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Abstract: Whilst monotherapy is traditionally the preferred treatment starting point for chronic
conditions such as hypertension and diabetes, other diseases require the use of multiple drugs
(polytherapy) from the onset of treatment (e.g., human immunodeficiency virus acquired immunode-
ficiency syndrome, tuberculosis, and malaria). Successful treatment of these chronic conditions is
sometimes hampered by patient non-adherence to polytherapy. The options available for polytherapy
are either the sequential addition of individual drug products to deliver an effective multi-drug
regimen or the use of a single fixed-dose combination (FDC) therapy product. This article intends
to critically review the use of FDC drug therapy and provide an insight into FDC products which
are already commercially available. Shortcomings of FDC formulations are discussed from multiple
perspectives and research gaps are identified. Moreover, an overview of fundamental formulation
considerations is provided to aid formulation scientists in the design and development of new
FDC products.

Keywords: fixed-dose combination therapy; formulation considerations; formulation approaches/
technology

1. Introduction

The increase in noncommunicable chronic diseases is becoming a global epidemic [1,2]. Car-
diovascular diseases (CVD) and chronic respiratory diseases together with their associated
complications and comorbidities have been the top two leading causes of death worldwide
for the past decade [3,4]. Whilst single-drug therapy, or monotherapy, is traditionally the
preferred drug treatment starting point for chronic diseases such as hypertension and
diabetes, situations and disease circumstances dictate and necessitate the use of multiple
drugs (polytherapy) from the onset of treatment in certain diseases such as human im-
munodeficiency virus (HIV), acquired immunodeficiency syndrome (AIDS), tuberculosis
(TB), and malaria [5–7]. For infectious diseases, polytherapy is employed primarily for the
prevention of resistance [8]. Alternatively, some diseases, such as CVD, require multiple
drugs to handle the associated comorbidities [9]. Polytherapy may be achieved via the
administration of multiple individual drug products (tablets and/or capsules) one after
another, or a fixed-dose combination (FDC) product incorporating two or more drugs into
a single dosage form [10].

This article intends to critically review the use of FDC therapy and provide an insight
into solid oral FDC products as well as offer a comprehensive overview of the formulation
considerations that need to be taken when formulating a solid oral dosage form comprising
an FDC. With this work, the authors intend to provide a synopsis of the usefulness of select
FDC therapies whilst recognizing their shortcomings and identifying gaps in research.
Fixed-dose combination medicine products encompass various API combinations and
dosage form types to be administered via different administration routes. Fixed-dose
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combination formulations are frequently used in the treatment of conditions and diseases
including acute conditions such as influenza, pain and fever, and several infectious diseases,
as well as chronic diseases such as diabetes, asthma, chronic obstructive pulmonary disease,
HIV infection, and cardiovascular diseases including hypertension, congestive heart failure,
and dyslipidemia. Due to the numerous FDC products available, the extent of conditions
and diseases that are treated with FDC products and the availability of a number of
administration routes available for FDC therapy, the topics covered in this article were
intentionally delineated to cover selected conditions and diseases (representing both acute
and chronic conditions and diseases). Furthermore, this article is restricted to solid FDC
products (e.g., tablets and capsules) that are administered via the oral route. The purpose
of the delineation is to keep the review as broad as possible to present a relevant and
applicable, but not inordinately long, review of fixed-dose combinations within the scope
of this article.

2. Fixed-Dose Combination Formulations in Drug Therapy

Fixed-dose combination formulations have been developed to combine active pharma-
ceutical ingredients (APIs) with different mechanisms of action into one dosage form [11].
An FDC formulation in the form of a tablet is also referred to as a polypill, which is a term
that was first coined in the context of CVD prevention [12,13]. This term has subsequently
become quite generic and gained broader acceptance for conditions in a wider scope. The
prefix “poly”, meaning “many” or “multiple”, refers to the number of drugs included in
a single dosage unit, which can be two or more. FDC therapy may be aimed at a single
underlying condition or a group of commonly related conditions as this expands the pool
of potential patients (critical mass) for whom a given combination of drugs would be
appropriate from the prescriber’s and manufacturer’s perspectives [14].

When designing formulations, the primary consideration is the end user. We have a duty
as medical professionals and medication stewards to ensure therapeutic regimens and medica-
tions are safe for patients and that the benefits of using a particular product outweigh the risks.
This includes designing therapeutic regimens and products that promote safe and correct
use. FDC therapies address the need for simplified, rational drug use and boast many advan-
tages over polytherapy regimens, where individual products are taken together. However,
disease-specific formulation challenges do exist. The therapeutic advantages and formulation
challenges faced are first discussed in the broader context relating to FDC therapy in the next
section and then from a disease-specific perspective in the section thereafter. This review
of FDC therapy focuses on select solid oral FDC products employed in non-communicable
diseases, namely, cardiovascular diseases and diabetes, as highly prevalent global health
challenges, as well as communicable diseases such as malaria, tuberculosis, and HIV. The use
of FDC therapy, however, extends much further, including use in infectious diseases (Heli-
cobacter pylori infection), the treatment of endocrine and nervous system diseases (depression,
Alzheimer’s disease), respiratory diseases (asthma, chronic obstructive pulmonary disease) as
well as pain, influenzas, and allergy preparations.

3. Advantages of Fixed-Dose Combination Formulations in Drug Therapy
3.1. Patient Adherence

Successful treatment of chronic conditions is sometimes hampered by patient non-
adherence to polytherapy. FDC therapy incorporates multiple drugs into a single dosage
form to improve treatment success rates by bolstering patient adherence [15,16]. The World
Health Organization (WHO) defines adherence to long-term, chronic therapy as the degree
of adherence to the pharmacological treatment as well as making considerable lifestyle
changes as agreed upon with the doctor and other healthcare professionals [17]. Therefore,
adherence implies both the correct use of medication in accordance with the prescribed
dosage and dosing frequency as well as lifestyle changes over time. Unlike compliance, it
implies a patient’s active participation [17–20]. A lack of adherence to therapy is a major
problem experienced globally in both developed and developing countries, and remains
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one of the greatest obstacles to improving individual patient health and quality of life as
well as reducing the burden on health and social care systems in the private and state
sectors [21,22]. Structured support in terms of treatment simplification, ongoing patient-
prescriber communication, and a multidisciplinary healthcare team to provide tailor-made
solutions for each patient is required.

The impact of therapeutic regimen failings extends beyond the effect on individual
patient health, since it carries a huge burden described by both economic and social costs
to the private and state sector health care systems as the impact of nonadherence to phar-
macological therapy directly translates to higher hospitalization rates, loss of productivity,
and greater incidences of death [1,15,23]. Non-compliance also translates further into an
increased risk of the occurrence of drug resistance, which is of particular importance in
diseases such as TB, malaria, HIV, and AIDS.

Global health campaigns need to promote the longstanding viewpoint that “prevention
is better than cure”. Lifestyle choices are often the leading cause of a chronic condition
developing [24]. For example, the consequence of obesity can lead to cardiac complications
and/or diabetes and further progression to peripheral neuropathy. However, chronic
conditions are not only lifestyle-related, and every effort needs to be made to simplify
treatment regimens and bolster patient compliance to achieve therapeutic outcomes. The
convenience of taking several APIs in one product as an FDC can facilitate improved
compliance by the patient with the treatment regimen as it alleviates the patient pill
burden [15,25–27].

3.2. Simplified Dosing Schedule

The most notable advantage of FDC therapy is the ease and convenience of medication
administration in this single dosage form. Additionally, FDC therapy is associated with
improved safety based on simplification of the dosing routine, which reduces the potential
for confusion when administering the medications [25]. The easing of complicated dosing
regimens ultimately improves patient compliance due to a reduced pill burden as shown in
the example of first-line TB treatment in Table 1 [26]. In the example presented below, two
scenarios are presented for both the intensive- and maintenance treatment phases. These
examples capture a ‘best’ and ‘worst’ case scenario based on product availability which can
influence the number of tablets administered daily to achieve a therapeutic dose.

Table 1. Number of tablets administered using individual components versus fixed-dose combination
products for first-line treatment of drug-susceptible TB in over 8 years of age with a pre-treatment
weight of 50–70 kg [5,28].

Individual Therapeutic
Components Number of Tablets Daily Fixed-Dose Combination (FDC) Number of Tablets Daily

Intensive phase: scenario one

Rifampicin (600 mg) 1
Rifampicin + Isoniazid +

Pyrazinamide + Ethambutol
(150/75/400/275 mg)

4
Isoniazid (300 mg) 1

Pyrazinamide (500 mg) 3

Ethambutol (400 mg) 2

Total: 7 Total: 4

Intensive phase: scenario two

Rifampicin (150 mg) 4
Rifampicin + Isoniazid +

Pyrazinamide + Ethambutol
(150/75/400/275 mg)

4
Isoniazid (100 mg) 3

Pyrazinamide (500 mg) 3

Ethambutol (400 mg) 2

Total: 12 Total: 4
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Table 1. Cont.

Individual Therapeutic
Components Number of Tablets Daily Fixed-Dose Combination (FDC) Number of Tablets Daily

Maintenance phase: scenario one

Rifampicin (600 mg) 1 Rifampicin + Isoniazid
(300/150 mg) 2

Isoniazid (300 mg) 1

Total: 2 Total: 2

Maintenance phase: scenario two

Rifampicin (150 mg) 4 Rifampicin + Isoniazid
(300/150 mg) 2

Isoniazid (100 mg) 3

Total: 7 Total: 2

The concept of FDC therapy is always met with great argument as soon as it extends
beyond a single-tablet regimen. The proposal by Tsiligiannis et al., 2019 to dose according
to therapeutic exposure levels requires a regimen ranging from one to four mini tablets
administered daily [29]. This calls into question the usefulness of such an FDC product
if a patient is required to take four of the same tablets daily as opposed to four tablets
comprising the individual drugs, as the sum of tablets administered per day for both
options is equal. Whilst the number of tablets to be taken remains the same in such instances,
advocates of FDC will point out that the pill burden to patients has been reduced in the
sense that understanding the dosing instructions has been simplified from four counts
to just one [25,27]. Increased safety associated with the simplification of a therapeutic
regimen relates to decreasing the potential for confusion surrounding dose administration
and intervals [25].

3.3. Prevention of Dose Dividing

FDC therapy has the innate ability to prevent dose dividing or sharing of medication.
Dose dividing refers to when a patient takes less than the indicated quantity of their daily
medication to make their medication supply last longer or, alternatively, medication is
shared with family members exhibiting similar symptoms. Both instances are driven by
the cost of medication as well as access to and availability of medication [30]. FDC limits
the chance of a patient receiving less than the daily therapeutic dose, as the whole dose is
incorporated into one tablet as opposed to multiple tablets per treatment regimen.

FDC formulations are strongly preferred over the co-packing of several drug products
for the treatment of a single condition. Co-packing refers to a pharmaceutical product
consisting of two or more separate dosage forms (tablets or capsules) presented in their
final dosage form that are packaged together for distribution to patients. FDC therapy
mitigates the risk of patients incorrectly administering co-packaged products, sharing their
medication with family members, or trying to extend their supply of medication by only
administering one of the co-packaged products daily as opposed to the prescribed two-drug
regimen. The use of individual components intended to be administered concomitantly
leads to sub-therapeutic drug levels leading to disease mismanagement and emergence
of drug resistance. Thus, FDC therapy minimizes the probability of patients splitting the
prescribed dose or taking only some of the drugs in the regimen.

3.4. Drug Resistance Prevention

FDC therapy prevents dose diving, which is an established problem with individual
therapeutic components that are co-packaged or individually packaged. Furthermore,
simplification of dosing regimens minimizes the opportunity for confusion and the in-
correct administration of medication leading to sub-therapeutic or toxic drug levels. The
use of the individual therapeutic components intended to be used concomitantly leads to
the emergence of drug resistance, as no crossover protection is provided [31]. Fixed-dose
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combination therapy can play an important role in the effective treatment of infectious
diseases such as HIV, AIDS, TB, and malaria, which have exhibited enormously high mor-
bidity and mortality rates to date, and whose treatment continues to be hindered by the
emergence of resistance to available therapeutic regimens. The research and development
of new therapeutic agents is a costly and time-consuming process with many pipeline
drugs failing to progress through the phases of clinical trials due to dose-limiting toxicities
or sub-therapeutic levels. Therefore, the WHO recommends the use of combination therapy,
preferably formulated as FDC products, to provide crossover protection and limit the
emergence of drug resistance. Whilst polytherapy administered as individual therapeutic
components provides crossover protection, there is an increased risk of the incorrect admin-
istration of the drug products, whether it be due to patient noncompliance resulting from
high pill burden, confusion relating to complicated dosing regiments, a socioeconomic need
to ration medicine, or a combination of these factors. Therefore, FDC formulations ensure
that multiple drugs are administered simultaneously to provide cross-over protection. Ex-
amples of therapeutics that employ crossover protection include antibiotics, anti-malarial
(Section 5.2), anti-tuberculosis (Section 5.3), and antiretroviral (Section 5.4) FDC products.

3.5. Synergism

Synergism occurs when two drugs act at different sites and one drug increases the
efficacy of the other drug by either changing the biotransformation, distribution, or ex-
cretion [32]. Further, synergistic drug interaction can refer to one co-administered drug
correcting the side effect(s) associated with the other drug, such as the concurrent admin-
istration of a diuretic to correct the salt and water retention occasionally associated with
β-blocker therapy [33]. To that end, calcium-channel blockers and renin-angiotensin system
blockers in combination demonstrate additive protective effects on the vascular wall [34].

Using a combination of agents to target different steps within the HIV life cycle
provides either a synergistic or additive antiviral effect, thus enhancing the efficiency of
viral suppression [35]. Additionally, the rational combinations of synergistic agents in TB
treatment, administered as an FDC to enhance patient compliance, aids the prevention
and management of drug-resistant tuberculosis. Chlorpromazine in combination with the
frontline agents, rifampicin and isoniazid, demonstrated clear synergy, thereby suggesting
the capacity for this combination to restore drug activity against mutant strains genetically
resistant to either of the partner compounds. This was further demonstrated by employing
a combination comprising rifampicin, spectinomycin, and chlorpromazine, which was
found to enhance in vitro activity against M. tuberculosis. This three-drug combination
is active in M. tuberculosis-infected macrophages and against mono-resistant, pre-MDR
strains [36]. The advantages of FDC therapy are summarized in Figure 1.
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4. Challenges of Fixed-Dose Combination Formulations in Drug Therapy
4.1. Time-Dependent Patient Compliance

Adherence to polypill regimens is significantly higher compared to multiple-pill
regimens [39]. However, regardless of the number of tablets administered, there is a time-
dependent decrease in compliance associated with treatment regimens extending beyond
18 months of therapy [24,40]. This suggests that whilst FDC therapy can improve patient
compliance through easing the pill burden, ultimately, the nature of a chronic condition,
i.e., the duration of the treatment period, is the greatest hindrance to patient compliance,
more than the type of dosage form. With that said, it remains of utmost importance to
design treatment regimens with patient convenience, and therefore compliance, in mind, to
achieve the best therapeutic outcomes over an extended treatment period.

Interestingly, the Kanyini-GAP trial looked at the necessity and prevalence of pre-
scribing other drugs in addition to the two polypills investigated in the trial once the
predetermined follow-up period of 18 months was reached [25,41]. Although the prescrip-
tion of an additional drug to use in conjunction with the already prescribed polypill would
appear to negate the overall premise of an FDC therapy regimen (i.e., the simplification of
dosing regimens and reduction of pill burden), the study found the overall pill burden to
be reduced by means of two drugs, and participants recorded an overall outcome of 49%
improvement in adherence [25,41].

4.2. Dose Inflexibility

The ability to titrate an individual component to reach desired therapeutic outcomes
is the primary challenge in FDC therapy in certain disease states, such as CVD and diabetes
mellitus [37]. This is less of a concern in conditions such as malaria and TB but is a
potential concern when prescribing anti-retroviral therapy based on patient weight, which
can result in patients having to break tablets in half to achieve the prescribed dose in
FDC products that are not available in the required strength. Similarly, adjustments to
individual components to minimize side effects or toxicity are not always possible should
the adjusted dosing ratio not be available in an FDC product and are among the primary
reasons why many prescribing physicians have been reluctant to fully embrace the use
of FDC therapy [16]. Figure 2 describes a pentagonal framework of identified potential
barriers opposing FDC therapy usage. Dosage form size restrictions are elaborated upon
further below.
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4.3. Development of Analytical Methods

Post-formulation, simultaneous determination of multiple APIs can require complex
analytical techniques or the development of new analytical methods, which in itself can be
a costly and time-consuming process requiring highly specialized equipment and exper-
tise [42]. Whilst each individual component incorporated into the FDC formulation will
have its own analytical method, this does not mean that that analytical method will be
appropriate for the quantification of all components incorporated into the newly formu-
lated FDC product. For example, the FDC product components may have differing high-
performance liquid chromatography (HPLC) requirements (solvent, pH, photosensitivity).
Whilst more specialized techniques, such as liquid chromatography mass spectrometry
(LC-MS), may be employed to simultaneously identify the various compounds, there are
limitations on the machine pump based on the solvents used during analysis. Furthermore,
the individual sample run time needs to be considered, as the solvent gradient may need to
be adjusted during the run time to accommodate the different compounds. Alternatively,
UV-spectrometry may be employed; however, not all compounds absorb ultraviolet light
and, therefore, this method may not be suitable for the quantification of all analytes of
the newly formulated FDC product. This is not to say that analytical methods for the
simultaneous determination of FDC product components cannot be developed. This is
merely a brief list of the type of considerations needed during simultaneous detection
method development.

To further illustrate this point, the characteristics of tenofovir disoproxil fumarate
(TDF) and lamivudine (3TC) additionally highlight the depth of review and consideration
required. TDF possesses one chiral center translating to two stereoisomers with (R) as the
pharmacologically active enantiomer and (S) as the undesired isomer. Similarly, 3TC has
two chiral centers with four stereoisomers, of which (2R,5S)-3TC is the desired enantiomer,
and three undesired isomers, namely, (2S,5R)-3TC, (2S,5S)-3TC, and (2R,5R)-3TC [43].
There are a limited number of reported methods for chiral purity estimation of 3TC or
TDF individually [44–47]. Kurmi et al., 2020 have reported the first method for chiral
purity estimation of both drugs simultaneously when incorporated in an FDC formulation.
Development of a single method to determine chiral purity for the combination of 3TC and
TDF is challenging due to the possibility of six stereoisomers in total within the mixture [43].
This example highlights how time-consuming the process of developing an FDC product
can be, as the foundation of a new product extends beyond the selection of compatible
components and the correct method of manufacture.

4.4. Drug Interactions

Drug-drug and drug-excipient interactions are important considerations when formu-
lating FDC products. Drug-drug interactions may influence bioavailability as is the case
with rifampicin and isoniazid. Although rifampicin-isoniazid is a combination approved
and recommended by the WHO, rifampicin has demonstrated instability in the presence
of isoniazid when exposed to an acidic environment, which decreased the bioavailability
of rifampicin [48–51]. Another example of drug-drug interactions may occur with anti-
hypertensive drug use in patients with comorbidities and polytherapy. Calcium channel
blockers, namely diltiazem and verapamil, are highly likely to induce significant drug
interactions due to their potent inhibition of CYP-3A4 [52]. Anti-inflammatory drugs
and steroids are known to affect blood pressure and should be avoided in combination
with anti-hypertensive medications [53]. Moreover, thiazide diuretics and β-blockers in
combination increase diabetogenic risk, thereby demonstrating the need for prescribers
to be aware of comorbidities in their patients and the associated implications of certain
combinations. Interestingly, when thiazide diuretics or β-blockers are used in combination
with renin-angiotensin system blockers, the diabetogenic risk is reduced in comparison
to those agents as monotherapy [54]. A comprehensive understanding of synergistic or
antagonistic effects on blood pressure needs to be present during dosage form design
and prescribing.
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4.5. Fixed-Dose Combination Therapy Conflict with Personalized Medicine

There is a need to tailor treatment approaches to individual patient needs due to
differences in genetic profiles, race, gender, age, epigenetic, as well as environmental fac-
tors. Patient weight, comorbidities, and inter-patient tolerance and side effects of therapy
necessitate personalized treatment plans. A one-size-fits-all approach is a thing of the
past in this regard and is thereby heavily undermined by FDC therapy that lacks dose
flexibility [55]. However, the practicality and cost implications of personalized medication
are a barrier to this therapeutic approach. Additive manufacturing has been proposed as a
production method to manufacture personalized solid oral dosage forms. This technology
is undoubtedly only suited to higher-income areas, and the highly specialized equipment
is not yet readily accessible in developing countries [56,57]. Further shortcomings are the
lack of specialized and approved pharmaceutical materials, which is covered in greater
detail in a section below. Additive manufacturing is still in its infantile stages and requires
considerable funding and input to develop this approach as a feasible product delivery
option. The rationale for personalized medication is sound, and additive manufacturing is
a plausible manufacturing method currently under investigation globally. In the meantime,
until this becomes a credible, viable, and widely available manufacturing approach, estab-
lished and conventional manufacturing techniques will remain the primary approach to
formulate FDC therapies.

4.6. Individual Drug Patents Hinder Development of Fixed-Dose Combination Products

Fixed-dose combination products often incorporate APIs with expired patents and
seldom include new molecular entities. The approval of FDC products can be delayed
based on the patent status of each individual component intended for inclusion in the
proposed FDC product. Pharmaceutical companies have been known to develop and
market an FDC product comprising an API that has a patent nearing expiry. This strategy
is intended to extend the patent and exclusivity life of the API. Efforts are being made to
exclude FDC products from single API patent restrictions and instead create a medicines
patent pool to ease access to the proposed FDC regimen. Most FDC products include at
least one single API under patent, with only a small percentage of FDC products approved
using the Food and Drug Administration (FDA) priority review procedure [58].

5. Conditions Commonly Treated with Fixed-Dose Combination Formulations
5.1. Cardiovascular Disease

Several antihypertensive FDC products have been added to the WHO model list of
essential medications [59]. The use of FDC products has a proven record of being able to
lower blood pressure in patients with hypertension to goal levels. This is seldom achievable
with the use of single-drug therapy during stage I or II hypertension, even when maximally
titrated. The success of multiple-drug treatment with FDC formulations in reducing blood
pressure can be attributed to the incorporated APIs targeting different effector pathways.
Additionally, one API may trigger the counter-regulatory system activity, which is kept
in control by the other API in the FDC formulation [60]. This is demonstrated with the
example of a diuretic and β-blocker combined in an FDC product. The diuretic will
correct the salt and water retention occasionally associated with β-blocker therapy. In other
words, the APIs in an FDC formulation not only treat the disease in question but can also
counteract the adverse effects of their co-administered components [61]. This is further
illustrated by the co-administration of an angiotensin-converting enzyme (ACE) inhibitor
in hypertension drug therapy to mitigate the peripheral oedema that accompanies calcium
channel antagonists due to the venodilation imposed by ACE inhibitors. Moreover, diuretic-
induced volume contraction may generate a secondary hyperaldosteronism state leading
to electrolyte abnormalities such as hypokalemia and/or hypomagnesaemia. In these
instances, the co-administration of either an ACE inhibitor or an angiotensin II receptor
blocker together with a diuretic will correct the aforementioned electrolyte disturbances [33].
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Furthermore, the combination of these ingredients has an additive antihypertensive effect,
reducing blood pressure to a greater degree than either component alone [62,63].

In the last decade, the development of multiple FDC formulations or polypills has
been witnessed for the treatment of CVD, as documented in Table 2. The FDC products
listed in Table 2 adhere strictly to the definition of a polypill for CVD prevention, i.e.,
formulations comprising at least one anti-hypertensive drug in addition to aspirin and a
lipid-lowering medicine, namely a statin.

Table 2. Fixed-dose combination products for the prevention of cardiovascular disease that adhere
strictly to the original polypill definition (adapted from [14,25,37,64]).

Brand Name(s) Active Pharmaceutical Ingredients Indication

CV-Pill kit (Torrent Pharmaceuticals) Metoprolol, ramipril, aspirin, atorvastatin
50/5/75/10 mg Primary prevention

Heart Pill (Excella Pharma) Ramipril, aspirin, atorvastatin
2.5/100/4; 5/100/40; 10/100/40 mg Primary prevention

Polycap™ (Cadila Pharmaceuticals) Atenolol, hydrochlorothiazide, ramipril,
aspirin, simvastatin 50/12.5/5/100/20 mg Primary prevention

Polypill-E (Alborz Darou
Pharmaceuticals)

Enalapril, hydrochlorothiazide, aspirin,
atorvastatin 2.5/12.5/81/20 mg Primary prevention

Polypill-V (Alborz Darou
Pharmaceuticals)

Hydrochlorothiazide, valsartan, aspirin,
atorvastatin 12.5/40/81/20 mg Primary prevention

Polytorva® (USV) Ramipril, aspirin, atorvastatin 10/75/5 mg Secondary prevention

Ramitorva™ (Zydus Cadila Healthcare) Ramipril, aspirin, atorvastatin 5/75/10 mg Secondary prevention

Red Heart Pill 1
(Dr Reddy’s Laboratories)

Atenolol, lisinopril, aspirin, simvastatin
50/10/75/40 mg Secondary prevention

Red Heart Pill 2
(Dr Reddy’s Laboratories)

Lisinopril, hydrochlorothiazide, aspirin,
simvastatin 10/12.5/75/40 mg Secondary prevention

Starpill (Cipla) Atenolol, losartan, aspirin, atorvastatin
50/50/75/10 mg Secondary prevention

Trinomia® (Ferrer)
Ramipril, aspirin, atorvastatin

2.5/100/40; 5/100/40; 10/100/40 mg Secondary prevention

ZYCAD-4 kit (Zydus Cadila Healthcare) Ramipril, aspirin, atorvastatin, metoprolol
5/75/100/50 mg Secondary prevention

Table 3 documents a wide range of FDC products appropriate for use in CVD preven-
tion but incorporating constituents that deviate from the original CVD polypill definition.

Table 3. Fixed-dose combination products approved for use in cardiovascular disease prevention
that deviate from the traditional cardiovascular disease polypill components.

Brand Name(s) Active Pharmaceutical Ingredients Classification

Acesyl Co® (Akacia); Ariprel Plus® (Watson
Pharma); Coversyl® Plus (Servier); Pearinda
Plus® (Pharma Dynamics); Perindopril Co

Unicorn®; Prexum Plus® (Biogaran); Vectoryl
Plus® (Aspen)

Perindopril, indapamide 4/1.25 mg ACE inhibitor + diuretic [28]

Accumax Co® (Pfizer); Accuretic® (Pfizer);
Adco-Quinaretic®

Quinapril, hydrochlorothiazide
10/12.5; 20/12.5; 20/25 mg ACE inhibitor + diuretic [28]

Aldazide (Pfizer) Spironolactone, isobutyl
hydrochlorothiazide 25/2.5 mg Aldosterone antagonist + diuretic [28]
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Table 3. Cont.

Brand Name(s) Active Pharmaceutical Ingredients Classification

Altoran®-CH (Alembic); Arbozil™-CT
(Zuventus); Asar®-CT (Glenmark);

Edarbyclor® (Takeda Pharmaceuticals;
Valeant); Myotan®-CT (Synokem);

Tezihart-CH (Leeford)

Azilsartan, chlorthalidone 40/12.5; 40/25 mg Angiotensin-receptor blocking + thiazide-like
diuretic [28]

Amilorectic® (aspen); Moduretic® (MSD);
Adco-retic®, Betaretic® (Ranbaxy)

Amiloride, hydrochlorothiazide
5/50; 2.5/25 mg Potassium sparing agents + diuretic [28]

Amlodipine and benazepril (Dr Reddy’s
Laboratories); amlodipine and benazepril

(Watson); Benidep (Johnlee); benazepril and
amlodipine (Systopic Laboratories)

Benazepril, amlodipine
10/2.5; 10/5; 20/5; 20/10; 40/5; 40/10 mg ACE inhibitor + calcium-channel blockers [28]

Atacand Plus® (AstraZeneca)
Candesartan, hydrochlorothiazide

16/12.5; 32/12.5; 32/25 mg Angiotensin II antagonist + diuretic [28,62]

Atamra CV kit (Amra Remedies) Atorvastatin, ramipril, clopidogrel
10/5/75 mg

HMG CoA reductase
inhibitor, ACE inhibitor, platelet aggregation

inhibitor [14]

Caduet (Pfizer) Amlodipine, atorvastatin 5/10; 5/20; 5/40;
5/80; 10/10; 10/20; 10/40; 10/80 mg

Calcium channel blocker + HMG CoA
reductase

inhibitor [28]

Cibadrex® (Novartis) Benazepril, hydrochlorothiazide 10/12.5 mg ACE inhibitor + diuretic [28]

Coaprovel® (Sanofi-Aventis); Co-Irbewin®

(Withrop); Isart Co® (Zydus)
Irbesartan, hydrochlorothiazide

150/12.5; 300/12.5 mg Angiotensin II antagonist + diuretic [28]

Co-Renitec® (MSD), Enap-Co® (Pharma
Dynamics), Pharmapress Co® (Aspen)

Enalapril, hydrochlorothiazide 20/12.5 mg ACE inhibitor + diuretic [28]

Cozaar Comp® (MSD); Lohype Plus®

(Ranbaxy Betabs); Losacar Co® (Zydus);
Ciplazar Co® (Cipla)

Losartan, hydrochlorothiazide 50/12.5 mg Angiotensin II antagonist + diuretic [28]

Co-Pritor® (Ingelheim);
Co-Micardis® (Ingelheim)

Telmisartan/hydrochlorothiazide
40/12.5; 80/12.5 mg; 80/25 mg Angiotensin II antagonist + diuretic [28]

Co-Diovan® (Novartis); Co-Tareg®

(Novartis); Co-Zomevek® (Novartis)
Valsartan/hydrochlorothiazide 80/12.5;

160/12.5; 160/25 mg; 320/12.5; 320/25 mg Angiotensin II antagonist + diuretic [28]

Co Exforge® (Novartis)
Losartan, amlodipine, hydrochlorothiazide

160/5/212.5/; 160/10/12.5; 160/5/25;
160/10/25 mg

Angiotensin II antagonist + calcium-channel
blocker [28]

Dyazide® (Litha Pharma);
Renezide® (Aspen)

Triamterene, hydrochlorothiazide 50/25 mg Potassium-sparing
agent + diuretic [28]

Exforge® (Novartis)
Valsartan, amlodipine

160/5; 320/5; 160/10; 320/10 mg
Angiotensin II antagonist + calcium-channel

blocker [28]

Entresto™ (Novartis); Vymada® (Novartis);
Valsa 50 (Natco); Azmarda® (Cipla);

Valcubit® (Elder)
Sacubitril, valsartan 24/26; 49/51; 97/103 mg Neprilysin inhibitor + angiotensin II

antagonist [28]

Fosinopril and hydrochlorothiazide
(Biogaran®; Cipla; Citron; Glenmark;

Ranbaxy; Rising®)

Fosinopril, hydrochlorothiazide
10/12.5; 20/12.5 mg ACE inhibitor + diuretic [28]

Fortzaar® (MSD); Lohype Forte Plus® Losartan, hydrochlorothiazide 100/25 mg Angiotensin II antagonist + diuretic [28]

Imprida® HCT (Novartis)
Amlodipine, valsartan, hydrochlorothiazide

5/160/12.5; 10/320/25 mg
Calcium channel blocker + angiotensin II

antagonist + diuretic [14]

Inhibace® Plus (Roche) Cilazapril, hydrochlorothiazide 5/12.5 mg ACE inhibitor + diuretic [28]

Livper-A (Livealth); Perindopril-
amlodipine-Mepha® (Mepha); Perindopril-
amlodipine-STADA (Stada); Perindopril-

amlodipine teva (Teva)

Perindopril, amlodipine
3.5/2.5; 7/5; 14/10 mg ACE inhibitor + calcium-channel blockers [28]
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Table 3. Cont.

Brand Name(s) Active Pharmaceutical Ingredients Classification

Losaar Plus® (Accord); Sartoc Co (Aspen);
Zartan Co® (Pharma Dynamics); Hytenza Co®

(Watson Pharma); Netrasol® (Specpharm)

Losartan, hydrochlorothiazide
50/12.5; 100/25 mg Angiotensin II antagonist + diuretic [28]

Preterax® (Servier) Perindopril, indapamide 2/0.625 mg ACE inhibitor + diuretic [28]

Polypill (Cipla) Amlodipine, losartan, hydrochlorothiazide,
simvastatin 2.5/25/12.5/40 mg

Calcium-channel blocker, angiotensin II
antagonist, diuretic, HMG CoA

reductase inhibitor [25]

RIL–AA (East West Pharma) Ramipril, atorvastatin, aspirin 5/10/75 mg ACE inhibitor, HMG CoA reductase inhibitor,
platelet aggregation inhibitor [64]

Servatrin® (Aspen)
Timolol, amiloride, hydrochlorothiazide

10/2.5/25 mg
β-blocker, non-selective, potassium-sparing

agents + diuretic [28]

Spec-Perindopril Plus® Perindopril, indapamide 2/0.625; 4/1.25 mg ACE inhibitor + diuretic [28]

Tarka® (Abbott) Trandolapril, verapamil 2/180; 4/240 mg ACE inhibitor + calcium-channel blockers [28]

Tenoretic® (AstraZeneca); Sandoz
Co-tenidone® 100/25, 50/12.5; Tenchlor®

(Aspen); Tenoret 50® (AstraZeneca); Tenchlor
HS® (Aspen)

Atenolol, chlortalidone 100/25; 50/12.5 mg β-blockers, selective + diuretic [28]

Tri-Plen® (Sanofi-Aventis) Ramipril, felodipine 2.5/2.5; 5/5 mg ACE inhibitor + calcium-channel blockers [28]

Triplixan® (Servier)
Amlodipine; perindopril, indapamide

5/5/1.25; 10/10/2.5 mg
Calcium channel blocker + ACE

inhibitor + diuretic [14]

Tritace Plus® (Sanofi-Aventis)
Ramipril, hydrochlorothiazide

2.5/12.5; 5/12.5; 10/25 mg ACE inhibitor + diuretic [28]

Triveram® (Servier)
Perindopril, amlodipine, atorvastatin

10/40/10 mg
ACE inhibitor, calcium-channel blocker, HMG

CoA reductase inhibitor [14]

Twynsta® (Ingelheim)
Telmisartan, amlodipine

40/5; 80/5; 40/10; 80/10 mg
Angiotensin II antagonist + calcium-channel

blocker [28]

Uniretic® (Schwarz Pharma’s)
Moexipril, hydrochlorothiazide

7.5/12.5; 15/12.5; 15/25 mg ACE inhibitor + diuretic [28]

Zaneril® (Litha Pharma) Enalapril, lercanidipine 10/10; 20/10 mg ACE inhibitor + calcium-channel blockers [28]

Zapto-Co® (Aspen) Captopril, hydrochlorothiazide 50/12.5 mg ACE inhibitor + diuretic [28]

Zestoretic® (AstraZeneca); Auro-Lisinopril
Co® (Actor Pharma); Hexal-Lisinopril Co®

(Sandoz); Lisinopril Co Unicorn®; Lisoretic®

(Pharma Dynamics); Lisinozide® (Novagen);
Lisozide (Austell); Diace Co® (Simayla);

Zestozide® (Mylan)

Lisinopril, hydrochlorothiazide
10/12.5; 20/12.5; 20/25 mg ACE inhibitor + diuretic [28]

Ziak® (Merck); Bilocor Co® (Pharma
dynamic); Bisoprolol Hydrochlorothiazide

Zydus® (Zydus)

Bisoprolol, hydrochlorothiazide
2.5/6.25; 5/6.25; 10/6.25 mg Beta-blockers (selective) + diuretic [28]

5.2. Antibacterials for Systemic Use

Rising antimicrobial resistance is a global health concern with serious consequences
for morbidity and mortality that requires HCPs and patients to conscientiously enforce
antibiotic stewardship. A noteworthy FDC product recommended by the WHO is that of co-
trimoxazole. This combination of sulfamethoxazole and trimethoprim is prophylactically
used to prevent infections in high-risk, HIV-positive patients. This FDC can improve
treatment response through synergistic mechanisms of action [65]. Examples of antibacterial
FDC products for systemic use are reported in Table 4.
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Table 4. Examples of antibacterial fixed-dose combination products [28].

Brand Name(s) Active Pharmaceutical Ingredients Classification

Macron® (Mylan); Megapen® (Aspen) Amoxicillin, flucloxacillin 250/250 mg Beta-lactam sensitive penicillins with
extended spectrumApen® (Mylan) Ampicillin, cloxacillin 250/250 mg

Augmentin® (Aspen); Adco-amoclav®

(AI Pharm); Amoclan® (Watson pharma);
AugMaxil® (Aspen); Ranclav® (Ranbaxy);

Clamentin® (Mylan);
Austell-Co-Amoxiclav®; Bindoclav®

(Actor Pharma)

Amoxicillin, clavulanic acid
250/125; 500/125; 875/125 mg Beta-lactam inhibitors and penicillins

Bactrim® (Roche);
Adco-Co-Trimoxazole®; Lagatrim®

(Akacia); Nucotrim® (GulfDrug); Cozole®

(Ranbaxy); Purbac® (Aspen)

Trimethoprim, sulfamethoxazole
80/400 mg Trimethoprim and sulphonamides

There are, however, clinically inappropriate combinations of antibiotics that offer
unnecessary broad-spectrum coverage which, when used incorrectly and frequently, con-
tribute further to the emergence of antimicrobial resistance. For this reason, the combi-
nation of antibiotics in FDC products must have a sound rationale with full microbiolog-
ical, pharmacological, and clinical validation and safety studies [66]. It is recommended
that antibiotic-adjuvant FDC products should be investigated, as opposed to developing
antibiotic-antibiotic FDC products [67].

5.3. Malaria

Artemisinin-based combination therapy is recommended by the WHO as standard of
care in malaria and encompasses the use of an artemisinin derivative with a partner drug
in either double or even triple FDCs (Table 5).

Table 5. Examples of fixed-dose combination products available for treatment of malaria.

Brand Name(s) Active Pharmaceutical Ingredients Classification

Coartem® (Novartis), Artefan® (Ajanta),
Lumet (Cipla), Lumerax (IPCA

Laboratories Ltd.), Combiart® (Strides
Arcolab Limited), Lumiter (Macleods),

Komefan (Mylan),
Riamet® (Novartis)

Artemether, lumefantrine 20/120 mg Artemisinin + fluorene [28,68]

Pyramax® (co-developed by MMV and
Shin Poong Pharmaceutical)

Artesunate, pyronaridine 60/180 mg Artemisinin + benzonaphthyridine
derivative [69]

MEFLIAM (Cipla); Wellcigo Plus
(Wellona Pharma); Falcigo Plus

(Zydus Cadila)

Artesunate, mefloquine 25/50;
100/200 mg Artemisinin + analogue of quinine [68]

Coarsucam™ (Sanofi-Aventis);
Artesunate/Amodiaquine

Winthrop® tablet

Artesunate, amodiaquine
25/67.5; 50/135; 100/270 mg Artemisinin + quinoline [68]

Artecospe® (Guilin Pharmaceutical)
Artesunate, sulfadoxine,

pyrimethamine 50/500/25 mg
Artemisinin + sulfonamide + folic

acid antagonist

Fansidar® (Akacia; Roche;
Ascendis Pharma)

Sulfadoxine, pyrimethamine
250/12.5; 500/25 mg

Sulfonamide + folic acid
antagonist [28,68]



Pharmaceutics 2024, 16, 178 13 of 36

Table 5. Cont.

Brand Name(s) Active Pharmaceutical Ingredients Classification

Eurartesim (Alfasigma), Artekin
(Holleykin), Duocotexin (Holley Pharm)

Dihydroartemisinin, piperaquine
10/80 mg Artemisinin + aminoquinoline [68]

Malarone® and Malanil™
(GlaxoSmithKline)

Atovaquone, proguanil hydrochloride
250/100 mg

Naphthoquinones + biguanide
derivative [28]

SynriamTM (Ranbaxy)
Arterolane maleate, piperaquine

phosphate 150/750 mg Adamantanes + aminoquinoline [70]

Artemether and lumefantrine are approved and recommended in a fixed-dose ratio of
1:6. The two incorporated drugs have different mechanisms of action and thereby different
target sites as well as different elimination half-lives [8]. Lumefantrine is absorbed and
eliminated relatively slowly [71], which renders it a suitable candidate in artemisinin-based
combination therapy as it will eliminate any remaining parasites after the short-acting
artemisinin derivative (such as artemether) has reduced the initial parasite burden and
initial malarial symptoms [72]. From a resistance prevention perspective, the drugs used in
combination should have similar elimination rates to provide optimum mutual protection
against resistance [73]. However, there are benefits to one of the drugs having a slower
elimination rate as this allows for a shorter therapeutic regimen to be followed by the
patient, which could enhance patient compliance [74,75]. In this instance, the drug with the
slower elimination rate (lumefantrine) provides protection against Plasmodium species
after the final combination dose of artemether and lumefantrine has been administered.
Lumefantrine has a half-life of 4.5 days, meaning there is some protection after the final
dose is administered and the action of artemisinin has decreased [76,77]. Lumefantrine has
an elimination half-life of 2–3 days in healthy volunteers and 4–6 days in malaria-infected
patients, which provides some protection against Plasmodium species after the final dose
was administered and the action of artemisinin has subsided [76,78]. A challenge facing
this therapy relates to the elimination rates of the therapeutic agents available. Since the
artemisinin derivatives in artemisinin-based FDC products are eliminated rapidly, and
the partner drugs are eliminated slowly, there is complete protection for the artemisinin
derivative only. The combination still provides good protection against the emergence of
resistance to the partner drug; however, the risk of developing resistance is elevated in the
drug with slower elimination [73].

Ganaplacide in combination with lumefantrine has been developed by Novartis as a
formulation optimized for once-daily dosing with improved solubility and oral bioavailability.
This formulation is currently under Phase III investigation (NCT03167242) and aims to reduce
the risk of resistance and maintain efficacy. Should this combination be approved, it will be
the first non-ACT treatment since Malarone® (atovaquone-proguanil) launched in 2000 and it
would provide significant cover in the event of artemisinin resistance emerging [79,80].

5.4. Tuberculosis

The WHO and the International Union Against Tuberculosis and Lung Disease (IU-
ATLD) recommend rifampicin and isoniazid in an FDC as first-line therapy to ensure
optimal treatment of TB and minimize the emergence of resistance [10,81]. The current
WHO-approved first-line treatment regimen for TB in adults above 55 kg body weight
encompasses a four-drug combination of rifampicin (150 mg), isoniazid (75 mg), pyraz-
inamide (400 mg), and ethambutol hydrochloride (275 mg) for the first two months of
treatment, known as the intensive phase [81]. Thereafter, rifampicin (300 mg) and isoniazid
(150 mg) are co-administered for a further period of four months (continuation phase),
leading to a total treatment period of six months. Examples of FDC products for use in the
first-line management of TB treatment are listed in Table 6.
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Table 6. Examples of first-line drugs for tuberculosis treatment formulated as a fixed-dose combina-
tion, single-tablet regimen.

Brand Name(s) Active Pharmaceutical Ingredients Indication

Isonarif TM (Versa Pharma); Rifamate®

(Sanofi); Rifinah (Sanofi-Aventis); Riwell-IS
(Wellona pharma)

Rifampicin, isoniazid 150/75; 300/150 mg

First-line drugs in combination for
tuberculosis treatment [5,28]

Rimactazid (Sandoz) Rifampicin, isoniazid 150/75; 300/150;
60/60 mg

Combunex 800 (Lupin); Ethox-IN
(Talent healthcare) Ethambutol, isoniazid 800/300 mg

Rifater (Sanofi-Aventis);
RismidCare (AdvaCare)

Rifampin, isoniazid, pyrazinamide
120/50/300 mg

Onecure (TGP); Rifafour e-275
(Sanofi-Aventis)

Rifampicin, isoniazid, pyrazinamide,
ethambutol 150/75/400/275 mg

The WHO has recommended the use of FDC therapy over separate drug dosing
for TB treatment from a drug resistance perspective due to its efficiency in the reduction
of viable bacteria together with high patient satisfaction [7,10]. The evidence presented
in works by Albanna et al., (2013) and Gallardo et al. (2016) demonstrated rifampicin-
isoniazid FDC therapy to be non-inferior and as effective as separate drug formulations
regarding treatment failure, adverse events, and death [5,6,10]. Most importantly, this FDC
therapy has yet to be investigated regarding bioavailability and, therefore, comparisons
with separate drug formulations cannot be made. Limitations on the total size/weight of a
single solid oral dosage form pose the greatest challenge when incorporating multiple drugs
into a single oral dosage form for administration. However, a product such as Rifafour®

e-275 (Sanofi-Aventis) has proven it is possible to incorporate multiple, high-dose drugs
into an FDC product comprising rifampicin (150 mg), isoniazid (75 mg), pyrazinamide
(400 mg), and ethambutol (275 mg) into a single tablet. Great care needs to be taken when
incorporating multiple drugs into a single product to ensure that the drugs remain stable
during manufacturing, the shelf life, and after administration.

The characteristics of rifampicin remain the primary challenge surrounding TB treat-
ment. Rifampicin quickly develops drug resistance when used in isolation, thereby war-
ranting the need for multiple drug therapy that allows crossover protection offered by
the partner drug(s). However, rifampicin has demonstrated instability in the presence of
isoniazid when exposed to an acidic environment, ultimately impairing the bioavailability
of rifampicin [48–51]. Moreover, its behavior as a zwitter-ion and its varied bioavailability
cause sub-therapeutic levels, which in turn contributes to the emergence of drug resis-
tance and treatment failure [50,82]. Studies investigating the effect of co-administration of
ascorbic acid have found that it slows down the degradation of rifampicin in the acidic
environment [83]. The effects of ascorbic acid on the stability of rifampicin in an FDC
formulation were first investigated by Subashini et al. (2017), and there is a need for addi-
tional studies to be conducted in order to supplement this work to optimize TB therapeutic
agents [7].

The relationship between possible individual patient variables and the pharmacoki-
netic parameters determining the exposure levels deemed to be therapeutic needs to be
considered [84,85]. Tsiligiannis et al., 2019 investigated the optimal dosing strengths of
FDC mini-tablets comprising rifampicin, isoniazid, and pyrazinamide 95/75/200 mg, pro-
posed for four body weight bands denoted as 4–8 kg, 8–12 kg, 12–18 kg, and 18–28 kg [29].
Children with a body weight ≥28 kg were treated with adult doses. Research such as this
highlights a pediatric-focused approach to formulating, namely flexible dosing regimens,
and reduces patient pill burden through simplification of the dosing regimen, i.e., pediatric
patients receive between one and four mini-tablets, depending on their weight.
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In summary, the provision of medication to children is more complex than the provi-
sion to adults due to challenges such as drug doses, which need to be reviewed regularly
to keep up with child growth; the palatability of formulations is generally poor; and care-
givers often have practical difficulties in dispensing liquid formulations, as drawing up
liquids requires good vision and basic arithmetic skills [86]. There is a need for specialized
pediatric formulations that simplify dosing regimens, are more palatable, and possess an
appropriate formulation composition for children.

5.5. Human Immunodeficiency Virus

Long-term adherence to antiretroviral therapy among patients living with HIV is
critical for achieving virologic suppression, reducing the risk of transmission to unin-
fected partners, and minimizing the risk of drug resistance developing. The complexity of
treatment regimens, characterized by multiple tablets, differing dosing times, as well as
varying dosing instructions all contribute to suboptimal adherence [87]. Examples of FDC
antiretroviral therapeutic options are listed in Table 7.

The greatest unmet need in the HIV pediatric population is the availability of suitable
formulation options. Primarily anti-retroviral therapy dosage forms include tablets and
capsules intended for adults, which are inappropriate for the pediatric population. Histori-
cally, suspensions are extemporaneously prepared by crushing adult-sized tablets, which
were unsafe for administration to children due to the risk of choking. It is only in recent
years that pediatric FDC tablet preparations have been introduced (Table 8). The primary
challenge surrounding the pediatric population is the need for flexible dosage regimens
based on variations in patient weight [88,89]. Dose adjustments and increments are based
on individual patient body weight, which differs significantly among children and tradi-
tionally translates to a milligram/kilogram-based dose [90]. This dosing approach proves
problematic, as the relationship between drug clearance and body weight is allometric in
children [90–93], and can thus lead to under- or overdosing [94–97]. The intricacy of dosing
is further complicated by inter- and intra-patient variables, such as stages of development,
maturation of liver enzymes, and comorbidities that will affect the pharmacokinetics in
young children [91,98].
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Table 7. Examples of antiretroviral fixed-dose combination products formulated in a single-tablet regimen for adults and adolescents [28,35,99].

Brand Name(s) and Companies
Active Pharmaceutical Ingredients Classification

NRTIs/NtRTIs NNRTIs INSTI PI PK Enhancer

AluviaTM (Abbott Laboratories);
Kaletra® (AbbVie)

Lopinavir
(100; 200 mg)

Ritonavir
(25; 50 mg)

Atripla® (MSD); Atroiza (Mylan);
Citenvir (Novagen); Odimune (Cipla);

Tribuss™ (Aspen)

Emtricitabine (200 mg)
Tenofovir disoproxil (300 mg) Efavirenz (600 mg)

Biktarvy® (Aspen)
Emtricitabine (200 mg)

Tenofovir alafenamide (25 mg) Bictegravir (50 mg)

Combivir® (GlaxoSmithKline, ViiV);
Combozil (HeteroDrugs SA); Duovir

(Cipla); Adco-lamivudine and
zidovudine; Lamzid (Aspen); Loziv

(Novagen Pharma)

Lamivudine (150 mg)
Zidovudine (300 mg)

Complera® (Aspen), Eviplera® (Gilead)
Emtricitabine (200 mg)

Tenofovir disoproxil (300 mg) Rilpivirine (27.5 mg)

Delstrigo® (Merck & Co.)
Lamivudine (300 mg)

Tenofovir disoproxil (300 mg) Doravirine (100 mg)

Dovato (GlaxoSmithKline) Lamivudine (300 mg) Dolutegravir (50 mg)

Epzicom® (US, ViiV), Kivexa® (GSK,
ViiV Healthcare); Dumiva (Mylan)

Abacavir (600 mg)
Lamivudine (300 mg)

Duovir-N (Cipla); Triomune (Cipla);
Sonke LamNevStav; Virtrium (Aspen)

Lamivudine (150 mg)
Stavudine (30 mg) Nevirapine (200 mg)

Genvoya® (Aspen)
Emtricitabine (200 mg)

Tenofovir alafenamide (10 mg) Elvitegravir (150 mg) Cobicistat (150 mg)

Juluca (GlaxoSmithKline) Rilpivirine (25 mg) Dolutegravir (50 mg)

Odefsey® (Aspen)
Emtricitabine (200 mg)

Tenofovir alafenamide (25 mg) Rilpivirine (25 mg)

Stribild® (Gilead)
Emtricitabine (200 mg)

Tenofovir disoproxil (300 mg) Elvitegravir (150 mg) Cobicistat (150 mg)



Pharmaceutics 2024, 16, 178 17 of 36

Table 7. Cont.

Brand Name(s) and Companies
Active Pharmaceutical Ingredients Classification

NRTIs/NtRTIs NNRTIs INSTI PI PK Enhancer

Symfi® (Mylan); Tenarenz (Aspen)
Lamivudine (300 mg)

Tenofovir disoproxil (300 mg) Efavirenz (600 mg)

Symtuza® (Janssen Pharmaceutica)
Emtricitabine (200 mg)

Tenofovir alafenamide (11.2 mg) Darunavir (800 mg) Cobicistat (150 mg)

Triplavar (Cipla) Lamivudine (150 mg)
Zidovudine (300 mg) Nevirapine (200 mg)

Triumeq® (GlaxoSmithKline)
Abacavir (600 mg)

Lamivudine (300 mg) Dolutegravir (50 mg)

Trizivir® (GlaxoSmithKline)
Abacavir (300 mg)

Lamivudine (150 mg)
Zidovudine (300 mg)

Truvada® (Gilead); Adco-Emtevir
(Adcock Ingrams); Tencitab (Aspen);
Didivir (Cipla); Tyricten (Aurobindo);

Tenemine (Mylan)

Emtricitabine (200 mg)
Tenofovir disoproxil (300 mg)

INSTI, Integrase strand transfer inhibitors; NRTIs/NtRTIs, nucleoside and nucleotide reverse transcriptase inhibitors; NNRTIs, non-nucleoside reverse transcriptase inhibitors; PI,
protease inhibitor; PK, pharmacokinetic.

Table 8. Examples of antiretroviral fixed-dose combination products formulated in a single-tablet regimen for pediatrics and adolescents [28,35,100].

Brand Name(s) and Companies Minimum Body Weight,
Weight range, or age

Active Pharmaceutical Ingredients Classification

NRTIs/NtRTIs NNRTIs INSTI PI PK Enhancer

Cimduo® (Mylan); Temixys™ (Janssen) ≥35 kg Lamivudine (300 mg)
Tenofovir disoproxil (300 mg)

Combivir® (GlaxoSmithKline, ViiV);
Combozil (HeteroDrugs SA); Duovir

(Cipla); Adco-
lamivudine and zidovudine; Lamzid

(Aspen); Loziv
(Novagen Pharma)

30 kg Lamivudine (150 mg)
Zidovudine (300 mg)
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Table 8. Cont.

Brand Name(s) and Companies Minimum Body Weight,
Weight range, or age

Active Pharmaceutical Ingredients Classification

NRTIs/NtRTIs NNRTIs INSTI PI PK Enhancer

Descovy® (Gilead)

14 to < 25 kg Emtricitabine (120 mg)
Tenofovir alafenamide (15 mg)

25–35 kg Emtricitabine (200 mg)
Tenofovir alafenamide (25 mg)

Epzicom® (US, ViiV), Kivexa® (GSK, ViiV
Healthcare); Dumiva (Mylan)

25 kg Abacavir (600 mg)
Lamivudine (300 mg)

Truvada® (Gilead);
Adco-Emtevir (Adcock Ingrams);

Tencitab (Aspen); Didivir
(Cipla); Tyricten (Aurobindo);

Tenemine (Mylan)

17 to <22 kg Emtricitabine (100 mg)
Tenofovir disoproxil (150 mg)

22 to <28 kg Emtricitabine (133 mg)
Tenofovir disoproxil (200 mg)

28 to <35 kg Emtricitabine (167 mg)
Tenofovir disoproxil (250 mg)

35 kg Emtricitabine (200 mg)
Tenofovir disoproxil (300 mg)

Atripla® (MSD); Atroiza (Mylan);
Citenvir (Novagen); Odimune (Cipla);

Tribuss™ (Aspen)
40 kg Emtricitabine (200 mg)

Tenofovir disoproxil (300 mg) Efavirenz (600 mg)

Complera® (Aspen), Eviplera® (Gilead)
35 kg and

aged ≥12 years
Emtricitabine (200 mg)

Tenofovir disoproxil (300 mg) Rilpivirine (25 mg)

Delstrigo® (Merck & Co.) 35 kg Lamivudine (300 mg)
Tenofovir disoproxil (300 mg) Doravirine (100 mg)

Odefsey® (Aspen)
35 kg and

aged ≥12 years
Lamivudine (300 mg)

Tenofovir disoproxil (300 mg) Rilpivirine (25 mg)

Symfi® (Mylan);
Tenarenz (Aspen)

40 kg Lamivudine (300 mg)
Tenofovir disoproxil (300 mg) Efavirenz (600 mg)
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Table 8. Cont.

Brand Name(s) and Companies Minimum Body Weight,
Weight range, or age

Active Pharmaceutical Ingredients Classification

NRTIs/NtRTIs NNRTIs INSTI PI PK Enhancer

Biktarvy® (Aspen)

14 to < 25 kg Emtricitabine (120 mg)
Tenofovir alafenamide (15 mg) Bictegravir (30 mg)

25 kg Emtricitabine (200 mg)
Tenofovir alafenamide (25 mg) Bictegravir (50 mg)

Dovato (GlaxoSmithKline;
ViiV Healthcare)

Minimum weight for
individual components Lamivudine (300 mg) Dolutegravir (50 mg)

Triumeq® (GlaxoSmithKline) 25 kg Abacavir (600 mg)
Lamivudine (300 mg) Dolutegravir (50 mg)

Triumeq® PD (GlaxoSmithKline) 10 to <25 kg Abacavir (60 mg)
Lamivudine (300 mg) Dolutegravir (50 mg)

Genvoya® (Aspen) 25 kg Emtricitabine (200 mg)
Tenofovir alafenamide (10 mg) Elvitegravir (150 mg) Cobicistat (150 mg)

Genvoya® (Aspen) 35 kg and SMR 4 or 5 Emtricitabine (200 mg)
Tenofovir disoproxil (300 mg) Elvitegravir (150 mg) Cobicistat (150 mg)

Evotaz® (Bristol-Myers Squibb) 35 kg Atazanavir (300 mg) Cobicistat (150 mg)

Prezcobix® (Janssen) >40 kg Darunavir (800 mg) Cobicistat (150 mg)

Kaletra® (AbbVie) >40 kg
Lopinavir
(100 mg,

200 mg tablets)

Ritonavir
(25 mg,

50 mg tablets)

INSTI, Integrase strand transfer inhibitors; NRTIs/NtRTIs, nucleoside and nucleotide reverse transcriptase inhibitors; NNRTIs, non-nucleoside reverse transcriptase inhibitors; PI,
protease inhibitor; PK, pharmacokinetic; SMR, sexual maturity ratings relating to tenofovir disoproxil-associated bone toxicity.



Pharmaceutics 2024, 16, 178 20 of 36

5.6. Diabetes Mellitus

Most patients with type 2 diabetes mellitus do not achieve the recommended glycemic
levels with monotherapy and often require multiple anti-hyperglycemic agents to achieve
glycemic control [38]. The biguanide metformin is generally considered as the first-choice
medication. This is predominantly due to the anti-hypoglycemic efficacy of metformin
coupled with its favorable effect on body weight, and low cost [101]. Should metformin
monotherapy fail to attain sufficient glycemic control, treatment guidelines recommend the
addition of complimentary pharmacotherapeutic agent(s) as listed in Table 9 [101]. FDC
therapies have been found to offer greater efficacy compared with higher-dose monotherapy,
reduce the risk of adverse reactions in comparison to higher-dose monotherapy, and offer
improved medication concordance [38,102].

Table 9. Examples of available fixed-dose combination therapies for the control of glycemic levels in
diabetes mellitus type 2.

Brand Name and Company Combination Drugs Classification

Acarjohn-M (Johnlee Pharmaceuticals) Acarbose, metformin 25/500 mg Alpha-glucosidase inhibitors + biguanide [102]

Avandamet® (GSK)
Rosiglitazone, metformin

2/500; 4/500; 2/1000; 4/1000 mg Thiazolidinediones + biguanide [101,102]

Janumet® (MSD)
Sitagliptin, metformin

50/500; 50/850; 50/1000 mg
Dipeptidyl peptidase

4 inhibitor + biguanide [28,101,102]

Amaryl® (Sanofi-Aventis) Glimepiride, metformin 1/500; 2/500 mg

Sulfonylureas + biguanide [28,101,102]Glucovance® (Merck)
Glibenclamide, metformin

1.25/500; 2.5/500; 5/500 mg

MetaglipTM (Bristol-Myers Squibb) Glipizide, metformin 2.5/250; 2.5/500 mg

Galvus Met® (Novartis)
Vildagliptin, metformin

50/1000; 50/850 mg
Dipeptidyl peptidase

4 inhibitor + biguanide [28,101]

PrandiMet® (Sciele and Novo Nordisk) Repaglinide, metformin 1/500; 2/500 mg Meglitinides + biguanide

Avandaryl® (GlaxoSmithKline)
Rosiglitazone, glimepiride
4/1; 4/2; 4/4; 8/2; 8/4 mg Thiazolidinediones + sulfonylureas [102]

Duetact® (JPI, Takeda Pharmaceuticals) Pioglitazone, glimepiride 30/2; 30/4 mg

Jentadueto® (Boehringer Ingelheim)
Linagliptin, metformin
2.5/850; 2.5/1000 mg

Dipeptidyl peptidase
4 inhibitors + biguanide [101]Kazano (Takeda Pharmaceuticals) Aloglipine, metformin

12.5/500; 12.5/1000 mg

Komboglyze® (AstraZeneca &
Bristol-Myers Squibb)

Saxagliptin, metformin
2.5/500; 2.5/850; 2.5/1000 mg

InvokametTM (Janssen Pharmaceuticals)
Canagliflozin, metformin 50/500; 50/850;
50/1000; 150/500; 150/850; 150/1000 mg

Sodium-glucose co-transporter
2 inhibitors + biguanide [101,102]

Xigduo® (AstraZeneca)
Dapagliflozin, metformin

5/850; 5/1000 mg

Synjardy® (Boehringer Ingelheim)
Empagliflozin, metformin 5/500; 5/850;

5/1000; 12.5/500; 12.5/850; 12.5/1000 mg

Segluromet® (Pfizer)
Ertugliflozin, metformin

2.5/850; 2.5/1000; 7.5/850; 7.5/1000 mg

Glyxambi® (Boehringer Ingelheim) Empagliflozin, linagliptin 10/5; 25/5 mg
Dipeptidyl peptidase 4 inhibitors + sodium-
glucose co-transporter 2 inhibitors [101,102]Qtern® (AstraZeneca) Saxagliptin, dapagliflozin 5/10 mg

Steglujan® (Merck) Sitagliptin, ertugliflozin 5/100; 15/100 mg

Wang et al. 2013 reported that acarbose-metformin in FDC formulations yielded
superior anti-hypoglycemic efficacy, with proportionally more diabetes mellitus type 2
patients reaching HbA1c targets with reduced overall body weight when compared to
acarbose monotherapy [103]. The researchers further reported that the acarbose-metformin
combination was well tolerated amongst their study population and devoid of hypo-
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glycemia risks [103]. Such results, positively reporting on FDC therapy, need to be re-
inforced with more robust studies so that definitive conclusions of therapeutic benefits
can be drawn. Whilst multiple studies have reported the efficacy and safety of acarbose
as add-on therapy in situations where metformin ineffectively controlled glycemic lev-
els, limited results are available reporting on the efficacy of metformin as a second-line
add-onto to acarbose [104–107]. This speaks to an overall trend that requires a more in-
depth, comprehensive evaluation of FDC products to better understand the efficacy of
proposed combinations.

The most common chronic complication of diabetes mellitus is termed peripheral neu-
ropathy, which, due to its high prevalence of up to 50% in diabetic patients, is synonymously
called diabetic neuropathy [108,109]. This condition arises secondary to pre-diabetes, type 1
diabetes mellitus, or type 2 diabetes mellitus, which is a result of the persistent high glucose
levels of these patients [110]. Pre-diabetes exhibits a similar pattern of nervous system
damage, thereby supporting the cause of nerve injury as the continuum of fluctuations
from normal glycaemia [108]. A definitive treatment for peripheral neuropathy remains
elusive, and thus preventing disease progression and further complications remains the
principal approach to reducing the severity of this condition. Management of peripheral
neuropathy should also include effective treatment of pain. Furthermore, inflammation
plays a critical role in the regulatory processes involved in the degeneration of nerves in
patients with peripheral neuropathy, and thus the combination of selected B-vitamins (i.e.,
vitamins B1, B6, and B12) as adjunct therapy to diclofenac has been investigated in the clini-
cal management of peripheral neuropathy. Current prescribing practices based on market
availability require separate administration of these products, leading to high pill burden
among these patients. The development of an FDC formulation containing diclofenac and
vitamins B1, B6 and B12 into a single-tablet regimen requires further investigation, as it has
the potential to improve therapeutic outcomes.

6. Fixed-Dose Combination Formulation Factors for Consideration

The importance of dosage form design for efficient drug treatment cannot be over-
stated. A successful dosage form must ensure predictable and repeatable delivery of
the API(s) to reach the site of action at the intended concentration [111]. The design of
FDC dosage forms is a complex task requiring multiple simultaneous considerations [112].
When considering the formulation of an FDC product, the reality remains that the difficulty
of manufacturing the dosage form increases with the inclusion of each additional API.
From a clinical perspective, the combination of multiple APIs increases the potential risk
for patients to develop side effects. From a technical standpoint, formulation complexity
correlates with the number of APIs incorporated into an FDC product due to the chemical
properties and inherent physical attributes of each API.

The formulation scientist needs to research each moiety and consider the chemical
and physical stability of the components when in contact with each other. Thereafter,
methods of manufacture should be taken into consideration. For example, if one of the
APIs is sensitive to moisture, all manufacturing processes utilizing water are ruled out.
Factors including thermolability, sensitivity to compression force, and stability through-
out the gastrointestinal tract (GIT) influence the selection of the manufacturing method.
Moreover, additional process steps such as coating may be necessary as a physical bar-
rier for acid-labile APIs or drugs known to cause gastric irritation. Layered tablets with
modified-release properties, a mixture of drug-containing granules, or tablet-in-capsule
systems can be employed to achieve physical separation of the APIs. Additionally, physical
separation of the components post-administration may be achieved by formulating matrix
systems or reservoir systems with modified- and delayed-release properties. Alternatively,
novel formulation techniques such as additive manufacturing may be employed [113,114].
Figure 3 provides a simplified schematic representation of the factors for consideration
during the FDC dosage form design process.
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The dosage size of the respective APIs for inclusion in the FDC dosage form may
be a highly restrictive factor, as maximum tablet sizes are approximately equivalent to
1000 mg or capsule equivalent to size 000. The selected APIs in combination with excipients
can result in a dosage form being an inappropriately sized solid oral dosage form (i.e.,
physically too large for oral administration). The feasibility of obtaining an appropriately
sized tablet is determined by the compressibility of the APIs and selected excipients when
employing direct compression as a means of manufacture. The SeDeM Expert Diagram
System may be very useful to a formulation scientist as a pre-formulation aid, as it considers
12 parameters relating to powder properties (such as bulk- and tapped density; inter-particle
porosity; Carr’s index; cohesion index; Hausner ratio; angle of repose; etc.) to determine
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the suitability of a powder for direct compression as well as to predict the drug loading
capacity of investigated formulations [116–120].

7. Formulation Approaches

Formulation approaches relevant to FDC tablets are discussed with examples of
commercially available FDC tablet products. The goal when formulating solid oral dosage
forms is the same for FDC tablets as it is for monotherapy tablets, i.e., to establish a mass-
production setup with a robust and quality-controlled approach resulting in acceptable
and elegant looking preparations of consistent quality (e.g., uniform product weight and
dose) [121].

7.1. Immediate-Release Fixed-Dose Combination Dosage Forms

Immediate-release dosage forms intend to rapidly release the APIs after administration
to achieve a fast onset of action, following absorption in the GIT [111]. Immediate-release
tablets are the most common type of tablet, synonymously termed conventional tablets, and
are considered the standard and easiest approach to deliver APIs for a rapid therapeutic
effect [122]. The preparation procedure commonly employed is that of direct compression.
This is a simple process in which APIs are blended with the excipients prior to tableting,
and it consists of fewer preparation steps than other methods such as wet granulation [123].
Direct compression is well suited to thermolabile and hydrolabile drugs, as no heat or water
is required during the process steps. One challenge associated with direct compression is
that the compression mixture needs to be able to flow effectively through the hopper into
the tablet die to ensure tablets of consistent weight, thereby delivering accurate dosing of
the drug. Therefore, the flowability and compressibility of the excipients together with their
quality and consistency play a vital role in the success of directly compressed FDC tablets
when used as a production aid to supplement the poor powder flow of the APIs [124].
Important considerations when utilizing this method of preparation include differences
in particle sizes of the APIs themselves as well as the selected excipients for inclusion in
FDC tablets. Significant differences in particle size can result in uneven distribution of
the components within the physical mixture. Should variations in particle size result in
a heterogenous mixture, steps such as sieving for a select particle size range should be
employed or granulation methods should be considered in which the particle size can be
controlled [125,126].

Physical and chemical interactions between the APIs both pre- and post-administration
need to be ruled out, as the APIs will be in continual contact once tableted and could further
interact within the acidic environment of the GIT. Further analysis should be conducted
to establish that no incompatibilities exist between the APIs and selected excipients. For
instance, stearate lubricants should be avoided in combination with ibuprofen [127]. Exten-
sive consultation of the literature as well as tests such as differential scanning calorimetry,
thermogravimetric analysis, x-ray powder diffraction, and thermal activity monitoring can
be employed to determine mixture stability [128].

Examples of immediate-release FDC tablet products include amoxicillin in combina-
tion with clavulanic acid as well as many over-the-counter pain preparations which include
combinations of aspirin, paracetamol, and caffeine, or paracetamol, codeine, and ibuprofen.

7.2. Modified-Release Fixed-Dose Combination Dosage Forms

Modified drug release refers to the manipulation or modification of the drug release
profile from a dosage form with the specific intention to deliver the API(s) to a specific
absorption site within the GIT at a desired rate or at a pre-determined time point [111].
This is achieved through a variety of formulation techniques and excipients. Modified drug
release can further be subdivided into extended-release, delayed-release, or gastro-resistant
dosage forms, based primarily on the techniques employed.
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7.2.1. Extended-Release Dosage Forms

These dosage forms are primarily employed to allow for a reduction in dosing fre-
quency, as it allows for the drug plasma levels to be sustained over a longer period of time
thereby reducing the number of administrations required to maintain the drug within the
therapeutic concentration. Extended-release systems can be achieved via matrix tablets,
polymer-containing pellets, coated pellets or tablets, or osmotic-based systems [111].

Matrix-Type Drug Delivery Systems

The matrix drug delivery system refers to a type of extended-release dosage form
that encompasses the dispersion of solid drug particles in a porous solid medium (i.e., the
matrix) capable of prolonging drug release over an extended period of time. Typically,
this is achieved by compressing a mixture of the APIs with a release-modifying polymer
excipient into a matrix-type tablet [129]. Additionally, multiple-unit matrix systems may
also be manufactured utilizing extrusion-spheronization, spray congealing, and casting.
Drug release from matrix systems can be categorized as diffusion-controlled release in
which the hydrophilic core remains intact and, over time, the swellable, soluble matrix
hydrates, allowing the drug to dissolve and diffuse through pores in the system. Conversely,
a hydrophobic polymer is selected to form the base of the matrix through which drug
particles can leach out via hydrated channels within the matrix. The rate of drug release
from these systems is dictated by the pore size, the number of pores, as well as the tortuosity
of the matrix. Alternatively, erosion-controlled release can be employed, whereby the
polymer and drug are continuously liberated from the surface of the matrix system through
abrasion [122]. Polymers such as hydroxypropyl methylcellulose and polyethylene oxide
as well as some natural polysaccharides have previously been employed to maximize
the efficiency of their self-assembling properties to spontaneously form gel networks
without the use of harsh reaction conditions and solvents. With that said, some natural
polysaccharides are highly soluble in water, which can greatly impede their potential for
use as release-modifying excipients in matrix-type drug delivery systems, and should
therefore be carefully researched before considered for inclusion [130,131].

Multiple-Unit Pellet Systems

Pellets make up multiple-unit drug delivery systems which consist of small discrete
sub-units, each containing a portion of the dose. The small units are typically administered
by loading the sub-units into a sachet or capsule, or compressing them to form tablets.
The chief characteristics leading to the popularity of multi-particulate systems include the
decreased variability in drug release profiles, reduced intra- and interpatient variations in
gastric transit time, and minimized dependability on the fed and fasted states [132–134].
Additionally, fast gastric emptying is achieved due to the small sub-units distributing
more evenly throughout the GIT, leading to fewer side effects such as local gastric irri-
tation and reduced susceptibility to dose dumping—even in dose failure [134,135]. In
comparison to single-unit dosing, these multi-particulate systems provide more repro-
ducible pharmacokinetic behavior, including more predictable plasma level concentrations
and bioavailability. This is attributed to the individual sub-units being able to leave the
stomach continuously even if the pylorus is closed, due to the individual particle size being
smaller than 2 mm [136,137]. Whilst this approach boasts a multitude of advantages, one
drawback is the reduced mechanical strength of tablets comprising the compressed pellet
sub-units in comparison to conventional tablets, thus potentially requiring the addition of
pharmaceutical excipients to overcome this challenge [138–142]. This creates challenges,
as powder pharmaceutical excipients may segregate from manufactured pellets, given the
particle size difference [143,144], and may further be complicated by restrictions of the
maximum tablet or capsule size.

Multi-unit pellet systems (MUPS) present as popular multi-particulate candidates
given the physical and mechanical properties imparted by the manufacturing process.
MUPS can be prepared by means of extrusion-spheronization, which delivers consistent
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spherical particles and unique deformation behavior [145–147]. MUPS can furthermore
be administered as either uncoated drug-containing pellets or functionally coated pellets,
capable of offering modified drug release profiles [135,145]. Lopimune 40/10 (Cipla) is an
example of an FDC pellet formulation comprising lopinavir (40 mg) and ritonavir (10 mg),
specialized for the HIV-positive pediatric population [148].

Unlike conventional tablets made directly from powder particles, dust formation is
reduced during the tableting of MUPS due to the agglomeration of fine powder particles
during the wet mass extrusion process step. Manufactured pellets demonstrate superior
flow properties in comparison to their individual counterparts, which allows for better flow
from the hopper to the tablet die during compression, thereby increasing content uniformity
due to less mass variation [137,149]. Whilst better powder flow results in higher processing
speeds, such compositions also demand lower lubricant concentrations, thereby lowering
processing costs [144,150]. This technique is well suited to formulations where differences
in particle size of the APIs and excipients are a concern, as pellets negate concerns of
segregation within a mixture.

The primary drawback of this method is, however, incompatibilities between the
APIs and the wetting agent as well as poor compaction performance of the pellets [151].
Moreover, the APIs need to be able to withstand the drying phase of this process, whether it
be elevated temperatures during oven drying or the harsh temperature reduction of freeze-
drying. Therefore, when considering this as a method of manufacture, the combination of
APIs for inclusion in FDC tablets needs to be screened for sensitivity to moisture, heat, and
compression (during extrusion as well as tableting).

7.2.2. Coating

Coatings for drug delivery systems are being researched continuously, as they can
change the external properties of dosage forms without interfering with the internal struc-
ture. Coatings can be employed as protection against chemical and physical degradation
of the drug or delivery system, alteration of the drug release profile, improvement of the
appearance and organoleptic properties, as well as other benefits such as bio-adhesion or
responsiveness to external stimuli [152].

Film coating can be used to mask poor taste, improve physical appearance, protect
against moisture, or prevent brittle FDC tablets from chipping/cracking [153]. Commer-
cially available FDC tablets such as Malanil™ (GlaxoSmithKline; atovaquone, proguanil hy-
drochloride 250/100 mg), Glucovance® (Merck; glibenclamide, metformin 1.25/500; 2.5/500;
5/500 mg), Exforge® (Novartis; valsartan, amlodipine 160/5; 320/5; 160/10; 320/10 mg), Co
Exforge® (Novartis; losartan, amlodipine, hydrochlorothiazide 160/5/212.5/; 160/10/12.5;
160/5/25; 160/10/25 mg), and Tribuss™ (Aspen; emtricitabine, tenofovir disoproxil,
efavirenz 200/300/600 mg) are examples of film-coated FDC tablets.

Functional coatings can also be applied to alter the release of an API from formulated
FDC tablets. For example, the use of enteric coating may be used to delay the release of
diclofenac to prevent gastric irritation. Polymers such as Eudragit® L100 and Eudragit®

S100 could be used to achieve the site-specific release of diclofenac in the duodenum,
as these agents dissolve at pH 6.0 and 7.0, respectively. Fixed-dose combination tablet
coating should be carried out after complete viscoelastic strain recovery of the FDC tablets,
i.e., after 48 h has elapsed [154]. The major challenge surrounding the coating of pellets
intended for inclusion in FDC tablets manufactured by means of direct compression is
the compression-induced damage to the functional coating, which leads to diminished
modified-release capacity and subsequent failure in dosage form design as well as loss of
taste-masking or drug-stabilizing properties [145,155].

7.2.3. Delayed-Release Dosage Forms

These dosage forms are formulated to release the APIs once a lag time has elapsed
after administration. The motive for targeting the release of a drug to a specific absorption
site within the GIT is to improve the therapeutic efficacy and reduce the side effects of
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certain drugs. This is achieved as different regions in the GIT offer increased dissolution
or absorption based on the specific physiology of the site as well as the characteristics of
the drug such as its solubility profile and regional permeability [156,157]. A dosage form
encounters many environmental changes during transit through the GIT, experiencing
fluctuations in pH, enzyme activity, and intestinal flora between the different regions.
Whilst these varying conditions can be quite harsh, these region-specific differences can be
utilized as opportunities to induce drug release and improve bioavailability [158].

Release in the small intestine may be preferred, as the pH increases dramatically from
pH 1.2 in the stomach to 6.8 and 7.4 in the duodenum and jejunum, respectively [159].
This may be sufficient to prevent drug degradation of acid-labile drugs in the stomach,
achievable via matrix systems, floating systems, or the use of functional coatings. Addition-
ally, lipid-based formulations work on the premise that the presence of exogenous lipids
prompts the release of bile, which helps to form mixed micelles into which lipophilic drugs
may partition and solubilize, thereby augmenting their solubility and potentially their
bioavailability [160,161]. Products such as Coartem® or Riamet® (Novartis; artemether,
lumefantrine 20/120 mg) utilize this strategy.

7.2.4. pH-Responsive Drug Delivery Systems

The use of pH-sensitive drug delivery systems is specifically applicable for drug
delivery in the GIT where the pH varies substantially between the different regions. This
variation in pH provides the opportunity to formulate responsive delivery systems that can
optimize drug absorption [162]. Gastro-resistant systems can be employed to protect drugs
against degradation in certain regions of the GIT as well as reduce irritation caused by high
amounts of free drugs [162]. Arthrotec® (Pfizer; misoprostol, diclofenac 200 µg/50 mg)
is an example of an FDC tablet with a gastro-resistant core containing diclofenac sodium
surrounded by an outer mantle containing misoprostol [163].

7.3. Layered Tablets

Multi-layered tablets are presented as one approach to incorporating multiple drugs
into a single dosage form while separating them from each other [164–167]. Multi-layered
tablets are well suited to situations where the combination of multiple drugs in one dosage
form requires the controlled release of each substance. Multilayer tablets, however, possess
unique production challenges, such as dose accuracy of each layer, cross-contamination
between layers, physical interactions between constituents of each layer, as well as capping
or delamination during coating or storage [168–170]. Examples of FDC layered tablets
incorporating the antidiabetic drug glimepiride and metformin are Glimser-1® (Alembic),
Glycomett®-GP 0.5 (USV), GLIMKAR-M2-FORTE (Care Formulation Labs), GLYSAP-M1
(Elxir), and GLITIP-2 Tablets (IVA Healthcare).

The work of Sonvico et al. 2009 demonstrated the ability to achieve delayed drug
release without the use of coating through a carefully designed matrix system. They
investigated the development of a multi-kinetics FDC of gabapentin and flurbiprofen,
formulated as multilayered tablets for oral administration [169]. Multi-layered tablets with
three different release kinetics were formulated in one dosage form, targeting two delivery
sites. The layers were ordered as follows: top layer, a floating hydrophilic matrix for
gabapentin intra-gastric release; middle layer, a disintegrating formulation for gabapentin
immediate release; bottom layer, an uncoated matrix, swellable but insoluble in the gastric
fluid, for delayed prolonged release of flurbiprofen in the intestinal environment [169].
This dosage form is the epitome of formulation design and understanding material science.
Such dosage forms utilize different polymers for delaying and prolonging the release of
APIs and demonstrate the feasibility of layered tablets for FDC therapy.

It is also possible to achieve immediate release of one API and delayed release of the
other API with an FDC tablet formulation. This is demonstrated by the work of Chun
et al., 2021 in which bilayer tablets were manufactured consisting of high-dose metformin
in a sustained-release layer with low-dose dapagliflozin L-proline incorporated into an
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immediate-release layer. The optimized bilayer tablet showed similar in vitro and in vivo
profiles to the reference drug, demonstrating bioequivalence of the test product and the
control drug [171]. The same concept is demonstrated by Vimovo® (Grünenthal; naproxen,
esomeprazole 500/20 mg), which has been developed as a sequential-delivery tablet system
comprising an outer immediate-release esomeprazole layer with an enteric coated naproxen
core [172].

7.4. Lipid-Based Formulations

Lipid excipients can be utilized to enhance the solubilization and absorption of highly
lipophilic APIs in the intestinal luminal fluid. By exploiting the body’s natural physiological
response to the presence of ingested lipids, this method of manufacture can enhance
the bioavailability of lipophilic APIs by increasing the saturation solubility within the
microenvironment and is well suited to compounds susceptible to hydrolysis [173–176].
Lipid-based formulations range from spray congealing and spray drying to oil-based
suspension or solutions, emulsions, or self-emulsifying drug delivery systems (micro- or
nano range) for inclusion in capsules [177]. Additionally, solid lipid dispersions comprising
highly lipophilic APIs may be prepared by means of hot fusion (applying heat to melt
a polymeric material) or hot-melt extrusion (pressure is applied to the molten mass) to
prepare modified-release drug delivery systems [178]. The elevated temperatures involved
in hot melt extrusion and hot fusion are unsuitable for thermolabile drugs, and appropriate
thermoplastic behavior is a prerequisite for the selected polymeric material [174].

Many anti-malaria and anti-tuberculosis drugs are poorly water-soluble; thus, the
rationale exists for the development of an FDC dosage form suited to the delivery of these
highly lipophilic moieties. Solid lipid dispersions incorporated into matrix tablets may
control the diffusion speed of water via pores into the matrix due to the lipid coating, and
augment the dissolution rate [173,179,180]. An example of this is Coartem® (Novartis) and
Riamet® (Novartis), which are examples of lipid-matrix type tablets comprising artemether
and lumefantrine, both lipophilic antimalarial drugs [181].

7.5. Additive Manufacturing

Three-dimensional printing technology is a form of additive manufacturing, which
relies on computer-aided design software and offers extreme design flexibility, as dosage
forms can be tailor-made to any size, composition, shape, and internal structure [152,182–184].
The FDA approved the first 3DP tablet in 2015, namely Spritam® (Aprecia; levetiracetam
250 mg). Whilst there are currently no approved three-dimensional printed FDC tablets
commercially available, this method of manufacture has potential for future use and
may be able to overcome limitations associated with more conventional pharmaceutical
manufacturing techniques.

Compared to conventional pharmaceutical manufacturing methods, three-dimensional
printing can create complex personalized products of unique design and overcome some
conventional pharmaceutical unit operation challenges, i.e., milling, mixing, granulation,
and compression [55,185,186]. Additionally, it offers advantages such as less material con-
sumption, with reduced production costs; the ability to incorporate poorly water-soluble
drugs or drugs with narrow therapeutic indices; the ability to attain high drug-loading
with precision, particularly relevant for potent drugs; and fast production rates possible
due to fast operating systems [186–191].

Fused deposition modelling is a method often employed to produce three-dimensional
printing tablets employing polymeric material with appropriate thermoplastic behav-
ior [174,184,185,191–193]. This method of manufacture can produce complex geometric
shapes and could theoretically be employed to produce dual-compartment capsules to
orally administer the anti-TB drugs, rifampicin and isoniazid, which require physical sep-
aration, for example [182]. Alternatively, instead of printing geometric shapes to house
the APIs, there is potential to include the APIs in the printing filament, thereby meaning
the drug is directly printed into an appropriate shape for administration. This approach
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would eliminate the need for conventional tableting excipients such as fillers, binders, and
disintegrants. Three-dimensional printing requires APIs and excipients to be thermostable
(due to the high process temperatures involved) with low hygroscopicity, as water liberated
during melting and extruding can produce air pockets within the mixture and compromise
the integrity of the filament [194].

Three-dimensional printing also offers exciting research opportunities in material
science. Eudragit® E 100 (Evonik Healthcare), Eudragit® L 100-55, Affinisol™ 100cP
(Colorcon®), Affinisol™ 4M, and chitosan are candidate material requiring further investi-
gation for its use in manufacturing pharmaceutical grade filaments.

A most notable point is the selection of the correct equipment to manage the high
sheer volume of these complex mixtures for filament production. There are many technical
parameters that need to be established and controlled, including temperature control and
monitoring across the entire process, die size and shape, pulling tension of the filament,
and post-manufacture cooling. Significant advances have been made in the accessibility,
variety, and cost of three-dimensional printers themselves [185], and when this translates
across to materials specialized for pharmaceutical application, personalized medication
will benefit vastly.

7.6. Multiple-Unit Delivery Systems

Capsules may be utilized as a container-drug delivery system filled with powder or
non-powder fillings such as tablets, capsules, and pellets. A tablet-in-capsule multiple unit
system, for example, can be designed to incorporate mini-tablets with modified-drug release
properties (and various lag times of release) within the hard gelatin capsule or, alternatively,
a combination of fillings can be employed such as mini-tablets and pellets incorporated
into a single capsule [195]. Moreover, a combination of solid and liquid fillings may be
encapsulated. Capsule-in-capsule multiple-unit systems comprise a formulated capsule
(either liquid- or dry-filled) which is housed in an outer liquid-filled capsule [196,197].
Potential solid-solid multiple-unit systems comprising FDC regimens include aspirin
and atorvastatin with/without clopidogrel; rifampicin, isoniazid, and pyrazinamide; and
efavirenz, emtricitabine and tenofovir. Conceptual examples of liquid-liquid multiple-unit
systems include artesunate and amodiaquine or arterolane and piperaquine phosphate.

7.7. Layered Tablets with Drug-Free Layers

Layered tablets incorporating a drug-free, excipient-only layer in tablets allow tablets
to be split to obtain exact smaller doses, if desired. This tablet design approach overcomes
two of the biggest challenges associated with FDC products: dose inflexibility and the
ability to titrate doses. Moreover, layered tablets can be manufactured to incorporate
drug-containing layers, separated by a drug-free, excipient-only layer which allows the
incorporation of physically incompatible APIs [198].

8. Conclusions

There are many benefits of FDC therapy, and the most notable benefit for the patient is
the simplification of treatment regimens. The limitation in dose flexibility is noteworthy but
can be overcome by only initiating FDC therapy for patients who are already stabilized on
the individual therapeutic components. The reality of medication side effects is ever present
regardless of the dosing strategy, and the difficulty in identifying the root cause of an ad-
verse drug event is not a problem inherent to FDC therapy. FDC therapy offers potentially
significant savings resulting from lower treatment failure rate, lower case-fatality ratios,
decreased emergence of drug resistance, and thus less money needed for the development
of new drugs. FDC therapy holds future promise to improve the management of disease
through synergism and reduced adverse events whilst enhancing patient compliance. By
reducing resistance emergence, FDC therapy extends the lifespan of existing therapeutic
agents. There are various formulation approaches, drug delivery systems, and materials
available to formulate FDC tablets, with several examples of commercially available prod-
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ucts already on the market. Lipid-based formulations, three-dimensional printing, and
layered tablets with drug-free layers have been identified as formulation approaches that
hold promise as future solid oral-dosage form formulation strategies. Functional excipients
may be exploited to impart specialized properties or characteristics to a delivery system.
Further, unmet needs were identified where exciting research opportunities exist such as
pediatric-specific dosage forms for HIV-positive patients; robust studies examining interac-
tions of FDC products to better understand their interaction and synergism as highlighted
by acarbose and metformin; the additive effects of employing an FDC of diclofenac sodium
with B-vitamins as adjuvant therapy; and the influence of ascorbic acid to limit degradation
of rifampicin in the stomach. Furthermore, the use of formulation techniques such as
layered tablets, lipid-based formulations, coatings, or three-dimensional printing to create
a physical barrier between rifampicin and isoniazid should be investigated.
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