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Abstract: Wounds and chronic wounds can be caused by bacterial infections and lead to discomfort
in patients. To solve this problem, scientists are working to create modern wound dressings with
antibacterial additives, mainly because traditional materials cannot meet the general requirements for
complex wounds and cannot promote wound healing. This demand is met by material engineering,
through which we can create electrospun wound dressings. Electrospun wound dressings, as well as
those based on hydrogels with incorporated antibacterial compounds, can meet these requirements.
This manuscript reviews recent materials used as wound dressings, discussing their formation, appli-
cation, and functionalization. The focus is on presenting dressings based on electrospun materials
and hydrogels. In contrast, recent advancements in wound care have highlighted the potential
of thermoresponsive hydrogels as dynamic and antibacterial wound dressings. These hydrogels
contain adaptable polymers that offer targeted drug delivery and show promise in managing various
wound types while addressing bacterial infections. In this way, the article is intended to serve as
a compendium of knowledge for researchers, medical practitioners, and biomaterials engineers,
providing up-to-date information on the state of the art, possibilities of innovative solutions, and
potential challenges in the area of materials used in dressings.
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1. Introduction

The human body includes an organ known as the skin, which is the largest in
size [1]. On average, an adult’s skin covers about 2 square meters of surface and can
vary in thickness from 1 to 4 mm. The thickest skin is found on the hands and feet,
and in individuals working all their lives physically, it can be even 10 mm thick. The
skin’s primary function is to cover the internal organism, thus providing a barrier
from the external environment. However, diabetes, cuts, and illnesses can influence
the structure and function of this organ [2,3]. The skin is composed of two layers:
the dermis and the epidermis. The epidermis, an external layer made of connective
tissue, contains numerous capillaries. Its primary function is to act as a mechanical
and chemical barrier against external factors (heat, cold, UV radiation), mechanical
injuries, and chemical substances, and the penetration of microorganisms also protects
the internal organs and regulates the water–electrolyte, vitamin, and fat balance in
the body [4]. Over the last few decades, there have been enormous developments
in materials dedicated to medicine, particularly nanosized materials. Electrospun
nanosized materials produced via electrospinning are investigated and applied in
various biomedical fields, such as muscle and neural tissue [5–7], urology [8,9], drug
delivery systems [10–12], regeneration [13,14], cartilage [15], anti-cancer treatment [16],
and skin, especially wound dressings (Figure 1A) [17–19].
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Figure 1. (A) Illustration of nanofiber applications in different fields of biomedicine, and (B) clas-
sification of wound dressings. 
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innovative properties, such as hydrophobicity, morphology, or surface charge, that can 
be easily modified [20–22]. Thus, it can mimic the extracellular collagen matrix (ECM) 
and simultaneously avoid the clearance properties of the human immune system [23,24]. 
According to recent investigations [25], cells attach better to the smaller diameters of the 
fibers. Abrigo et al. reviewed wound dressings and gave an insight into the evolution of 
wound dressing classification and application [26]. Currently, there are 50 million pa-
tients suffering from severe wounds. Moreover, in the US, USD 25 billion is spent annu-
ally on chronic wound treatment per year [27]. In the UK, this is GBP 4.5–GBP 5.1 billion 
[28], and in the Scandinavian countries, around 2–4% of the total healthcare budget [29]. 
This economic problem requires widespread scientific investigation. The global wound 
care market is expected to surpass USD 2.2 billion by 2024 [30]. 

Wound dressings serve as a crucial protective measure against infections, injuries, 
and the absorption of wound secretions. In an effort to improve wound-healing outcomes 
and prevent infections, researchers are actively exploring various methods of developing 
electrospun dressings. The process of wound healing is a complex and intricate proce-
dure that occurs within the human body [31]. 

Within this manuscript, we meticulously examine the advancements in wound 
dressing research and provide a comprehensive overview of different types of wound 
dressings and their potential uses. Our focus is on presenting the latest developments in 
the creation of electrospun nanofibers as wound dressings, emphasizing innovative 
strategies for constructing state-of-the-art systems. Furthermore, we explore the future 
prospects and challenges that lie ahead in this field. 

2. Commercial Wound Dressings 
Currently, various types of wound dressings are being researched for 

wound-healing management. Commercial dressings can be divided into two main cate-
gories: traditional dressings and more complex structures that include healing agents 
[32]. Additionally, currently, the available wound dressings can be summarized in detail 
as interactive, passive, bioactive, and advanced (Figure 1B) [33]. 

The most popular market dressings are available as foam [34], film [35], sponge 
[36,37], and hydrogel [38,39]; nanofibrous membranes are mainly in a stage of 
non-clinical testing [40]. Although over 3000 types of dressings are on the market, there is 
no ideal dressing for every type of wound. This is the main reason for the further inten-
sive work of scientists worldwide. The most important issue is to fit the dressings to the 
specified types of wound. Every product has many advantages but also disadvantages 
(Table 1). 
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Nanomaterials have unique features, such as a high surface-to-volume ratio,
and innovative properties, such as hydrophobicity, morphology, or surface charge,
that can be easily modified [20–22]. Thus, it can mimic the extracellular collagen
matrix (ECM) and simultaneously avoid the clearance properties of the human immune
system [23,24]. According to recent investigations [25], cells attach better to the smaller
diameters of the fibers. Abrigo et al. reviewed wound dressings and gave an insight
into the evolution of wound dressing classification and application [26]. Currently,
there are 50 million patients suffering from severe wounds. Moreover, in the US, USD
25 billion is spent annually on chronic wound treatment per year [27]. In the UK, this
is GBP 4.5–GBP 5.1 billion [28], and in the Scandinavian countries, around 2–4% of the
total healthcare budget [29]. This economic problem requires widespread scientific
investigation. The global wound care market is expected to surpass USD 2.2 billion by
2024 [30].

Wound dressings serve as a crucial protective measure against infections, injuries,
and the absorption of wound secretions. In an effort to improve wound-healing
outcomes and prevent infections, researchers are actively exploring various methods
of developing electrospun dressings. The process of wound healing is a complex and
intricate procedure that occurs within the human body [31].

Within this manuscript, we meticulously examine the advancements in wound
dressing research and provide a comprehensive overview of different types of wound
dressings and their potential uses. Our focus is on presenting the latest developments
in the creation of electrospun nanofibers as wound dressings, emphasizing innovative
strategies for constructing state-of-the-art systems. Furthermore, we explore the future
prospects and challenges that lie ahead in this field.

2. Commercial Wound Dressings

Currently, various types of wound dressings are being researched for wound-
healing management. Commercial dressings can be divided into two main categories:
traditional dressings and more complex structures that include healing agents [32].
Additionally, currently, the available wound dressings can be summarized in detail as
interactive, passive, bioactive, and advanced (Figure 1B) [33].

The most popular market dressings are available as foam [34], film [35], spon-
ge [36,37], and hydrogel [38,39]; nanofibrous membranes are mainly in a stage of
non-clinical testing [40]. Although over 3000 types of dressings are on the market,
there is no ideal dressing for every type of wound. This is the main reason for the
further intensive work of scientists worldwide. The most important issue is to fit the
dressings to the specified types of wound. Every product has many advantages but
also disadvantages (Table 1).
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Table 1. Available wound dressings and their advantages and disadvantages.

Wound
Dressing Type Wound Type Advantages Disadvantages Examples Ref.

Traditional wound dressings

Tulle Shallow
wounds

Does not
adhere to the

wound

Insufficient,
often

additional
dressing
required

Paratulle,
Jelonet,

Bactigras
[41]

Gauze Minor clean
wounds

Cheap, used as
cover

Frequent
changing, may
adhere to the

wound

Xeroform [42]

Interactive and bioactive wound dressings

Hydrogels

Dry wounds,
wounds with

low-to-
medium
exudate,
necrotic

wounds, burn
wounds

Maintains
moisture,

allows vapor
and oxygen

exchange, does
not react with

tissue

Infections of
the skin,

mechanically
weak

Intrasite
Hydrosorb,
Transigel,
Curafil,

FlexiGel,
Aquaform

Vigilon,
Curasol

[43]

Semi-
permeable

films

Shallow
wounds

Flexible,
conformable,

allow gas
exchange

Minimal
adhesion, skin

maceration,
dryness

Opsite,
DuoDERM,
Bioclusive,

Mefilm,
Transeal,

Tegaderm,
Omniderm

[44]

Semi-
permeable

foams

Moderate
wounds, heavy

wounds

Highly
absorbent Dryness

Lyofoam,
Mepilex,
Allevyn

Curafoam,
Polymem,

[45]

Hydrocolloids

Minor burns,
light wounds,

moderate
exuding
wounds

Absorption
and

debridement of
wound

exudates,
permeable to
water vapor,

fluid exchange

Not intended
to be used for

heavy wounds

Granuflex,
Tegasorb,

DuoDERM,
Replicare,
NuDerm,
Tegasorb

[46]

Hydrofibres
Burns, medium
wounds, heavy

wounds

Highly
absorbent

Secondary
dressing Aquacel [47]

There are many different types of wound dressings available, but there has not been
enough research conducted to compare their characteristics. Scientists are working on
developing new and advanced types of dressings, like smart bandages made from poly-
mers [48]. Many researchers strive to design dressings with superior qualities compared to
those already on the market. However, the state-of-the-art findings are seldom compared
to the performance of commercial dressings.
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2.1. Traditional Wound Dressings

Conventional wound-dressing products encompass lint, plasters, gauze, bandages
(both natural and synthetic), and cotton wool, which are used as primary or secondary
dressings to safeguard wounds against contamination. Traditional wound dressings pro-
vide a safeguard against external infections for the wound. Their ability to effectively
regulate moisture absorption from the wound is limited, resulting in insufficient dampness
for prompt healing. These wound dressings are commonly employed for wounds with
minor discharge or as backup dressings [49].

Bandages of natural cotton wool, cellulose, or synthetic materials like polyamide
can secure lightweight dressings. An example of a natural bandage can be Xeroform™,
which is suitable for non-exudating to mildly exudating wounds. Another type, gauze
dressings, consisting of woven and nonwoven fibers like cotton, rayon, and polyester,
offer a certain level of protection against bacterial infections. Gauzes are cheap and can be
used as wound covers. Additionally, gauze dressings tend to become moist and adhere to
the wound, causing discomfort and secondary damage during removal due to excessive
adhesion. Tulle dressings, such as Bactigras, Jelonet, and Paratulle, are commercially
available impregnated dressings containing paraffin and are appropriate for superficial
clean wounds. To summarize, conventional wound dressings are dedicated to dry and
clean wounds [50].

2.2. Interactive and Bioactive Wound Dressings

The group of interactive and bioactive wound dressings consists of hydrogels, semi-
permeable films, foam dressings, hydrocolloids, and hydrofibres.

Hydrogels are hydrophilic, biocompatible, and permeable to nutrients and metabolites,
making them non-irritating materials made from synthetic polymers [51]. Scientists [52]
have observed that hydrogel dressings are suitable for all four stages of wound healing
except for infected and heavily draining wounds. Numerous studies have shown that hy-
drogel dressings are effective in treating chronic leg ulcers. However, their low mechanical
strength and potential to cause skin infections are major drawbacks [53].

Further, another type of commonly used wound dressing comprises semi-permeable
films. Semi-permeable films are dedicated to treating non-exudative or low-exudative
wounds [54]. Also, they have unique properties such as transparency, elasticity, and
flexibility [55]. It is worth mentioning other dressings, such as Opsite, Tegader, Mefilm,
and Biooclusive. They are recommended for superficial and epithelializing wounds [56].

Subsequently, semi-permeable foam dressings consist of hydrophobic and hydrophilic
foam materials, sometimes with adhesive borders. Typically, foam dressings serve as pri-
mary dressings due to their high absorbency and moisture vapor permeability, eliminating
the need for additional secondary dressings [57]. Foam dressings can absorb varying
amounts of wound drainage, depending on the thickness of the wound. Both adhesive
and non-adhesive foam dressings are available. Foam dressings are suited to exudating
wounds and also granulating wounds [58].

Bioactive wound dressings, more precisely, hydrocolloids and hydrofibres, can
promote healing and offer biocompatibility, biodegradability, and non-toxicity proper-
ties; however, this type of dressing cannot conduct water vapor exchange, which is a
drawback to application to infected wounds that need oxygen for improved healing.
They can be derived from various sources, including natural tissues and artificial
materials [59]. Examples of such materials include collagen [60], hyaluronic acid
(HA) [61], chitosan [62], alginate, elastin, dextran, and gelatin [63]. The use of bioac-
tive dressings with growth factors and antimicrobial agents enhances wound healing.
Collagen, a major structural protein, plays a significant role in natural healing [64], as
does HA [65]. Collagen promotes the formation of fibroblasts, while HA is naturally
biocompatible, biodegradable, and non-immunogenic [66,67]. Studies have shown
that nanofibrous wound dressings made of a polyurethane–HA blend with integrated
propolis are suitable for wound dressing [68]. There are many commercially available
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wound dressings that contain HA, such as Hyalomatrix or Hyalosafe. Hyalomatrix is
a flexible, adaptable bilayered dermal material that promotes the regeneration of the
dermis and the closure of wounds. Hyalosafe is a transparent film utilized in treating
wounds, especially second-degree burns [69].

3. Electrospinning as a Method for Wound Dressing Formation

Electrospinning is an advanced technique for producing nanofibers using electricity.
This process enables the production of nanofibers with a diameter from several nanometers
to several micrometers. Electrospinning is used in many fields of medicine, such as
biomedicine, material engineering, and electrical engineering (Figure 2) [70]. Nanofibers
obtained via electrospinning usually have a very small diameter, which is advantageous
in various applications, especially in dressings. Additionally, the structure of nanofibers
generated via electrospinning is characterized by a large surface area in relation to the
volume, which is important in the context of the adsorption, transportation of substances,
and cellular interactions that can take place in dressings [71]. High porosity may be
beneficial in the processes of wound healing, fluid absorption, and interaction with cells.
As well as regulating the structure and morphology, by controlling the electrospinning
parameters, the structure, morphology and mechanical properties of nanofibers can be
adjusted, adapting them to specific application needs [72]. Nanofiber-based products play a
key role in wound healing due to their unique properties that contribute to the creation of a
favorable microenvironment for the wound-healing process. The exceptionally high surface-
to-volume ratio increases the adsorption and retention of bioactive molecules, growth
factors, and other therapeutic agents on the surface of the nanofibers, promoting their
controlled release to the wound site. Additionally, nanofibers can support the formation of
new blood vessels (angiogenesis) [73].
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Nanofiber-based dressing products can result in improved blood flow to the wound
site and improve the delivery of nutrients and oxygen, facilitating cell proliferation, migra-
tion, and overall damaged-skin regeneration [74].

Various manufacturing techniques have been devised to produce porous architectures
that have antibacterial properties, such as phase separation, supercritical fluid, hydrogel,
and electrospinning (Figure 3) [75–79]. Although electrostatic spinning has become popular
in the field of biomedical engineering in recent years, its history can be traced back to the
1600s, when English physicist William Gilbert first described the electrostatic phenom-
ena [80]. However, electrospinning has garnered significant attention due to its simplicity,
cost effectiveness, versatility, and scalability, and the ability to control fiber morphology
during the process [81–83]. Electrospraying produces micro- and nanoparticulate materials
smaller than typical spray-dried particles, resulting in a high surface-to-volume ratio [80].
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Figure 3. Different structures of scaffolds with antibacterial properties. (A) Versatile Gelatin/Chitosan
electrospun wound dressing exhibiting antimicrobial effects against P. aeruginosa and S. aureus
through the use of ciprofloxacin (CIP), with the permission of Licensee MDPI Copyright 2021 [84].
(B) Dual-drug delivery via core–shell PVA/PCL electrospun nanofibers loaded with Ag-chitosan
nanoparticles and phenytoin for tissue regeneration and wound healing, with the permission of
Elsevier Copyright 2021 [85]. (C1–C4) Dual-thermoresponsive hydrogel, comprising poly(N-isopropyl
acrylamide) (PNIPAM) and methacrylated κ—carrageenan (MA-K-CA) with near-infrared (NIR)-
responsive polypyrrole–polydopamine nanoparticles (PPy-PDA NPs), Zn2+ and ZIF-8, designed
for bacterial elimination during wound healing. (C1) Visual documentation of colonies, and (C2)
Antibacterial performance of the MCA-NI-AA/NP/ZIF8 hydrogel against S. aureus and E. coli
(*** p < 0.001)). All values are expressed as mean ± SD, n = 3. (C3) Captured images of the
inhibition zone, and (C4) statistical data regarding the MCA-NI-AA/NP/Zn inhibition zone area
and the MCA-NI-AA/NP/ZIF8 hydrogel against S. aureus and E. coli. This hydrogel represents
a promising wound dressing with adaptable coverage and photothermal–chemical antibacterial
capability, ensuring effective bactericidal action and prolonged release of antibacterial agents, with
the permission of Wiley-VCH GmbH Copyright 2022 [38]. (D) A novel quaternary ammonium
chitosan nanoparticle (TMC NP)/chitosan composite sponge with asymmetric wettability surfaces is
a promising dressing material for chronic wounds. The bacterial infiltration activity of chitosan (a),
modified TMC NP/chitosan (b), and modified chitosan (c) sponges against E. coli and S. aureus, with
the permission of Elsevier Copyright 2019 [37].
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The electrospinning apparatus is gaining momentum in commercialization. Among
the widely adopted electrospinning techniques, melt electrospinning [86], wet electrospin-
ning [87], coaxial electrospinning [85], and self-bundling electrospinning [88] are the most
commonly utilized. Electrospinning can generate polymer nanofibers (with diameters
ranging between 50 and 1000 nm) through techniques such as wet or hot melt electrospin-
ning [86,87].

Electrospinning has the potential to create a large surface area and porosity, facilitating
cell attachment and simplifying the exchange of nutrients and waste products within the
anatomical sites of implantation [77,81]. Compared to conventional systems, electrospun
materials exhibit a superior performance in the wound-healing process, owing to their
unique morphology and structure that resemble those of the ECM, high specific surface
area, good draining capacity, nutrient and metabolite exchange, and air permeability.
Moreover, drugs, antimicrobials, and bioactive molecules can be readily incorporated into,
or attached to, the surface of electrospun mats to promote regeneration. Notably, it has been
observed that compounds offering antioxidant activity can facilitate the wound-healing
process [12,89,90].

Electrospinning is a highly flexible and affordable process, but its execution can
be intricate due to various factors that impact the ultimate structure and properties of
the electrospun fibers. The key factors among these are the parameters of the solutions
employed, including the viscosity, the polymer concentration, the molecular weight of
the polymers, and the conductivity. The process of electrospinning can be influenced
by several factors, including the fabrication process and environmental conditions such
as the voltage, the distance between the collector and tip, the flow rate, the humidity,
and the temperature [77,79,81,91]. By adjusting the independent variables of the polymer
concentration, conductivity, flow rate, and voltage settings, the diameter and dimensions
of fibers can be manipulated [77,81,91]. Furthermore, empirical evidence suggests that
incorporating electrospun fibers into fabric-reinforced composites can significantly enhance
their mechanical properties. Electrospinning yields materials with a high surface area and
porosity, facilitating cellular adhesion and nutrient and waste exchange at implantation
sites [77,81].

The chemical and physical properties of electrospun nanofibers, including their compo-
sition, degradation, diameter, strength, porosity, and incorporated bioactive molecules, can
influence their interaction with injured tissue and its biological environment. Consequently,
these features directly affect the effectiveness and performance of dressings made from
electrospun nanofibers. Additionally, the architecture and structure of the dressings signifi-
cantly impact the wound-healing process, which involves a cascade of events, including
hemostasis, inflammation, proliferation, and tissue remodeling. Growth factors, which are
biologically active polypeptides, play a crucial role in controlling cell growth, proliferation,
and migration during the wound-healing process and can regulate all stages. Moreover,
the role of vitamins in the wound-healing process is also noteworthy [92–94].

Developing advanced materials for wound dressings is a challenging and yet-to-be-
solved task. These materials must act as temporary skin substitutes, serving multiple
purposes, including absorbing fluids, preventing infections, and assisting cell growth and
movement to support the skin’s healing process [89]. Trauma, surgery, and pathological
diseases can cause skin wounds that compromise the skin’s integrity, often resulting in
permanent physical defects and even death, causing a major healthcare concern. Treating
wounds has become a significant medical problem worldwide due to the aging population
and an increasing prevalence of metabolic and cardiovascular diseases, leading to a higher
incidence of chronic wounds. Wound dressings are crucial to the healing process, leading
to scientific research in developing bioactive materials that mimic the ECM, promoting
cell adhesion and migration to the wound site to facilitate skin regeneration (Figure 4) [95].
Nanostructured materials offer promising solutions to address major issues associated with
skin regeneration, such as scar formation, poor tissue integration, and bacterial infection.
Bacterial contamination is particularly critical in wound care since it can impede healing
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and lead to chronic wounds. The ideal wound dressing material should be an elastic,
biocompatible, and biodegradable system with antimicrobial activity, capable of absorbing
wound fluids and exudates, regulating nutrient and gas exchange, maintaining a moist
local environment, supporting cell proliferation and migration to aid the healing process,
reducing patient discomfort, and avoiding scarring [89,92–94,96].
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trospun nanofiber scaffolds containing chitosan and curcumin enhance tissue regeneration by
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vides an efficient method for producing advanced nanofibrous scaffolds with strong antibacterial
and wound-healing properties. The figure is reprinted with the permission of Taylor & Francis
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A review of the literature reveals successful in vivo studies proving the use of vari-
ous types of material for the regeneration of damaged skin. Scientists [97] tested citrus
pectin stabilizing ZnO nanoparticles on 8-week-old mice. ZnO nanoparticles were evenly
coated on the surface of the Coll/CS fibrous structure. At different analysis periods, the
degree of wound closure was measured on days 3, 7, 14, and 21. Increased antimicro-
bial inhibition against Staphylococcus aureus and Escherichia coli was observed. There was
also an improvement in the activity regarding extracellular matrix formation on newly
formed tissues. Such nanoparticles embedded in fibers can be an effective wound dressing
for the treatment of burns. Another study conducted on rats [98], using a nanofibrous
material based on polycaprolactone (PCL), polyvinyl alcohol (PVA), poly (vinylidene
fluoride-co-hexafluoropropene) (PVdF-HFP), polyacrylonitrile (PAN), and polymer blend
of polyurethane (PEU) and PAN, has proven the beneficial effect of nanofibers on wound
healing. Additionally, added silver nanoparticles increased the antibacterial properties.
Further in vivo studies were performed on diabetic rats. Electrospun nanofibers based on
polycaprolactone (PCL) and gum tragacanth (GT) with the addition of curcumin showed
rapid wound closure with well-formed granulation tissue. Wounds treated with seeded
scaffolds showed a lesser scab area, and the histochemical results showed a significantly
improved healing efficiency with scaffold stem cells [99].
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4. Antibacterial Nanofibers for Wound Dressing

In particular, chronic infections often stem from bacterial sources, proliferating rapidly
within pre-existing wounds. This underscores the critical necessity of employing antibacte-
rial substances. Due to their substantial surface area, antibacterial nanofibers enable the
effective incorporation of antibacterial agents [100]. Antibacterial wound dressings are
crucial to preventing infections that impede healing [26]. Infections can be attributed to
microorganisms originating from hospitalized patients, internal sources, or the surrounding
skin [101]. Therefore, it is crucial to treat wounds with dressings that incorporate antibi-
otics and antibacterial substances to prevent bacterial infections. As a result, alternative
antibacterial agents, such as quaternary ammonium compounds, metal ions, nanoparticles,
and antimicrobial polymers, have been suggested [102].

Wound healing can be divided into three stages, i.e., the closing of damaged blood
vessels and wound edges, then wound cleansing and, finally, the regeneration and recon-
struction of damaged tissues, i.e., the formation of a new epidermis or scar [103]. Wound
healing is an extremely complicated process, so developing the perfect material for a dress-
ing is an extraordinary challenge for scientists. One way is to develop nanofiber-based
materials to accelerate wound healing using electrospinning. The main advantage of elec-
trospinning is controlling the size of the nanofibers, which allows the obtention of very fine
structures [104]. The small size of nanofibers has the potential to increase the specific surface
area, which can improve the solubility of drugs and increase their effectiveness [105]. The
resulting homogeneous structure of nanofibers can also improve the stability of drugs, and
the extensive surface area of nanofibers promotes drug adsorption. This, in turn, may lead
to an increased bioavailability of drugs, i.e., their easier absorption by the body. Electrospun
materials are characterized by the possibility of controlled release. Using electrospinning,
drug carriers can be constructed from nanofibers with specific properties, which enable
controlled drug release. This process allows us to adjust the rate and manner in which
the drug is released, which may be important for drugs with a specific pharmacokinetic
profile [106].

The adhesion of bacteria to a wound’s surface results in biofilms, densely populated
areas containing bacteria. These biofilms can potentially protect bacteria from the immune
system and antibiotics. Consequently, releasing endotoxins can lead to sepsis and, ulti-
mately, death [107]. Traditionally, antibiotics like penicillin and methicillin have been used
in wound dressings and on the skin surrounding the wound [108]. The use of conven-
tional antibiotics is limited by the emergence of antibiotic-resistant bacteria. Antibacterial
materials often have inadequate efficacy or induce cytotoxic effects.

Antimicrobial peptides (AMPs) have garnered significant attention as a novel class of
antimicrobial agents. Naturally occurring in a range of organisms, including mammals, fish,
insects, amphibians, and even some bacteria, these antibiotics play a crucial role in bolster-
ing the host’s immune system’s defenses against bacteria, fungi, and viruses [109]. Despite
their diverse structures, AMPs typically contain cationic and amphiphilic regions with an α-
helical conformation, which can potentially damage bacterial cell membranes [110]. AMPs
have demonstrated rapid and remarkable efficacy in killing many bacteria [111]. More-
over, AMPs have been shown to promote wound healing by enhancing re-epithelialization
and angiogenesis, neutralizing lipopolysaccharides (LPS), and modulating the immune
response [112].

Some biopolymers, such as chitosan, have natural antibacterial properties [113]. How-
ever, other types of polymeric wound dressings require the addition of antibacterial agents
to prevent infections. In nanofibrous wound dressings, there are various categories of an-
tibacterial agents that have been researched and developed, depending on the specific agent
and how it is incorporated into the nanofibers. In the realm of biomedical applications, both
synthetic and natural biopolymers have strengths and weaknesses [12,77,81,82]. Nanoma-
terials are emerging as promising antibacterial agents, with the research predominantly
focused on developing advanced wound dressings with both hemostatic and antibacterial
attributes to meet contemporary societal demands [114].
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Effective wound dressings are pivotal in infection prevention, but their use potentially
exacerbates bacterial resistance (Figure 3) [37,115]. Researchers address this issue by
integrating antibacterial agents into materials intrinsically endowed with antibacterial
properties. These materials encompass various polymers, including chitosan, collagen,
alginate, and silver (Ag), copper (Cu), zinc oxide (ZnO), and gold (Au) nanoparticles
(Figure 5), as documented in Tables 2 and 3 [76,85,92,96,116–118]. Dressings endowed with
intrinsic antibacterial efficacy offer sustained benefits and reduced cytotoxicity compared
to those releasing antibacterial agents, as shown in Figure 3 [84,85].

Pharmaceutics 2024, 16, x FOR PEER REVIEW 10 of 28 
 

 

Effective wound dressings are pivotal in infection prevention, but their use poten-
tially exacerbates bacterial resistance (Figure 3) [37,115]. Researchers address this issue 
by integrating antibacterial agents into materials intrinsically endowed with antibacterial 
properties. These materials encompass various polymers, including chitosan, collagen, 
alginate, and silver (Ag), copper (Cu), zinc oxide (ZnO), and gold (Au) nanoparticles 
(Figure 5), as documented in Tables 2 and 3 [76,85,92,96,116–118]. Dressings endowed 
with intrinsic antibacterial efficacy offer sustained benefits and reduced cytotoxicity 
compared to those releasing antibacterial agents, as shown in Figure 3 [84,85]. 

 
Figure 5. Smart nanostructured pillow for diverse biomedical applications powered by 
near-infrared light. (A) Schematic of the hierarchical platform: electrospun fiber and hydrogel with 
gold nanorods (Au NRs). (B) Photograph of Phacellophora camtschatica jellyfish near Gibraltar, 
courtesy of Prof. Stefano Piraino (University of Salento, Italy). (C) Image of the nanostructured 
pillow with rhodamine B (RhB). (D) Cross-section showing the hydrogel within the electrospun 
fiber, creating a biomimetic design for biomedical applications, with the permission of ACS Copy-
right 2020 [119]. 

Chitosan, renowned for its innate antibacterial properties, exhibits promise in hy-
drogel wound dressings. Nevertheless, its antibacterial effectiveness decreases in 
non-acidic environments, posing challenges to the formulation of in situ antibacterial 
hydrogel dressings [79,120,121]. 

4.1. Biopolymeric Nanofibrous Wound Dressings Containing Antibacterial Nanoparticles 
Silver nanoparticles (Ag NPs) are among the most studied metal nanoparticles due 

to their unique properties and demonstrated antibacterial effect. Recently, researchers 
have developed a biomimetic electrospun nanofibrous wound dressing that incorporates 
both chitosan and Ag NPs to address bacterial infection and promote tissue repair [89]. 
Altangerel et al. [76] have developed a simple way to create nanofibrous scaffolds in 3D 
that have strong antibacterial properties, which are particularly useful in treating slowly 
healing diabetic wounds. Octenidine (OCT) is a cationic surfactant and antimicrobial 
agent that can transform a 2D membrane into a hydrophilic 3D scaffold in a “two birds, 
one stone” manner. By combining OCT with Ag NPs, the 3D multilayered porous 
scaffold has even greater antibacterial effectiveness than the 2D membrane. Additionally, 

Figure 5. Smart nanostructured pillow for diverse biomedical applications powered by near-infrared
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design for biomedical applications, with the permission of ACS Copyright 2020 [119].

Chitosan, renowned for its innate antibacterial properties, exhibits promise in hydro-
gel wound dressings. Nevertheless, its antibacterial effectiveness decreases in non-acidic
environments, posing challenges to the formulation of in situ antibacterial hydrogel dress-
ings [79,120,121].

4.1. Biopolymeric Nanofibrous Wound Dressings Containing Antibacterial Nanoparticles

Silver nanoparticles (Ag NPs) are among the most studied metal nanoparticles due
to their unique properties and demonstrated antibacterial effect. Recently, researchers
have developed a biomimetic electrospun nanofibrous wound dressing that incorporates
both chitosan and Ag NPs to address bacterial infection and promote tissue repair [89].
Altangerel et al. [76] have developed a simple way to create nanofibrous scaffolds in 3D
that have strong antibacterial properties, which are particularly useful in treating slowly
healing diabetic wounds. Octenidine (OCT) is a cationic surfactant and antimicrobial agent
that can transform a 2D membrane into a hydrophilic 3D scaffold in a “two birds, one
stone” manner. By combining OCT with Ag NPs, the 3D multilayered porous scaffold has
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even greater antibacterial effectiveness than the 2D membrane. Additionally, the results of
in vitro tests on mouse fibroblasts, L929, have confirmed that this 3D scaffold is not toxic
to cells. These findings suggest that this multifunctional 3D scaffold could be an excellent
solution for treating diabetic wounds and repairing skin.

Infection and resistance in wounds are health concerns that may be reduced with
antibacterial wound dressings. Healing various skin wounds is a lengthy process often
combined with bacterial infection and scar formation. A biomimetic electrospun nanofi-
brous wound dressing loaded with materials with dual antibacterial and tissue repair
properties could be developed to address this problem [78,96,119,122–124].

Table 2. Antibacterial electrospun fibers for wound dressing.

Polymeric Component Antibacterial/Antimicrobial
Component/Polymer Aim and Application Ref.

PMMA Ag NPs, OCT

Control the drug release,
3D multilayered porous

scaffold diabetic wounds,
and repair skin

[76]

PVA/PLA
(PVA-CTX/PLA) and

tranexamic acid coagulant
(PVA-CTX-TXA/PLA)

Drug release, scaffold can
be used to treat burns

and chronic and diabetic
wound infections

[121]

PCL nanofibers Photoresponsive nanogel
containing Ag NPs

Clinical application as
wound dressing activated

by light
[114]

PVA and carbon
nanotubes Ag NPs Antibacterial wound

dressing [125]

PCL, HAP Ag+
Scaffold with appropriate
characteristics for wound

healing
[111]

PLA and PCL Ag-chitosan NPs Tissue regeneration and
wound healing [126]

PLA/chitosan Ag+

High antibacterial
activity and a high

potential for applications
in biomedical fields

[85]

PLA
Chitosan, copper, or

silver-doped bioactive
glasses

Good in vitro bioactivity
of the fibers and possible
bone tissue regeneration

[120]

Chitosan, PVA ZnO NPs

Accelerated wound
healing. Nanofibrous mat

with antibacterial and
antioxidant properties for
diabetic wound healing

[116]

PCL, collagen, zein Aloe vera, and ZnO NPs
Biocompatible and

non-toxic materials for
wound dressing

[127]

PCL, gelatin ZnO NPs, amoxicillin treatment of
full-thickness wounds [128]

PMMA Ag NPs, Octenidin (OCT)

Control the drug release,
3D multilayered porous

scaffold diabetic wounds,
and repair skin

[129]
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Appropriate antibacterial wound dressings play a pivotal role in promoting the healing
process of chronic wounds. In this context, incorporating chitosan as an adjunct within
the biopolymeric electrospun fiber matrix has shown promising outcomes, exhibiting
significant enhancements in both the wound-healing capabilities and antibacterial efficacy
of the dressing material (Table 2). In wound care, researchers have sought to enhance the
therapeutic effectiveness of wound dressings by incorporating a diverse array of bioactive
agents. These agents encompass a wide range of substances, such as antibiotics (e.g.,
ciprofloxacin, metronidazole, gentamicin, norfloxacin, etc.), metal-based nanoparticles (e.g.,
Ag and ZnO NPs), plant extracts (including aloe vera, curcumin), growth factors, vitamins,
and others [118]. By integrating these therapeutic components, the biological activities
of nanofibers, commonly utilized in wound dressings, can be significantly elevated. The
unique capacity of nanofibers to facilitate drug delivery further underscores their suitability
for wound-care applications (Table 3). Ghorbani et al. [128] created electrospun nanofibers
for a wound dressing that hybridized collagen, Poly(ε-caprolactone) (PCL), zein, aloe vera,
and ZnO NPs. These nanofibers had better tensile strength and improved fibroblast cell
proliferation and attachment compared to plain nanofibers. This indicates that they are
biocompatible and not toxic. Jafari et al. [129] created bilayered nanofibers made of PCL
and gelatin infused with amoxicillin and zinc ZnO NPs for treating the bacterial infection
of wounds. The nanofibers showed a high swelling degree due to the hydrophilic gelatin.
The hybrid nanofibers showed a sustained release of ZnO NPs and amoxicillin, as indicated
by in vitro drug release assessments. The antibacterial analysis of the dual drug-loaded
hybrid nanofibers using the disk diffusion method in vitro showed a good antibacterial
efficacy. The full-thickness rat models underwent in vivo tests, which showed that the
fabricated nanofibers help to speed up wound contraction, increase collagen deposition and
angiogenesis, and prevent the formation of scars. These tests indicate that the fabricated
scaffolds could be a promising treatment option for full-thickness wounds.

Table 3. Antibacterial scaffolds for wound dressing.

Polymeric
Component

Antibacterial/Anti-
microbial Component

Method of
Preparing Aim and Application Ref.

Chitosan,
bacterial
cellulose

Chitooligosaccharide Composite
membranes

Good antioxidant
activity and

wound-dressing
applications

[130]

Collagen (type I) Tobramycin (Tob) Film casting Potential application in
corneal repair [131]

Chitosan

Quaternary
ammonium chitosan

NPs (TMC
NPs)/chitosan

Lyophilization
(sponge

composite)

Promising dressing
material for chronic

wounds
[37]

Curcumin-β-
cycyclodextrin

inclusion
complex (CMx)
and cellulose

Chitosan
Freeze drying

(sponge
composite)

Wound-dressing
materials for the

treatment of wounds
(especially chronic

wounds)

[132]

Chitosan Hydroxybutyl
chitosan

Freeze drying
(sponge

composite)

Excellent antibacterial
activity of composite

sponge to be applied for
wound dressings

[133]

Chitosan Chitosan 3D printing

Improving the quality
of the restored tissue

concerning both
commercial patches and

spontaneous healing

[134]
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Table 3. Cont.

Polymeric
Component

Antibacterial/Anti-
microbial Component

Method of
Preparing Aim and Application Ref.

PCL and silk
sericin

Chitosan/sodium
alginate hydrogel

Electrospin ning
and 3D

bioprinting

Promoting the healing
process and skin tissue

engineering
[135]

Chitosan-PEG Cu NPs Hydrogel

Sustained drug release
with excellent

keratinocyte cell
response and

anti-infection wound
dressing

[136]

4.2. Biofunctionalized Antibacterial Nanofibers for Wound Dressings

Biofunctionalized antibacterial nanofibers represent a specific type of wound-dressing
material characterized by the surface functionalization of biopolymeric nanofibers with
amino acids and AMPs [137]. Chitosan and silk fibroin (SF) are the two key biopolymers
used in biofunctionalized nanomaterials due to their ability to facilitate the attachment of
various antimicrobial agents through multiple functional groups. Extensive research has
been conducted on AMPs that are immobilized on the surface of nanofibers [138–141].

4.2.1. Silk Fibroin (SF)

Recent research indicates that SF exhibits notable biocompatibility, favorable mechani-
cal characteristics, and promising physiological properties, making it a viable option for
applications in the clinical industry, as well as in the medical sectors, especially in wound
dressings [142].

Numerous antibacterial biohybrid nanofibrous wound dressings are created by
leveraging the surface functionality of SF. The various functional groups, such as
phenol, carboxyl, hydroxyl, and amines, are loaded into SF nanofibers [143]. It has
been observed that SF biohybrid nanofibers effectively inhibit bacterial growth [144].
Higher amounts of immobilized factors result in greater antibacterial activity. However,
it has been discovered that the bacterium S. aureus can compromise the efficiency of
AMPs by altering the negative surface charge, modifying the membrane fluidity, or
employing efflux pumps to keep the AMPs at bay [145]. Another investigation focused
on the impact of fibroin morphology on the release of silver ions and its concurrent
antibacterial activity against S. aureus, S. epidermidis, and P. aeruginosa [92]. Further,
researchers employed endocrine-disrupting chemicals/N-hydroxysuccinimide and
thiol–maleimide click chemistry techniques to immobilize an antimicrobial peptide
motif (Cys-KR12) derived from the human cathelicidin peptide (LL37) onto electrospun
SF nanofiber membranes. The resulting nanofiber membrane exhibited antimicrobial
activity against four pathogenic bacterial strains, namely, S. aureus, S. epidermidis, E.
coli, and P. aeruginosa [108]. Hadisi et al. [146] fabricated a nanocomposite containing
gentamicin (GEN), hardystonite (HT), and SF. The results obtained from measuring the
antibacterial inhibition zone indicated a significant augmentation in the antibacterial
properties of the scaffolds against E. coli and S. aureus bacteria when incorporating
GEN at concentrations ranging from 3 to 6 wt%.

4.2.2. Chitosan

Chitosan is a biopolymer known for its biocompatibility and biodegradability, and it
exhibits notable antimicrobial properties against various microorganisms, encompassing
bacteria, algae, viruses, and fungi [147]. Cai et al. [148] assessed the antimicrobial effec-
tiveness of composite nanofibers containing chitosan against two types of bacteria, namely
the Gram-negative bacterium E. coli and the Gram-positive bacterium S. aureus, using the
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turbidity measurement method. Ultimately, the tested nanofibrous mats could certainly be
used as a wound dressing. Other researchers created an electrospun mat using chitosan,
known for its biocompatibility. Incorporated into the structure, the photosensitizer en-
dowed the material with light-induced and spatially restricted antimicrobial properties, as
evidenced by its effectiveness against S. aureus [149].

To create biocompatible antimicrobial nanofiber wound dressings, two natural extracts,
Cleome droserifolia (CE) and Allium sativum aqueous extract (AE), were incorporated into
honey, PVA, and hydroxypropyl chitosan (HPCS). The results were compared with those of
the commercial dressing Aquacel Ag. The study revealed that the HPCS–AE and HPCS–
AE/CE NF mats completely inhibited S. aureus. However, the HPCS–AE/CE exhibited
mild antibacterial activity [150].

Moreover, chitosan has found applications as a delivery system. For example,
Moursa et al. [151] utilized chitosan to deliver neurotensin, a neuropeptide known
for its inflammatory modulatory effects, to treat diabetic foot ulcers (DFUs). Wound
dressings incorporating a chitosan–collagen complex have also been investigated for
their efficacy in treating thermal skin burns. These dressings were found to promote
an accelerated healing process by facilitating the formation of granulation and fibrous
tissue [152]. Table 4 shows natural and synthetic material systems used for dressings.

Table 4. Examples of electrospun materials with process parameters dedicated to wound-dress-
ing applications.

Material Method of
Synthesis

Process
Parametres

Properties
Investigated Ref.

Chitosan/PEO/semelil Electrospinning

V—10–15 kV
FR—

0.45–0.60 mL/h
T-C-D—

10–15 cm.

Semelil release [153]

PCL/PVA/curcumin Forcespinning

Biocompatibility,
anti-bacterial

property,
absorption

[154]

Chitosan/PVA/Nepeta
dschuparensis/honey Electrospinning V—17 kV

FR—0.5 mL/h

In vivo
properties, bio-
compatibility,
biodegrability

[155]

PCL–silk fibroin/silk
fibroin–hyaluric acid–Thymol Electrospinning

V—30 kV
FR—2.3 mL/h,

12 cm

Biocompatibility,
biodegrability,
antibacterial

property

[156]

Polycaprolactone/tyrosol/Thymol Electrospinning
V—28 kV

FR—2.3 mL/h,
T-C-D—12 cm

Antibacterial
property [154]

Cellulose
acetate/β-cyclodextrin/Thymol Electrospinning

V—+6.62 to
+10.22 kV

FR—1.0 mL/h

Antibacterial
activity, drug

release
[157]

PCL/PVA/Eugenol/Chitosan Electrospinning V—75.0 kV
FR—13 cm

Release
Eugenol,

biocompatible,
non-toxic,

antibacterial
properties

[158]
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Table 4. Cont.

Material Method of
Synthesis

Process
Parametres

Properties
Investigated Ref.

Silk fibroin/fenugreek/collagen Electrospinning
V—25 kV

FR—0.5 mL/h,
T-C-D—10 cm

Biocompatible,
wound
healing,

antioxidant
property

[159]

PCL/lawsone/gelatin Electrospinning
15 kV

1.19 mL h−1

14 cm

Wound
healing,

antibacterial
properties,

biocompatible,
healing

[160]

Polyurethane/silver/cellulose
acetate/graphene
oxide/curcumin

Electrospinning
17 kV

0.4 mL/h.
15 cm

Biocompatible,
promote
wound
healing,

antibacterial
property

[161]

V—voltage; FR—feed rate of the polymer during the process; T-C-D—tip-to-collector distance.

5. Hydrogels with Nanofibers and Functional Thermoresponsive Hydrogels as
Wound Dressings
5.1. Hydrogels with Nanofibers

Hydrogels represent hydrophilic materials composed of natural and synthetic poly-
mers, such as certain gelatin, alginate, poly(methacrylates), and poly(vinyl pyrrolidone).
These materials are insoluble and have a high water content, typically from 70% to 90%.
This moisture in hydrogels fosters an environment conducive to granulation tissues and
the epithelium, promoting wound healing. Hydrogels’ soft and elastic nature allows easy
application and removal after the wound has healed, ensuring minimal damage [162].
However, owing to their substantial water content, hydrogels exhibit a restricted absorptive
capacity [59]. Many studies collectively represent significant progress in the development
of novel treatments for wounds, emphasizing the potential of hydrogel-nanofiber-loaded
technologies in advancing wound care and biomedical applications [2,119].

For instance, Ren et al. recently conducted a study in which they incorporated elec-
trospun nanofibers made of PVA/sodium alginate that contained hesperidin and Ag
nanoparticles (Ag-Hes NPs) into a hydrogel (Ag-Hes@H). The fiber–hydrogel combination
has demonstrated encouraging outcomes with regard to the healing of infected wounds
in animal experiments. Moreover, it functions as an antibacterial and anti-inflammatory
agent and promotes the growth and movement of skin cells (Figure 6) [163].

In another study, an investigation was conducted into a nanocomposite made of
antibiotic-loaded hydrogel and electrospun fibers grafted with poly(gallic acid), which
exhibited antimicrobial and antioxidant properties. The nanocomposite was found to
have no cytotoxicity, as evidenced by the absence of hemolytic activity and the viability
of epithelial cells [164]. In a study conducted by Li et al. [165], a novel approach was
employed to enhance the healing of diabetic wounds. This approach involved the fabrica-
tion of scaffolds using poly(d,l-lactic acid) (PDLLA) nanofibers and gelatin methacryloyl
(GelMa) hydrogels with a three-dimensional multilayer patterned structure. The scaf-
fold adopted a nanofiber/hydrogel core–shell configuration, which exhibited exceptional
exudate-absorption capabilities, creating a moist wound environment. It significantly
stimulated the development of a three-dimensional capillary network. Consequently, this
approach accelerated diabetic wound healing, highlighting the potential of such scaffolds
for chronic wound recovery (Figure 7). In innovative studies, researchers have explored var-
ious treatments for chronic ulcerative wounds, focusing on hydrogel-based nanofiber mate-
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rials. Chen and co-authors [131] developed layer-by-layer self-assembled peptide hydrogel
nanofibers by modifying N-acetaminophen glucose. This novel approach demonstrated
potent antibacterial properties and significant contributions to angiogenesis and wound
healing. Another study, conducted by Zhong et al. [166], created a dynamic reversible
borate ester bond using dopamine-grafted oxidized carboxymethyl cellulose and cellulose
nanofibers (CNFs). The result was a hydrogel dressing with remarkable self-healing prop-
erties. Notably, the dressing also demonstrated the ability to degrade over time, making
it an up-and-coming solution for medical applications. Additionally, Zhong et al. [167]
developed a unique hydrogel dressing by utilizing a dynamic covalent bond between
boric acid and a catechol group, enabling the loading of epigallocatechin-3-gallate into
quaternized chitosan. This integration allows for rapid self-healing properties. Further-
more, hydrogels can reduce the temperature of cutaneous wounds, offering a soothing and
cooling effect [168].
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Figure 6. Schematic demonstrating the preparation of electrospun nanofibers containing Ag@hesperidin
(Ag@Hes) core–shell nanoparticles fabricated to promote the healing of infected wounds by providing
antibacterial and anti-inflammatory properties. Following this, (A) illustrates the sequential procedure
for producing Ag-Hes NPs, electrospinning nanofibers loaded with Ag-Hes NPs, and Ag-Hes@H.
Subsequently, (B) outlines potential mechanisms by which Ag-Hes@H enhances the recovery of infected
wounds during animal experiments. The figure is reprinted with the permission of Oxford University
Press Copyright 2022 [163].

In a recent investigation, it was demonstrated that the incorporation of silicate nanosheets
(Laponite) into gelatin methacryloyl (GelMA) hydrogels resulted in noteworthy enhance-
ments in both mechanical attributes and adhesion. Furthermore, these modified hydrogels
exhibited a prolonged release of epidermal growth factor (EGF) and showed the capacity to
halt bleeding, facilitating a comprehensive process of skin regeneration [169]. Recently, Xu
unveiled a novel composite hydrogel system. This hydrogel framework is fortified through
the use of a colloidal blend involving carbon nanotubes (CNTs) and GelMA. Subsequently,
it experiences in situ polymerization while also integrating antimicrobial peptides, leading
to substantial enhancements in both the electrical conductivity and mechanical characteris-
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tics of the hydrogel. Additionally, it was observed that the GelMA component within this
hydrogel construct is conducive to promoting cell adhesion and proliferation [170].
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5.2. Thermoresponsive Hydrogels with Antibacterial Properties

Supramolecular hydrogels that use non-covalent interactions, like hydrophobic or
ionic interactions, to achieve gelation usually indicate a high sensitivity to various external
stimuli like the temperature or pH. In the case of temperature-sensitive gelation, they are
called thermoresponsive hydrogels (Figure 8). These hydrogels have polymers that contain
both hydrophilic and hydrophobic components, making them amphiphilic. When exposed
to elevated temperatures, these thermosensitive hydrogels, also known as thermogels,
undergo a distinct phase-transition behavior. Unlike conventional melt transitions, they
change from a liquid to a gel state and can revert to a liquid state at lower temperatures. The
gelation process is self-initiated, meaning that it does not require external aid or enzymatic
catalysts. This makes it a gentle phase-conversion technique [171]. Contemporary wound
dressings, such as thermoresponsive hydrogels, are typically prepared beforehand. This
method can result in uncovered areas of the wound and decreased effectiveness regarding
therapy and antibacterial properties, particularly for wounds of uneven shape. Injectable
hydrogels, however, can be customized to fit the shape of irregular wounds, making
them more efficient. Injectable hydrogels are made by in situ gelation, mainly achieved
via chemical crosslinkers such as enzymatic catalysis, photo-initiated crosslinking, and
Schiff–base reactions [171–174]. In a recent study, researchers utilized thermoresponsive
poloxamer (P407)–PVA hydrogels to deliver mupirocin nanoparticles containing either
gelatin or poly(acrylic acid) for wound healing. The study’s findings indicate that this
method can effectively treat wound infections. This technique could potentially be ap-
plied to pharmaceutical products to aid in their removal from wounds and harness their
antimicrobial properties [173]. A new thermoresponsive hydrogel has been developed by
researchers. It is a mixture of galactose-modified xyloglucan and hydroxybutyl chitosan
that is intended to act as a barrier to prevent re-adhesion after adhesiolysis. The hydrogel
can be injected and will solidify at body temperature, making it extremely practical. This
composite hydrogel has been demonstrated to be effective in preventing adhesion, aiding
wound healing and reducing scarring, making it a promising injectable anti-adhesion solu-
tion for various clinical applications [171]. Poloxamer hydrogels exhibit thermoresponsive
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behavior with fluidity upon cooling and a gel-like consistency upon heating [172,174].
Niyompanich et al. [172] conducted a study with Poloxamer hydrogels that displayed the
rapid gelation time of approximately 95 s. Biocompatibility with L929 cells persisted even
after seven days of cell culturing. The gentamicin-loaded poloxamer hydrogels exhibited
immediate bacterial growth inhibition, with evidence of synergistic effects. Notably, these
hydrogels showed larger inhibition zones compared to equivalent gentamicin solution
concentrations. Therefore, the hydrogel composed of 20 wt% poloxamer (407) and 3 wt%
poloxamer (188) dissolved in water holds promise as a potential drug carrier for cavity
wounds [172].

Chemically crosslinked injectable hydrogels may be less suitable for biomedical ap-
plications due to the presence of potentially toxic small molecule additives used in the
crosslinking process [38,172]. Various thermoresponsive polymers can undergo sol–gel
transition through hydrophobic interactions, forming injectable hydrogels after the phase-
transition temperature is reached. Notably, poly(N-isopropylacrylamide) (PNIPAM), with
a lower critical solution temperature just below human body temperature (37 ◦C), has
garnered significant interest for its biomedical potential [171,175,176]. In a mouse model,
Mahdieh et al. [175] investigated controlled delivery using core–shell electrospun fibers
and thermoresponsive PNIPAM hydrogel particles. The fibers contained Ag NPs of various
sizes and ZnO NPs aimed at improving the pore structure and precise Ag NP release. A
27-day in vivo mouse implantation study observed consistent and regulated Ag NP release.
Hyperspectral imaging revealed distinctive patterns in released Ag NPs in male and female
mice. Male mice with ZnO NP-loaded fiber implants exhibited enhanced hair regrowth
and wound healing, countering in vitro cytotoxicity findings. These results signify the
potential of these novel fiber meshes for sustained drug release and compatibility while
also suggesting the feasibility of gender-specific drug delivery systems (Figure 8) [175].
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Figure 8. Schematic representation of the core–shell electrospun fibers (containing ZnO NPs) loaded
with silver nanoparticles (Ag NPs) where the delivery rate was controlled by different sizes of Ag
NPs and thermoresponsive PNIPAM hydrogel particles. (I) The skin appearance 27 days post surgery
shows the tolerance of fiber meshes with varying NP contents. Female mice exhibit greater hair
regrowth than males, with the most significant regrowth observed in the F-PPZn group (green
arrows). The presence of Ag NP in the F-Ag20 and F-AgHG groups (yellow and orange arrows)
reduces hair regrowth. (II) Hyperspectral imaging of male mouse skin 27 days post implantation
of F-AgHG fiber mesh demonstrates continuous Ag NP release into the dermis. Photomicrographs
(A–C) at 100× magnification and (D–F) at 400× magnification reveal dispersed Ag NPs in the dermis.
Yellow dashed lines denote the tissue–fiber-mesh interface. Scale bars: 150 µm (A–C) and 50 µm
(D–F), reprinted with the permission of Elsevier Copyright 2021 [175].

A hydrogel that can be triggered by skin temperature is being developed to offer
versatile and antibacterial wound protection. A novel dual-thermoresponsive hydrogel
incorporating PNIPAM and methacrylated κ-carrageenan was produced by Feng et al. and
exhibited shape adaptability at physiological temperatures. It synergistically integrates
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near-infrared-responsive (NIR-responsive) polypyrrole–polydopamine nanoparticles (PPy-
PDA NPs) and Zn2+ derived zeolitic imidazolate framework (ZIF-8), enabling localized
NIR heat generation and controlled Zn2+ release. Studies have shown that utilizing NIR
heating in this hydrogel can accelerate the release of Zn2+, which enhances its efficacy in
combating severe infections. This hydrogel holds great promise as a wound dressing, as
it has the ability to adapt to the contours of the wound, facilitate tissue regrowth, and
provide sustained antibacterial defenses through the synergistic interplay of photothermal
and chemical mechanisms [38]. A temperature-manipulable material, responsive to cold
water, shows potential for the pain-free removal of wound dressings. Radhakumary et al.
designed a novel formula with thiolated chitosan and PNIPAM containing ciprofloxacin, an
extensive antibacterial drug. This composite is a smart, drug-eluting mucoadhesive gel that
combines natural and synthetic attributes. The cytocompatible material enables sustained
ciprofloxacin release, indicating prolonged wound protection. The thermoresponsive
thin film swells with cold water, facilitating gentle removal without skin trauma. With
suitable mechanical properties for wound care, the film exhibits cytocompatibility and
controlled antibacterial release for over 48 h [177]. Nitric oxide (NO) plays a role in various
physiological processes, such as vasodilation, wound-healing, and antibacterial activities.
Recent studies found NO was released from the thermoresponsive hydrogels composed of
S-nitrosoglutathione (GSNO)/Pluronic F-127 (PL) combined with natural polysaccharides
polymers (chitosan and alginate). The results showed a sustained release of NO from
GSNO hydrogels. Furthermore, antibacterial activity, cytotoxicity, wound healing, and
good mechanical stability are the most important characteristics of these hydrogels [178,179].
The hydrogel displayed a strong ability to kill bacteria, including methicillin-resistant S.
aureus and multidrug-resistant P. aeruginosa. When used to treat wounds infected with P.
aeruginosa, it also promotes faster healing and reduces the number of bacteria present in
the wound. The GSNO-PL/Alginate thermoresponsive hydrogel can be potentially used to
treat infected wounds [178]. The GSNO-PL/chitosan thermoresponsive hydrogel could be
used for topical NO delivery as a simple and cost-effective method [179].

Finally, to enhance wound healing and tissue regeneration, it could be advantageous
to merge polymers of thermoresponsive and biodegradable characteristics with antibac-
terial bioactive materials containing diverse drug types. This combination can produce
encouraging outcomes.

6. Conclusions

Recent advancements in wound-dressing materials have shown promise in addressing
the challenges associated with ideal wound care. Notably, electrospun and hydrogel materi-
als, potentially incorporating nano-additives, emerge as key players in innovative treatment
approaches. Electrospun antimicrobial drug-delivery systems, characterized by tunable porosity
and a large specific surface area, demonstrate significant potential in biomedicine, particularly
for wound dressings. These fibers allow for surface engineering with functional groups and
drug immobilization. Similarly, thermoresponsive hydrogels represent a dynamic shift in
wound care, offering a versatile approach to wound management and antibacterial treatment.
The integration of responsive polymers and bioactive agents holds considerable promise for
advancing wound-healing strategies, leading to patient-centric wound dressings.

In conclusion, further research involving a combination of different materials is essen-
tial. The effectiveness of delivery systems, along with advancements in scaffold formula-
tions based on biomaterials, explains the growing inclination to explore their potential in
wound-healing preparations. As challenges, such as clinical-level issues, are addressed,
electrospun and hydrogel materials may experience a significant breakthrough in biomedi-
cal applications in the near future.
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Abbreviations

Abbreviation Full Name
AE Allium sativum aqueous extract
Ag20 Ag nanoparticle (core)
AgHG PNIPAM microgel particle (core)
AMPs antimicrobial peptides
CE Cleome droserifolia
CIP ciprofloxacin
CMx cyclodextrin inclusion complex
CNFs cellulose nanofibers
CNTs carbon nanotubes
Cys-KR12 antimicrobial peptide motif
DFUs diabetic foot ulcers
ECM extracellular collagen matrix
EGF epidermal growth factor
GelMA gelatin methacryloyl
GEN gentamicin
GSNO S-nitrosoglutathione
HA hyaluronic acid
HAP hydroxyapatite
Hes hesperidin
HPCS hydroxypropyl chitosan
HT hardystonite
L929 mouse fibroblast cell line
LL37 human cathelicidin peptide
LPSs lipopolysaccharides
MA-K-CA methacrylated κ—carrageenan
MCA-NI-AA methacrylated κ—carrageenan, poly(N-isopropylacrylamide) and acrylic acid
NIR near-infrared
NPs nanoparticles
NRs nanorods
OCT octenidine
PCL poly(ε-caprolactone)
PDA polydopamine
PDLLA poly(d,l-lactic acid)
PEG poly(ethylene glycol)
PL Pluronic F-127
PLA poly(lactic acid)
PMMA poly(methyl methacrylate)
PNIPAM poly(N-isopropylacrylamide)
PPy polypyrrole
PPZn Zn nanoparticle (shell)
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PVA poly(vinyl alcohol)
RhB rhodamine B
SF silk fibroin
TMC quaternary ammonium chitosan
Tob tobramycin
ZIF-8 zeolitic imidazolate framework
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