in LC-MS/MS water
(1:9 ratio). The homogenized brains were stored at −80 ◦C for the LC-MS/MS sample
preparation step. Plasma was extracted through centrifugation of the blood samples at
6000 rpm for 10 min and the supernatant was collected. Plasma was diluted 100-fold in
LC-MS/MS water and stored at −80 ◦C until sample preparation for LC-MS/MS analysis.

Values for brain uptake clearance, Kin, were calculated using the following equation:

Kin = Cbr/AUCT
0 (4)

Here, the Cbr is the brain concentration of the analytes and expressed as percentage of
injected dose per gram of tissue (%ID/g). The AUCT

0 denotes the area under the plasma
concentration–time curve from time 0 to the terminal sampling time. AUCT

0 was obtained
using the logarithmic trapezoidal method after plotting the plasma drug concentrations
against sampling time.

2.9. Statistical Analysis

GraphPad Prism 9 software (GraphPad Software, LaJolla, CA, USA) was used for
graphical presentation and for statistical analysis. The data passed tests for normality
in Prism, and group comparisons were performed using an unpaired t-test with Welch’s
correction, which does not assume equal SDs. Two-way ANOVA was applied for the
plasma concentration–time data analysis using the Greenhouse–Geisser correction, which
does not assume sphericity. A p-value less than 0.05 was considered statistically significant.

3. Results
3.1. Mass Spectrometry and Chromatographic Optimization

The most suitable m/z transitions for ceftazidime, gentamicin and the internal stan-
dards meropenem and tobramycin, respectively, were selected based on signal-to-noise
ratio and high sensitivity (see Table 1). The peaks were stable and reproducible with
multiple injections. The retention time for ceftazidime and meropenem was between
1.9 and 2.3 min, and gentamicin C2 + C2a and tobramycin retention ranged between
1.5 and 1.8 min after injection (Figure 2).
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Figure 2. LC-MS/MS chromatograms for ceftazidime and meropenem (A) and gentamicin and
tobramycin (B). Blank, blank internal standards (IS) meropenem or tobramycin, respectively, and
lower limit of quantification (LLOQ) samples were prepared in neat, plasma and brain matrices.
There is no interference observed between analytes and IS. For ceftazidime, the intensity of blank
samples is <10% of the intensity observed in LLOQ samples (10 ng/mL for neat and plasma and
5 ng/mL for brain). For gentamicin, the intensity of blank samples is around 16–17% of the intensity
observed in LLOQ samples (10 ng/mL for all matrices).

3.2. Selectivity

Figure 2 demonstrates that the chromatograms of the neat samples of the two analytes
and the corresponding internal standards prepared in water had good selectivity with no
cross-channel interference. The ceftazidime and gentamicin chromatograms at the lower
limit of quantitation (LLOQ) and the blank samples containing only internal standards
in the plasma and brain matrices also showed no interference transitions at the specified
retention times. The baseline value for the blank samples was stable and low, at <5% and
<18% of the LLOQ peak area for ceftazidime and gentamicin, respectively (Figure 2).

3.3. Linearity

The calibration curves were generated within the ranges of 10 to 1000 ng/mL and
5 to 400 ng/mL in the plasma and brain, respectively. We confirmed the linearity of the
calibration curves with r2 > 0.99 for both the plasma and brain matrices across all the runs
conducted in the study.
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3.4. Accuracy and Precision

Tables S1 and S2 indicate the inter- and intra-run precision and accuracy data for
ceftazidime and gentamicin in the plasma and brain samples. The accuracy and precision
values were within the acceptable range specified in the Food and Drug Administration
(FDA) guidelines for bioanalytical method validation [27]. The inter- and intra-day pre-
cision and accuracy (CV) for ceftazidime at four different concentrations ranged from
5.0 to 10.4% and 2.2 to 9.5% in the plasma and brain samples, respectively. Gentamicin also
showed a similar range of accuracy and precision (CV) for both inter- and intra-run data,
ranging from 2.3% to 9.9% for plasma samples and 2.7% to 11.22% for brain samples.

3.5. Recovery and Stability

The recovery rates of five replicates were between 89.9% and 102.0% over a con-
centration range from 10 to 1000 ng/mL in plasma samples for both ceftazidime and
gentamicin. For the brain matrix, ceftazidime showed recovery rates greater than 89.9%
at concentrations from 5 to 400 ng/mL, and the gentamicin recovery rates were above
81.5% at concentrations from 10 to 1000 ng/mL. Recovery was consistent across all samples,
with ± SD less than 10.6% (Table S3). Figure S1 presents the results of the freeze–thaw
stability study at the concentration of 100 ng/mL in neat samples. The results indicate
that ceftazidime and gentamicin remained stable across three freeze–thaw cycles. The
long-term storage stability test results confirmed that we could stably detect ceftazidime
and gentamicin analytes after three months of storage at −80 ◦C with as much sensitivity
as in freshly prepared samples in the brain and plasma matrices, without any significant
degradation or loss (Table S4).

3.6. In Vitro Permeability Measurements

The in vitro permeability was evaluated using induced pluripotent stem cell (iPSC)-
derived human brain microvascular endothelial cells (hBMECs) cultured using the Tran-
swell system. The permeability coefficients (P) of ceftazidime and gentamicin were
6.62 × 10−7 ± 2.34 × 10−7 cm/s and 7.38 × 10−7 ± 2.29 × 10−7 cm/s, respectively
(Figure 3A). For all the Transwells used in this experiment, we ensured consistent barrier
integrity of the hBMEC monolayers by measuring the transendothelial electrical resistance
(TEER) values prior to the permeability study, which were 1295 ± 139.0 Ω cm2 for the wells
used to measure ceftazidime transport and 1149 ± 113.1 Ω cm2 for the wells used in the
gentamicin experiment (Figure 3B). Figure 3C,D illustrate the measured clearance data
across the monolayers over 120 min or blank Transwell filters over 60 min for ceftazidime
and gentamicin, respectively. The p-values in Figure 3A correspond to the slopes of the
linear regression lines after correction for the permeability of the filters without cells.

3.7. In Vivo Permeability: Isoflurane Exposure Compared to Ketamine/Xylazine

The plasma concentration–time profiles of both antibiotics were similar between the
two anesthesia methods at earlier time points, but the mice injected with ketamine/xylazine
showed higher plasma concentrations at some of the later time points, as shown in
Figures 4A and 5A. While there was a significant increase in AUC|30

0 for ceftazidime
under isoflurane (p = 0.0007 vs. ketamine/xylazine; see Figure 4B), the AUC|30

0 of gentam-
icin was not significantly different between the isoflurane and ketamine/xylazine groups
(Figure 5B). Meanwhile, in terms of brain concentration (Cbr), both ceftazidime and gentam-
icin showed significantly higher concentrations in the isoflurane group compared to the ke-
tamine/xylazine group (p = 0.0097 and p = 0.0239, respectively; see Figures 4C and 5C). The ab-
solute concentrations in brain homogenate were 16.22 ± 1.79 ng/mL vs. 10.59 ± 1.92 ng/mL
for ceftazidime and 22.35 ± 6.51 ng/mL vs. 17.75 ± 7.32 ng/mL for gentamicin (isoflurane vs.
ketamine/xylazine). The brain uptake clearance (Kin) of both ceftazidime and gentamicin
increased significantly, approximately two-fold, in the isoflurane-exposed groups com-
pared to ketamine/xylazine anesthesia, with values of 0.057 ± 0.006 µL min−1 g−1 vs.
0.033 ± 0.003 µL min−1 g−1 (p = 0.0001) for ceftazidime, and 0.101 ± 0.034 µL min−1 g−1
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vs. 0.052 ± 0.016 µL min−1 g−1 (p = 0.0005) for gentamicin, respectively, as shown in
Figures 4D and 5D.
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Figure 3. In vitro permeability analysis using iPSC-derived hBMEC cells in Transwells. The calculated
permeability coefficient across the monolayer, without exposure to anesthetic agents, was measured
over 2 h of incubation with the presence of ceftazidime (n = 6) and gentamicin (n = 5) in the
apical chamber (A). Transendothelial electrical resistance (TEER) values were measured before the
experiments to ensure hBMEC monolayer integrity (B). The permeability coefficients were calculated
based on the slope of the cleared volume-versus-time graphs for the filter (without cells) and induced
pluripotent stem cell (iPSC)-derived human brain microvascular endothelial cells (hBMECs) for
ceftazidime (C) and gentamicin (D). Panels A and B show mean ± 95% CI; no difference was detected
by the unpaired t-test with Welch’s correction (p > 0.05). Panels (C,D) show mean ± CI and linear
regression lines (solid) with 95% confidence bands (dotted lines).
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Figure 4. In vivo permeability for ceftazidime under isoflurane and ketamine/xylazine. Mice
(n = 5–6) were anesthetized with either isoflurane (1.5–2%) or ketamine/xylazine (100:10 mg/kg)
and given an IV bolus of ceftazidime (25 mg/kg). Blood was collected at different time
points, and plasma–time profiles and AUCs after the ceftazidime injection are depicted in (A,B).
Panel (A) represents mean values ± CI, and 2-way ANOVA was performed for statistical analysis
(* = p < 0.05). Brain vasculatures were washed with PBS through cardiac perfusion after 30 min, and
the brain concentrations were measured after euthanizing the animals (C). The apparent brain uptake
clearance (Kin) values under isoflurane and ketamine are shown in (D). Graphs show individual
values, means and CI in (B–D), and statistical analysis was conducted using an unpaired t-test with
Welch’s correction, not assuming equal SDs.
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Figure 5. In vivo permeability for gentamicin under isoflurane and ketamine/xylazine. Mice (n = 6)
were anesthetized with either isoflurane (1.5–2%) or ketamine/xylazine (100:10 mg/kg) and given
an IV short infusion of gentamicin (25 mg/kg) at a rate of 100 µL/min. Blood was collected at
different time points, and plasma concentration–time profiles and AUCs after injection are depicted
in (A,B). Panel (A) represents mean values ± CI, and 2-way ANOVA was performed for statistical
analysis (* = p < 0.05). Brain tissue concentrations were measured following vascular washout 30 min
after gentamicin injection (C). The apparent brain uptake clearance (Kin) values under isoflurane
and ketamine are shown in (D). Graphs in (B–D) show individual values, means and CI. Statistical
analysis was conducted using an unpaired t-test with Welch’s correction, not assuming equal SDs.

4. Discussion

To investigate the hypothesis that volatile anesthetic agents may increase the BBB
permeability of potential neurotoxic drugs, ceftazidime and gentamicin were chosen,
because both antibiotics have been reported to induce neurotoxicity in some patients
when they accumulate in the body, e.g., due to renal impairment. Because of its hydrophilic
character (log P = −1.6 and −3.4, respectively) [29,30], crossing of the BBB by either
agent is expected to be restricted and to occur primarily through passive diffusion [31,32].
Both agents show low plasma protein binding (<15%), and there is no evidence for the
involvement of uptake or efflux transporters across the BBB [31,32]. Among cephalosporins,
ceftazidime has been reported to be among those with highest Ki values (>10 mM) for the
oligopeptide transporters PEPT1 and PEPT2 [33]. The latter is expressed by the choroid
plexus epithelium and by neurons, and its effect on the concentration of the cephalosporin
cefadroxil in brain extracellular fluid and in brain cells has been demonstrated [34]. When
studying changes in brain uptake via passive permeability, without interference from any
transporters, it is therefore advantageous that ceftazidime has negligible affinity to PEPT2.

To measure the low concentrations of the antibiotics expected in brain tissue, we
established highly sensitive LC-MS/MS analytical methods for these analytes. We care-
fully optimized the protein precipitation by using 5% TCA and/or acetonitrile to help
with the extraction and recovery of gentamicin and ceftazidime from the brain matrix for
analysis. Reversed-phase chromatographic separation and gradient elution achieved short
total runtimes and sharp peaks. The main challenge for both antibiotics was to retain the
compounds in a C18 stationary phase due to their hydrophilic nature. For ceftazidime,
the problem was resolved by switching to an Accucore C18 column from an Acquity C18
BEH amide column, which has been previously used for its analysis [23]. Gentamicin,
with its greater polarity, was more challenging to analyze in various biological matrices
with optimum protein precipitation. In pilot studies, we found that the addition of hep-
tafluorobutyric acid (HFBA) as an ion-pairing agent in the mobile phase [25] improved
the retention and separation of gentamicin on a C18 column after trichloroacetic acid
precipitation [24]. We selected stable and reproducible m/z transitions for both analytes
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based on multiple injections with different matrices. Meropenem and tobramycin were
suitable internal standards for the analysis of ceftazidime and gentamicin, respectively,
including the same retention time and no interference with the analyte transitions. The
evaporation step in the sample preparation increased the sensitivity, allowing us to detect
low concentrations of ceftazidime and gentamicin in the plasma and brain. The recovery
data indicated no loss of analytes during all of the sample preparation steps, including the
evaporation step (Table S3). Notably, we found that polypropylene vials and inserts are
more suitable for gentamicin analysis, as we observed contaminations and inconsistent
results using glass vials in pilot studies. The analytes and IS transition peaks provided
satisfactory signal-to-noise ratios for use in the pharmacokinetic study.

All validations for the LC-MS/MS methods, including accuracy and precision, stan-
dard curves, recovery, and stability, adhered to the specifications of the bioanalytical
method validation guidance currently accepted by the FDA [27].

The iPSC-derived hBMEC monolayer used here as an in vitro BBB model has been
shown to exhibit excellent paracellular barrier properties, is well characterized with re-
spect to the expression of BBB-specific transporters and carriers, and is suitable to analyze
the permeability of small molecules [35–37], notwithstanding limitations in studies of
immune mechanisms [38] and doubts regarding its endothelial characterization [39]. For
the purpose of Transwell studies aimed at the analysis of the transport of substances
with very low passive permeability, such as in the present experiments, it represents a
viable in vitro model [28]. TEER values in BBB in vitro models of at least 1 kΩ cm2 are
desirable for restricted paracellular permeability [40]. The values of 1295 ± 139 Ω cm2

and 1149 ± 113 Ω cm2 in the present experimental series are comparable to those in
our recent study using the same iPSC-derived hBMEC model [6]. The in vitro perme-
ability coefficients, P, of ceftazidime and gentamicin (6.62 × 10−7 ± 2.34 × 10−7 cm/s
and 7.38 × 10−7 ± 2.29 × 10−7 cm/s, respectively) are close to the P of the [13C12]sucrose
(6 × 10−7 cm/s [41]). These values are in line with the expected low permeability resulting
from the physicochemical characteristics of the agents (hydrophilic structures with high
numbers of hydrogen acceptors and donors, high polar surface areas and negative log P
values; see Figure 1).

Similarly, the in vivo brain uptake studies showed values of brain uptake clearance
in the range of hydrophilic BBB markers. Based on our recent data showing that ke-
tamine/xylazine anesthesia does not affect the BBB regarding the passive permeability of
hydrophilic markers in comparison to awake animals [6], we considered ketamine/xylazine
anesthesia to be a suitable control condition in comparison to isoflurane for the present ex-
periments. In ketamine/xylazine-anesthetized mice, the Kin values of ceftazidime
(0.033 ± 0.003 µL min−1 g−1) and gentamicin (0.052 ± 0.016 µL min−1 g−1) found in the
present study are similar to the value of sucrose in our previous report (0.0612 µL min−1 g−1).
Notably, ceftazidime and gentamicin showed a two-fold increase in Kin under isoflurane
anesthesia, resulting in a corresponding increase in brain concentrations. This is compa-
rable to the effects seen with the passive permeability markers sucrose and mannitol [6],
where these are used at tracer concentrations in plasma without relevant osmotic effect
(e.g., less than 1 mM). Because neither of the antibiotics is known as a substrate of active or
facilitated transport at the BBB, the presumed uptake mechanism is via passive diffusion.
Therefore, we did not investigate the potential dose dependence of Kin.

Broad-spectrum cephalosporins and aminoglycosides, including ceftazidime and gen-
tamicin, are in common clinical use, especially in intensive care units and in settings like
perioperative prophylaxis [42–45]. These agents are therefore frequently administered to
patients undergoing procedures under general anesthesia. Although ceftazidime is consid-
ered a relatively safe drug, incidents of neurotoxicity in patients have been documented.
A recent report from the French Pharmacovigilance Database analyzed serious cases of
adverse effects of different generations of cephalosporins on the CNS, and ceftazidime
accounted for approximately 20% of cases [14]. Regarding gentamicin, its main neurotoxic
effect manifests in the form of ototoxicity. Cochlear hair cells accumulate aminoglycosides
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present in endolymph fluid through mechanoelectrical transduction (MET) channels [46].
The route of uptake into endolymph is via the stria vascularis. While the capillaries of
the stria vascularis express tight junctions restricting paracellular transport [47], recent
evidence indicates that megalin-mediated transport at the level of the marginal epithelial
cell layer is responsible for the entry of aminoglycoside into the endolymph. In contrast
to ototoxicity, other CNS toxicity associated with gentamicin, e.g., encephalopathy, is less
reported and its mechanistic details not well understood [19]. The results of the present
study and previous work by our group and others indicate that volatile anesthetics exert
acute effects on the BBB, which cause enhanced brain uptake via passive diffusion. The
interaction of these agents with lipid membranes has been considered a crucial part of
their pharmacological activity in neurons since the introduction of Meyer and Overton’s
hypothesis at the turn of the 20th century. Altered lipid membrane structure caused by
these lipophilic substances in other cell types, including the endothelial cells forming the
tight barrier of the brain microvasculature, will also affect function, for instance, through
higher permeability due to increased membrane fluidity [11]. These findings could be of
clinical relevance and may stimulate future studies employing neurophysiological in vivo
models (e.g., seizure threshold) to determine whether inhalational anesthetics enhance the
risk of CNS damage, by causing an approximately two-fold increase in BBB permeability
for hydrophilic small-molecule drugs with potential neurotoxicity when these are present
in the blood during anesthesia. The present study was conducted in male animals only,
which may be perceived as a potential limitation. However, both males and females were
included in our recent publication on the effects of anesthetic agents [6], and a pilot study
had not indicated sex differences. Moreover, to our knowledge, there is no evidence from
the literature for sex differences in young adult rodents regarding passive BBB permeability.

In conclusion, sensitive LC-MS/MS methods for ceftazidime and gentamicin enabled
accurate measurements of plasma kinetics and brain uptake. Our recent findings that
volatile anesthetics change the membrane lipid fluidity and increase the BBB permeability of
hydrophilic markers, including sucrose, mannitol and fluorescent dye NaFL [6], apparently
also apply to drug molecules with similar physicochemical characteristics.
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