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Abstract: Artificial intelligence (AI) is progressively spreading through the world of health, particu-
larly in the field of oncology. AI offers new, exciting perspectives in drug development as toxicity
and efficacy can be predicted from computer-designed active molecular structures. AI-based in silico
clinical trials are still at their inception in oncology but their wider use is eagerly awaited as they
should markedly reduce durations and costs. Health authorities cannot neglect this new paradigm in
drug development and should take the requisite measures to include AI as a new pillar in conducting
clinical research in oncology.

Keywords: serendipity; new drug discovery; oncology; artificial intelligence

1. Introduction

Artificial intelligence (AI) is a general term comprising global machine learning and
deep learning. One of the main applications of AI is to create mathematical models
able to establish links between different types of information. In the medical field, AI
can considerably accelerate discoveries as well as improve diagnoses and personalized
treatments. The landscape of AI has recently evolved exponentially in the domain of
cancer diagnosis and treatment [1]. In particular, AI now occupies a central place among
challenges and potential solutions for improving the delivery of precision medicine in
cancer [2]. More generally, numerous studies have pointed to the benefits of AI in drug
discovery and cancer treatment [3,4]. A recent review on FDA-certified drugs in 2020 and
2021 indicated that 40% of the approved drugs were for various types of cancers [5]. This
underlines the significant volume of scientific and medical work dedicated to the set-up of
new anticancer drugs. This paper aims to objectively examine the main aspects of anticancer
drug development where AI brings indisputable, significant advances. Anticancer drug
development has generated a large quantity of AI-based reports and reviews; the main
objective of the present opinion paper was not to perform an exhaustive synthesis of them.
Rather, the present article aims to pinpoint the expected benefits as well as some limitations
of AI in the area of new anticancer drug discovery and in the clinical development of them
(Figure 1).
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Figure 1. Different stages of AI-assisted in silico drug development. 

2. AI and Preclinical Anticancer Drug Development 
AI can potentially radically transform clinical trial design and significantly impact 

preclinical drug development in several respects [6]. Among multiple advances conferred 
by AI, there is the possibility to more rigorously validate the hypotheses emerging from 
tumor profiling, define molecular mechanisms, and finally lead to innovative therapies. A 
review by Bhinder and coworkers [7] shed light on the spectrum of applications conferred 
by AI in oncology within the emerging domains of drug design and drug repurposing. 
Central to the applications conferred by AI in preclinical drug development are the do-
mains of molecular screening and target identification thanks to the use of traditional ma-
chine learning and neutral networks. More precisely and regarding drug design, AI may 
generate in silico-designed molecules and analogs with given properties. AI has spawned 
a panel of potential new targets produced on the basis of CRISPR-based technology, of-
fering a broad spectrum of targeted drugs with, interestingly, the anticipation of resistance 
mechanisms [8]. Protein structure prediction constitutes a complex domain of biology of-
ten requiring a computational approach. This area has been a challenge for scientists for 
many years. Broad potential for structure-based drug discovery springs from using Al-
phaFold2 (AF2), which is an AI-system that can predict 3D structures of proteins from 
amino acid sequences with atomic-level accuracy. A recent review by Yang Z et al. pointed 
to some limitations of AF2 prediction with particular relevance to the domain of anti-
cancer therapy [9]. For instance, AF2 is unable to correctly predict proteins with multiple 
domains like transmembrane receptors, although it is clear that this type of target is a key 
component in the armamentarium of anticancer drugs. AF2 is not designed to predict the 
shape-changing of proteins in interaction with targeted drugs and AF2 performs poorly 
in predicting the effects of mutations on the protein structure. A positive point is the de-
velopment of vector machine models that make it possible to predict pharmacokinetic 
properties, blood–brain barrier permeability, and intestinal absorption for anticancer 
drugs [7]. AI also offers the possibility to repurpose drugs beyond their existing medical 
indications, thus providing an original and economical alternative to conventional drug 
discovery [7]. 

However, we must keep in mind that there is historical evidence that many major 
drugs, in opposition to what AI can rationally generate, have been discovered fortuitously 
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2. AI and Preclinical Anticancer Drug Development

AI can potentially radically transform clinical trial design and significantly impact
preclinical drug development in several respects [6]. Among multiple advances conferred
by AI, there is the possibility to more rigorously validate the hypotheses emerging from
tumor profiling, define molecular mechanisms, and finally lead to innovative therapies. A
review by Bhinder and coworkers [7] shed light on the spectrum of applications conferred
by AI in oncology within the emerging domains of drug design and drug repurposing.
Central to the applications conferred by AI in preclinical drug development are the domains
of molecular screening and target identification thanks to the use of traditional machine
learning and neutral networks. More precisely and regarding drug design, AI may generate
in silico-designed molecules and analogs with given properties. AI has spawned a panel
of potential new targets produced on the basis of CRISPR-based technology, offering a
broad spectrum of targeted drugs with, interestingly, the anticipation of resistance mech-
anisms [8]. Protein structure prediction constitutes a complex domain of biology often
requiring a computational approach. This area has been a challenge for scientists for many
years. Broad potential for structure-based drug discovery springs from using AlphaFold2
(AF2), which is an AI-system that can predict 3D structures of proteins from amino acid
sequences with atomic-level accuracy. A recent review by Yang Z et al. pointed to some
limitations of AF2 prediction with particular relevance to the domain of anticancer ther-
apy [9]. For instance, AF2 is unable to correctly predict proteins with multiple domains like
transmembrane receptors, although it is clear that this type of target is a key component in
the armamentarium of anticancer drugs. AF2 is not designed to predict the shape-changing
of proteins in interaction with targeted drugs and AF2 performs poorly in predicting the
effects of mutations on the protein structure. A positive point is the development of vector
machine models that make it possible to predict pharmacokinetic properties, blood–brain
barrier permeability, and intestinal absorption for anticancer drugs [7]. AI also offers the
possibility to repurpose drugs beyond their existing medical indications, thus providing an
original and economical alternative to conventional drug discovery [7].

However, we must keep in mind that there is historical evidence that many major
drugs, in opposition to what AI can rationally generate, have been discovered fortuitously
through random investigations of organisms; this is the so-called phenomenon of serendip-
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ity. As a historical illustration of serendipity and drug discovery, in 1962, there was the
judicious observation that the presence of valproic acid, used as a solvent in cough syrups,
provided a significant decrease in the number of seizures in epileptic patients, thus opening
up an unanticipated window in the domain of anti-epileptic drugs [10]. Serendipity, thus,
proves the role of chance in the identification of drugs of potentially great value in oncology.
A typical example of what serendipity can offer is the unexpected discovery of cisplatin
in the 1960s when a magnetic field produced by platinum electrodes was found to inhibit
E. coli division [11,12]. This observation opened up a wide range of clinical applications
covering cisplatin and its active analogs. As advocated by Louis Pasteur, chance favors
the prepared mind. There may be some concerns that AI, by systematically assisting every
step in drug development, could dampen some aspects of our scientific awareness and,
thus, scale back certain individual abilities to maintain a prepared mind able to grasp an
unexpected spurt of serendipity. Hence, as advocated by Lavazza et al., there is currently
the risk that human creativity, imagination, and even divergence from AI logic might be
discouraged [13].

3. AI and Clinical Trial Development

AI has the potential to improve the setting of clinical trials in several respects. First, the
considerable progress offered by AI in cancer imaging and diagnosis should automatically
produce a positive echo in clinical trial development [14]. Another advantage that AI has in
clinical research is the simplification and speed of patient recruitment [15], particularly with
the recent introduction of Chatbots like GPT-4 [16]. A systematic review and meta-analyses
(50,000 patients and 19 data sets) have reported on the use of AI for cancer clinical trial
enrollment [17], confirming the potential capacities of AI, whose performance in clinical
trial enrollment is comparable, if not superior, to manual screening [15]. Exploiting big data
and utilizing AI may further accelerate knowledge acquisition. Indeed, in oncology, clinical
trials have markedly evolved, shifting from tumor-type-centered approaches to molecular
classification and histology-diagnostic trials, with innovative, new clinical trial designs,
such as umbrella or basket trials, and personalized combination treatment strategies tailored
to individual biomarker profiles. AI should facilitate multiple data for their acquisition
and treatment. However, it must be kept in mind that prospective clinical validation
of AI-generated algorithms is necessary to ensure that the true improvement (including
automated imaging and molecular data treatment) generated by AI holds up under various
distribution shifts [18].

In cancer treatment, there is currently great enthusiasm for the development and
clinical applications of cancer immunotherapy. This may, however, constitute a potential
problem. With immunotherapy by checkpoint immunological inhibition, the difficulties
lie mainly in trial design redundancy, leading to a ‘Wild West’ in drug development that
features a complex interaction between commercial sponsors, clinical trials, and redundant
development plans [19]. This problem is more widely encountered when considering
the development of kinases inhibitors for the main oncogenic pathways [18]. There is,
in this context, a true sprouting of the so-called me-too drugs where the benefit for the
patient versus the one for drug companies is often hard to distinguish for the scientific,
therapeutic eye. It is clear that AI should be able to markedly improve this situation
and bring answers and innovative solutions to this specific context. For instance, as
previously underlined by our group [20], the setting up of in silico trials could be an
interesting option. In silico clinical trials take advantage of the modelisation of cumulated
clinical experience and biological data pertaining to previously developed compounds that
belong to the same category of drugs. Treatment design can also benefit from an in silico
development strategy. For instance, Bajard et al. [21] compared seven experimental designs
for randomized clinical trials using in silico simulations. The objective of the study was to
show that in silico simulation could assist in the selection of the experimental design for a
future clinical trial in terms of power and accuracy of the estimation of treatment effects.
It is important to note that the conventional rules for drug development are becoming
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inadequate considering the limited number of patients available for therapeutic trials in the
field of immunotherapy; for instance, as there is a wide range of potentially active schedules
to test with, in particular, multiple combinations to take into consideration. In this context,
there is a real risk in a conventional therapeutic trial setting of missing an opportunity
to highlight a particularly active drug combination because of the limited number of
patients. In this respect, compared to conventional trial design and conduct, in silico trials
would incorporate far fewer but more informative patients [22] and could be carried out
more quickly, at a lower cost. In short, the general idea behind in silico trials is to project
patient responses and outcomes by capturing individual critical parameters from a limited
number of patients and incorporating this information into an AI-designed model built
on cumulated anterior data gained using similar drugs. Compared to traditional models,
AI-designed models, mainly based on machine learning and deep-learning algorithms,
confer advantages of great flexibility in relation to the volume of data that can be analyzed.
They are also disadvantages such as overfitting or underfitting. In some cases, these models
may also be too complex for a clear interpretation. There is also the possible problem
of unbalanced data whose proportions by class are uncertain. Globally, this promising,
achievable strategy calls for changes on the part of health authorities in the currently strict,
more or less rigid, criteria for clinical validation. In general terms, AI could also make it
possible to avoid duplicate development programs as duplication may erode the resources
necessary for true innovation, which constitutes one of the main motivations for patients
to participate and for clinicians to accept clinical trial proposals [19]. Finally, it appears
essential that those involved in clinical research, whether in industry or academia, are
conscious of this unavoidable methodological evolution based on AI and incorporate it in
future strategies for anticancer drug development.

So far, we have considered AI-assisted in silico clinical trials from the angle of in-
cluding a limited number of patients in a trial that incorporates cumulated, modelised
knowledge gained from a large set of patients previously treated in similar conditions.
Another complementary approach to in silico clinical trials consists of recruiting totally sim-
ulated patients and applying given changes in representative parameters such as biological
constants or tumor characteristics. In such a setting, a report was published on the No-
vadiscovery’s jinkō trial simulation platform [15] which was used to predict AstraZeneca’s
phase III clinical trial FLAURA2 [23]. It is fascinating to note that the simulation took just
one month to set up, whereas the clinical trial lasted 3 years. In fact, the platform was
able to predict that adding chemotherapy to osimertinib in patients with EGFR-mutated,
non-small cell lung cancer significantly increased progression-free survival. An alternative
to simulated patients can be envisaged using big data. By aggregating and structuring
computerized data from patients’ medical records [24,25] and using artificial intelligence
algorithms, it is possible to automatically identify patients eligible for clinical trials and,
thus, create ‘real simulated patients’. This will reduce the duration and cost of therapeutic
trials.

Altogether, there are strong arguments in favor of in silico clinical trial development
in oncology. It, thus, appears necessary for health authorities to thoroughly revise the rules
for setting up clinical trials, incorporating AI and in silico methodology [26]. These rules
will have to include the notion of result reproducibility if they are to be accepted by the
medical and scientific community [27].

4. Perspectives and Conclusions

This position paper highlights the growing place of AI in anticancer drug development,
as it is clear that AI will take over drug design and clinical trial settings. We have pointed
out some of the limitations of AI, such as the unavoidable loss of serendipity as a source
of drug discovery and the relative lack of concrete, pertinent applications for AI-designed
in silico clinical trials when costs for therapeutic innovation in cancer are markedly in-
creasing [28]. This view concurs with recent recommendations made by the FDA [29] and
the EMEA [30,31] on using AI in the entire lifecycle of medicines from drug discovery to
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the post-authorization setting. The EMEA strategy for AI involves several keys points
including the need to leverage digital technology and AI assistance in decision making.
This renders digital innovation capable of exploring, piloting, and developing solutions
and processes across the drug regulation spectrum with the ultimate goal of engaging with
diverse stakeholders like main regulators (FDA). There are other domains where the contri-
bution and performance of AI are particularly eagerly awaited, like emerging technologies
and more accurate representation of patients’ disease stage, including patient-derived
organoids enabling rapid drug-response evaluation [6]. Finally, as Wang and coworkers ad-
vocated [32], we still need to evaluate the accuracy and usefulness of AI-powered systems
in cancer area. In this respect, a recent review by Kumar and coworkers underlines the
importance of reliable AI systems, emphasizing the complexity of developed AI models
which can possibly impact their interpretability [33]. This view is particularly true for
accurately interpreting AI outputs in anticancer drug development, avoiding over-reliance
on potentially flawed results with significant impacts on costs linked to wrong paths. With
emerging big data, AI has the potential to enable innovative trials and faster development
of new trials. Therefore, it offers the possibility, through the creation of ‘digital’ patients, of
lowering risks to human health; this does not, however, spell the end of pharmaceutical
trials on humans, which remain essential.
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