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Abstract: Despite the well-documented health benefits of the probiotic Saccharomyces, its application
in oral health has not been comprehensively assessed. Dental caries is a transmissible disease initiated
by acid production of cariogenic bacteria and yeast, such as Streptococcus mutans and Candida albicans,
on tooth enamel and followed by subsequent enamel demineralization. Here, we investigated the
effect of two Saccharomyces strains (Saccharomyces boulardii and Saccharomyces cerevisiae) on S. mutans–
C. albicans cross-kingdom interactions using a cariogenic planktonic model. Viable cells, pH changes,
and gene expression were measured. S. cerevisiae and S. boulardii inhibited the growth of C. albicans
in dual- and multi-species conditions at 4, 6, and 20 h. Saccharomyces also inhibited C. albicans
hyphal formation. Furthermore, Saccharomyces reduced the acidity of the culture medium, which
usually plummeted below pH 5 when S. mutans and C. albicans were present in the model. The
presence of Saccharomyces maintained the culture medium above 6 even after overnight incubation,
demonstrating a protective potential against dental enamel demineralization. S. boulardii significantly
down-regulated S. mutans atpD and eno gene expression. Overall, our results shed light on a new
promising candidate, Saccharomyces, for dental caries prevention due to its potential to create a less
cariogenic environment marked by a neutral pH and reduced growth of C. albicans.

Keywords: Saccharomyces cerevisiae; Saccharomyces boulardii; Candida albicans; cross-kingdom
interaction; pH; dental caries

1. Introduction

Early childhood caries (ECC) is the most common chronic childhood disease world-
wide [1]. Untreated ECC has a negative impact on the oral health-related quality of
life of children and their families [2,3]. Oral microorganisms are associated with ECC
etiopathogenesis; for example, Streptococcus mutans is the well-known pathogenic bac-
terium responsible for dental caries due to its acidogenicity and aciduric properties [4].
Recent advances in pediatric caries research also revealed the cariogenic role of fungi in
ECC [5–7]. Specifically, Candida albicans has been shown to enhance cariogenicity through
its synergistic interactions with S. mutans in producing acid, forming biofilms, and causing
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more severe caries [5–7]. Additionally, high levels of Candida species have been frequently
reported in children with ECC [8–10].

Conventional measures, including oral hygiene management and pharmaceutical
interventions, have been adopted for ECC prevention and treatment [3,11–13]. However,
children remain at high risk for recurrent caries due to either low adherence to positive
oral hygiene habits or the ineffectiveness of antimicrobial applications [14–16]. Moreover,
a high relapse rate of oral candidiasis occurs among individuals wearing dentures, likely
due to the conducive environment for Candida colonization created by the denture’s sur-
face and the microclimate between the denture and oral mucosa [17,18]. Intriguingly, an
increased adherence of both C. albicans and S. mutans to the denture acrylic base has been
observed [19]. In addition to conventional antimicrobial approaches, alternative treatments,
such as probiotics, have been investigated for their effects on oral health.

Probiotics are non-pathogenic live microorganisms that, when administered in ap-
propriate quantities, can be beneficial to the health of the host [20]. Studies have shown
beneficial effects of probiotic microorganisms in the oral cavity due to their inhibiting the
abundance of pathogens [20]. For example, our previous work demonstrated the ability
of Lactobacillus plantarum 14917 to inhibit the growth of S. mutans and C. albicans and
cariogenic biofilm formation [21,22]. These studies elicited the potential of probiotics to
inhibit cariogenic polymicrobial interactions and prevent ECC. However, the inhibitory
effect of L. plantarum on S. mutans and C. albicans was dependent on a higher dosage of
L. plantarum that poses challenges to clinical application [21]. Thus, given this background,
it is worth exploring the potential of other probiotics in disrupting cariogenic cross-kingdom
interactions.

Saccharomyces boulardii (S. boulardii) and Saccharomyces cerevisiae (S. cerevisiae) are two
closely related strains commonly used as probiotics and as reagents in the preparation of
food and wine. S. boulardii is stable over a wide range of pH levels, temperatures, and
exposures to bile salts and gastrointestinal enzymes [23]. S. boulardii is also incapable
of promoting antibiotic resistance, as the exchange of antibiotic-resistant genes between
fungi and bacteria is unlikely [24,25]. Moreover, S. boulardii is absent from the natural
gut microbiota but has been extensively studied in several gastrointestinal and systemic
diseases. For example, studies have shown evidence that S. boulardii can prevent antibiotic-
associated diarrhea [26] and prevent Clostridium difficile-associated colitis and traveler’s
diarrhea [27,28]. S. boulardii has also demonstrated effectiveness in treating urinary tract
and vaginal yeast infections, high cholesterol levels, lactose intolerance, teenage acne, and
fever blisters [29–31].

Regarding oral health, two randomized controlled clinical studies [32,33] provide sup-
porting evidence of using locally delivered probiotic S. boulardii as an adjunct to mechanical
therapy that is used to manage periodontal disease. Moreover, Deshmukh et al. [34]
assessed the impact of formulations with S. boulardii on oral health and found similar
efficacy between chlorohexidine and probiotic mouthwashes in reducing dental plaque
accumulation and promoting gingival health.

S. cerevisiae, commonly known as brewer’s yeast, is a unicellular fungus [35]. Studies
have revealed the benefits of S. cerevisiae strains to both systemic and oral health. For
example, daily supplements of S. cerevisiae delivered in single capsules were found to sig-
nificantly reduce gastrointestinal symptoms of irritable bowel syndrome in both mice and
humans [36,37]. S. cerevisiae-based intravaginal treatments also accelerated the clearance of
C. albicans in mice with vaginal candidiasis [38]. Concerning oral health, administration
of S. cerevisiae in the oral cavity has been shown to decrease C. albicans load and virulence
in mice infected with oropharyngeal candidiasis [39]. Moreover, Premanathan et al. [40]
observed a shorter recovery time from oral candidiasis in patients treated with topically
applied S. cerevisiae.

Interestingly, S. cerevisiae shares several genes with S. boulardii that are involved
in probiotic phenotypes [41]. These genes include HSP150 and YGP1, which regulate
responses to stress and acidic pH tolerance; HSP26 and SSA4, which regulate heat responses;
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and ARO9 and ARO8, which are involved in the biosynthesis of aromatic alcohols, such as
phenylethanol and tryptophol [41,42]. These aromatic alcohols can inhibit the virulence of
C. albicans [43]. Moreover, S. boulardii has been reported to secrete medium-chain fatty acids,
mainly capric acid, with bioactivity against C. albicans hyphae and biofilm formation [44,45].

With the above-mentioned characteristics of S. cerevisiae and S. boulardii, these two
species demonstrate the potential to influence cariogenic microorganisms. However, the
effect of S. boulardii and S. cerevisiae on cariogenic S. mutans and C. albicans cross-kingdom
interactions has not been assessed. Our study aims to fill this gap by examining the effect
of probiotic S. boulardii and S. cerevisiae on the growth of S. mutans and C. albicans in a
cariogenic planktonic model that mimics a high-caries-risk clinical condition. The study
results will provide insight into the influence of S. cerevisiae and S. boulardii on cariogenic
cross-kingdom microorganisms and expand preventative and treatment options for dental
caries, such as oral application of yeast probiotics for ECC.

2. Materials and Methods
2.1. Bacterial Strains and Starter Preparation

The microorganisms used in the study were S. mutans UA159, C. albicans SC5314,
S. boulardii ATCC MYA796, and S. cerevisiae ATCC 204508. C. albicans, S. mutans, and
Saccharomyces were recovered from frozen stock using YPD agar (BD Difco™, San Jose, CA,
USA, 242720), blood agar (TSA with sheep blood, Thermo Scientific™, Waltham, MA, USA),
and Yeast mold agar (BD Difco™, 271210), respectively. After 48 h incubation at 37 ◦C,
3–5 colonies of each species were inoculated into 10 mL of broth for overnight incubation
(5% CO2, 37 ◦C). C. albicans, S. boulardii, and S. cerevisiae were cultured in YPD broth (BD
Difco™, 242820); S. mutans was cultured in TSBYE broth (3% Tryptic Soy, 0.5% Yeast Extract
Broth, BD Bacto™ 286220 and Gibco™ 212750, Thermo Scientific™, Waltham, MA, USA)
with 1% glucose. The next day, 0.5 mL of the overnight starters was added to glass tubes
containing fresh broth and incubated for 3–5 h until they reached the mid-exponential
phase with desirable optical density. The morning starters were then ready to be used for
the preparation of the planktonic model described below.

2.2. Planktonic Model

Interactions between C. albicans, S. mutans, and Saccharomyces species were first evalu-
ated in planktonic conditions. The inoculation quantity of C. albicans (103 CFU/mL) and
S. mutans (105 CFU/mL) was chosen to mimic a high-caries-risk condition in the clinical
setting. Individuals who carry more than 105 CFU/mL of S. mutans in saliva are considered
to be at high risk for caries [46], while individuals who have more than 400 CFU/mL of
C. albicans in saliva could be diagnosed with oral candidiasis using the laboratory stan-
dard [47]. The inoculation quantity of the two Saccharomyces species (107 CFU/mL) is in the
lower dose range of the probiotics used in commercial probiotic products (109–1010 CFU as
a single dosage).

Mono-species, dual-species, and multi-species models were used to assess the interac-
tion between C. albicans, S. mutans, and Saccharomyces (either S. boulardii or S. cerevisiae). The
planktonic models used in this study consisted of three types: mono-species, dual-species,
and multi-species conditions. In the mono-species model, one of the following microorgan-
isms: C. albicans, S. mutans, or Saccharomyces was incubated in 10 mL of TSBYE broth with
1% glucose for 20 h at 37 ◦C and 5% CO2. In the dual-species model, either C. albicans or
S. mutans was co-cultured with one of the Saccharomyces species for 20 h under the same
conditions. In the multi-species models, C. albicans, S. mutans, and one of the Saccharomyces
species were mixed and cultivated for 20 h under the same circumstances. At 0, 2, 4, 6, and
20 h, the colony-forming unit per milliliter (CFU/mL) and culture media pH value were
measured for each model.

To evaluate the inhibition of pseudohyphae and hyphae formation in C. albicans at
selected time points, we placed a quantity of 20 µL of the culture medium on a glass slide
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and immediately observed it under a light microscope (Olympus BX43, 214, Tokyo, Japan)
with a 100× oil objective (Olympus UPlanFL N 100×, Tokyo, Japan).

2.3. PCR and Real-Time Quantitative PCR (Real-Time qPCR)

PCR was performed in a thermal cycler (Applied Biosystems, Waltham, MA, USA),
following the instructions provided by the manufacturer to assess the amplification of
genes of interest. The primers used in this study are shown in Table S1 [48]. First, the
yeast DNA of Saccharomyces species and C. albicans was collected from their respective
overnight cultures (15 h). DNA extractions were performed using the MasterPure Yeast
DNA Purification Kit (LGC Genomics, Berlin, Germany). The PCR was performed in
a 50-volume containing 25 µL PCR Master Mix (2×) (Thermo Fisher Scientific, Bermen,
Germany), 1 µL DNA template, 5 µL for each primer, and 14 µL nuclease-free water. The
reaction was performed at 95 ◦C for 5 min, followed by 35 cycles of denaturation at 95 ◦C
for 15 s, annealing at 55 ◦C for 30 s, and polymerization at 72 ◦C for 1 min, with one final
extension cycle at 72 ◦C for 10 min. The product of the PCR was run on a pre-cast 2%
agarose gel (E-gel® Ex agarose gel from Invitrogen (Carlsbad, CA, USA) along with a DNA
ladder (E-gel® 1 kb plus DNA ladder, Invitrogen, Carlsbad, CA, USA). The gel was run for
10 min and then visualized under UV light, and the picture was saved for documentation.

Real-time qPCR was conducted to validate the expression of particular genes related
to C. albicans and S. mutans virulence factors or viability. The primers used in this study
are shown in Table S1 in Supplementary Materials. First, cellular RNAs were extracted
from 4 mL mixture at 20 h, and 1–4 µg of purified RNA was converted to synthesize
cDNAs with an iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Inc., Hercules, CA,
USA). The resultant cDNA and negative controls were quantitatively amplified using a
QuantStudio™ 3 Real-Time PCR System (Thermo Fisher Scientific, Wilmington, DE, USA)
and applied Biosystems™ PowerTrack™ SYBR Green Master Mix. A 20-volume PCR
reaction comprised 2 µL cDNA template, 1 µL for each primer, 10 µL 2× SYBR-Green mix
(SYBR-Green and Taq DNA Polymerase), and 6 µL nuclease-free water. To determine gene
expression, three replicates for each round were set up, and relative gene expressions were
calculated using the comparative ∆∆Ct method. Unique core genes of S. mutans and C.
albicans, namely, gyrA and ACT1, respectively, were utilized as housekeeping genes.

2.4. Statistical Analysis

To compare the live abundance of C. albicans, S. mutans, and Saccharomyces species in
the planktonic models, the CFU/mL values were first converted into natural log values for
statistical purposes. Of note, zero values were retained as zero. Normality tests were used
to evaluate the data distribution of variables, including pH value, natural log-converted
CFU/mL value, and 2−∆∆CT (real-time qRT-PCR value). To compare the difference between
groups when data followed a normal distribution, the Student’s t-test for two groups and
one-way ANOVA for more than two groups followed by a post hoc test were performed.
Nevertheless, if data were not normally distributed, we used the Mann–Whitney U test to
compare the results of the two groups and the Kruskal–Wallis test to compare the results
for more than two groups. The statistical analysis was performed using SPSS Version 24
(SPSS Statistics for Windows, Version 24.0; IBM, Armonk, NY, USA) with a significance
level of p < 0.05.

3. Results
3.1. Growth Profile of Saccharomyces Species

The growth curves of S. cerevisiae and S. boulardii in YPD or TSBYE with 1% glucose
are shown in Figure 1. During the initial 8 h, S. cerevisiae grew faster than S. boulardi, and
both reached a plateau at 10 h. S. cerevisiae showed similar growth curves in YPD and
TSBYE with 1% glucose (Figure 1A). However, the growth of S. boulardi in TSBYE with 1%
glucose was lower than the growth in YPD at 4 and 20 h (Figure 1B).
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Figure 1. Growth curves of planktonic Saccharomyces cerevisiae (S. cerevisiae) (A) and Saccharomyces
boulardii (S. boulardii) (B) in two culture mediums: YPD and TSBYE with 1% glucose. Data are
presented as means (± standard deviations) of three independent experiments performed in triplicate.
* Indicates a significant difference in CFU/mL between different culture media, with p < 0.05.

3.2. The Impact of Saccharomyces Species on C. albicans and S. mutans in the Dual-Species
Conditions

Both S. cerevisiae and S. boulardii significantly inhibited the growth of C. albicans by
1 log at 4 h, 2 logs at 6 h, and 6 logs at 20 h (Figure 2A). S. boulardii significantly inhibited
the growth of S. mutans at 6 and 20 h. S. cerevisiae significantly inhibited the growth of
S. mutans at 2 and 4 h but failed at a later stage (Figure 2B). In contrast to the inhibited
growth of C. albicans and S. mutans, S. boulardii grew better in the presence of C. albicans
or S. mutans at 20 h (Figure 2C). However, the growth of S. cerevisiae in the dual-species
conditions declined at 20 h (Figure 2D), which may explain the loss of its inhibitory effect
on S. mutans at a later stage.
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Figure 2. Interactions between Saccharomyces species and C. albicans or S. mutans in dual-species
conditions. (A) The growth of C. albicans cultured with or without Saccharomyces species. (B) The
growth of S. mutans cultured with or without Saccharomyces species. (C) The growth of S. boulardii
cultured with or without C. albicans/S. mutans. (D) The growth of S. cerevisiae cultured with or without
C. albicans/S. mutans. * Indicates a significant difference in CFU/mL between mono- and dual-species
conditions, with p < 0.05. C. a: C. albicans; S. m: S. mutans; S. c: S. cerevisiae; S. b: S. boulardii.
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3.3. The Impact of Saccharomyces Species on C. albicans and S. mutans in the Multi-
Species Conditions

Intriguingly, both S. cerevisiae and S. boulardii significantly inhibited the growth of C.
albicans at all time points (2, 4, 6, and 20 h) in the multi-species conditions (Figure 3A).
However, Saccharomyces species had a dampened inhibitory effect on S. mutans (Figure 3B).
Compared to the C. albicans–S. mutans dual-species control, S. mutans grew faster when
together with Saccharomyces at the early stage; however, it grew with a reduced speed
between 12 and 20 h, although the viable counts at 20 h between the groups have no
statistical significance (p > 0.05). Between the two Saccharomyces species in the multi-species
model, S. cerevisiae had a slower growth speed than S. boulardii at 2 h, while it had a faster
growth rate at the mid and late stages (6–20 h) (Figure 3C).
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Figure 3. Interactions among Saccharomyces species, C. albicans, and S. mutans in multi-species
conditions. (A) The growth of C. albicans in control (C. a + S. m) and Saccharomyces species-treated
groups. (B) The growth of S. mutans in control (C. a + S. m) and Saccharomyces species-treated groups.
* Indicates that p < 0.05 when comparing control with Saccharomyces species-treated groups. (C) The
growth of Saccharomyces species in multi-species conditions. * Indicates that p < 0.05 when comparing
S. cerevisiae- and S. boulardii-treated groups.

3.4. Compositional Changes in Saccharomyces Species, C. albicans, and S. mutans in the
Multi-Species Model

Next, we assessed the compositional changes in the multi-species model over time.
When S. cerevisiae and C. albicans grew together, S. cerevisiae showed its dominance from the
beginning to the end due to the initial concentration of S. cerevisiae (107 CFU/mL) being
higher than that of C. albicans (103 CFU/mL) (Figure 4A). When S. cerevisiae and S. mutans
grew together, the initial concentration of S. mutans was 105 CFU/mL. S. cerevisiae still
seized its dominance from 2 h to 6 h; however, until 20 h, S. mutans was able to prevail after
a fierce competition with S. cerevisiae (Figure 4B).
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Next, when S. cerevisiae grew with C. albicans and S. mutans in the multi-species con-
dition, a compositional switch occurred. As shown in Figure 4C, at the beginning, S.
cerevisiae took the lead due to its highest initial concentration. Shortly, S. mutans displayed
rapid growth rates, took over the race, and became the dominant species from 6 h to 20 h.
C. albicans’ growth remained low over time. Intriguingly, compared to the S. mutans–S.
cerevisiae dual-species condition, S. mutans in the multi-species model, when C. albicans was
present, showed much stronger competitiveness against S. cerevisiae. This indicates an inter-
species synergistic relationship between C. albicans and S. mutans, as well as synchronous
antagonism between S. cerevisiae and S. mutans. A similar scenario was seen in the dual-
and multi-species conditions when S. boulardii was present (Figure 4D–F).

3.5. Dynamic Changes in Culture pH in the Mono-, Dual-, and Multi-Species Conditions

Figure 5 shows the effect of Saccharomyces species on the environmental pH in the
mono-, dual-, and multi-species models. Overall, the culture medium pH was lowered over
time in all groups, particularly with a significant drop to pH 4.0 at 20 h in the S. mutans
mono-species and C. albicans–S. mutans dual-species conditions. Significantly, the addition
of either S. cerevisiae or S. boulardii neutralized the acidic environment and maintained the
culture pH at 6.0 over the 20 h period, which is above the well-known critical pH of 5.5 for
enamel demineralization.

3.6. Regulation of S. mutans and C. albicans Virulence Genes by Saccharomyces Species

To evaluate the differential gene expression between the control and the experimental
conditions with added Saccharomyces species, qPCR was conducted at 20 h. To minimize
the bias from gene expression crosstalk between C. albicans and Saccharomyces species, we
first examined the expressions of ACT1, EGR4, ECE1, and CHT2 in C. albicans, S. cerevisiae,
or S. boulardii. PCR amplification products confirmed that the above genes are expressed
by C. albicans only, not by any of the Saccharomyces species (Figure S1).
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Figure 5. Dynamic changes in pH in the culture medium. (A) pH in mono-species condition and
S. boulardii present dual-species condition. * Indicates that p < 0.05 when comparing dual-species
(S. b + S. m) with mono-species (S. m) conditions at 20 h. (B) pH in mono-species condition and
S. cerevisiae present dual-species condition. * Indicates that p < 0.05 when comparing dual-species
(S. c + S. m) with mono-species (S. m) conditions at 20 h. (C) pH in control (C. a + S. m) and
Saccharomyces species-treated groups. * Indicates that p < 0.05 when comparing Saccharomyces species-
treated groups with control at 20 h.

Next, as shown in Figure 6A, compared to the C. albicans–S. mutans dual-species
control, S. boulardii reduced the expression of the S. mutans genes atpD (stress response
gene related to ATPase complex and acid tolerance) and eno (associated with degradation
of carbohydrates via glycolysis) by 1.4-fold (p < 0.01) and 2-fold (p < 0.001), respectively.
In contrast, lacC and lacG, the genes involved in galactose metabolism, were significantly
up-regulated when S. boulardii was added (p < 0.0001). The addition of S. cerevisiae had a
negligible effect on the expression of S. mutans genes.

For C. albicans gene expression (Figure 6B), S. cerevisiae up-regulated the expression of
HWP1 and ECE1, which are associated with hyphal growth, by 27.2-fold and 74.63-fold,
respectively (p < 0.001), whereas S. boulardii significantly up-regulated the expression of
another C. albicans virulence gene, CHT2, which is associated with fungal wall remodeling.
EGR4, however, related to antifungal medication resistance, was not statistically affected
by either S. cerevisiae or S. boulardii.
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Figure 6. Effect of Saccharomyces species on the expression of S. mutans and C. albicans genes in
multi-species model. qRT-PCR was performed for S. mutans (A) and C. albicans (B) genes of interest
for mixed-species culture at 20 h. Relative mRNA levels were presented as ratios relative to control
group (C. a + S. m). Results are reported as the means ± SDs of three independent experiments.
p values were determined by one-way ANOVA with post hoc tests. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.

3.7. Inhibition of C. albicans Hyphae/Pseudohyphae Formation by Saccharomyces Species

Inhibition of Candida hyphae or pseudohyphae formation was assessed by observing
the culture mixture at 0 h, 6 h, and 20 h under a light microscope. In the C. albicans–S. mutans
dual-species condition, C. albicans had a typical Candidal pseudohyphae formation at 6 h
and elongated hyphal formations at 20 h. In comparison, the addition of S. cerevisiae or S.
boulardii inhibited the growth of C. albicans in both yeast forms and the transition from yeast
to hyphae or pseudohyphae form. The quantitative reduction in C. albicans by S. cerevisiae
or S. boulardii observed in Figure 7 is consistent with the growth inhibition measured by
CFUs.
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at ×100 magnification. C. albicans that contains yeast-form, pseudohyphal, and hyphal cells can
be found in control group (C. a + S. m) but not in Saccharomyces species-treated groups. These are
representative images of multiple fields of view. Scale bars = 10µm.

4. Discussion

While various treatment options have been employed to control ECC, mainly by
targeting cariogenic pathogens [21,22], limited studies have assessed probiotic yeast in
interrupting cariogenic bacteria–fungi cross-kingdom interactions. Our study revealed
novel findings that the oral health effects of S. boulardii and S. cerevisiae are not solely
limited to inhibition of the growth of oral pathogens, such as C. albicans, but also extend
to modulation of culture medium pH, influence on C. albicans and S. mutans virulence
gene expression.

Kellis et al. and Wolfe proposed a hypothesis suggesting that the fermentative ca-
pability of this yeast complex might have developed during the period when sugar-rich
fruit-bearing plants became prevalent in the environment [49,50]. The sequencing of the
S. cerevisiae genome partially supports this theory, as it uncovered substantial genetic re-
dundancy, with a significant number of genes dedicated to sugar metabolism [51]. Today,
S. boulardii, a probiotic yeast, is well known to interact with its host and exhibits antimi-
crobial activity and antitoxin and immune regulatory effects and provides various health
benefits in humans [52].

In our models, the inhibitory effect of Saccharomyces species on the growth of
C. albicans was notable in both the dual- and multi-species conditions. In a study con-
ducted by Krasowska et al., it was demonstrated that introducing live S. boulardii cells into
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a C. albicans culture has an adverse impact on two key virulence factors of this pathogenic
fungus. S. boulardii released factors into the medium that exhibited antagonistic effects
on both the adhesion and filamentation of C. albicans [44]. A S. boulardii strain has been
observed to hinder the adhesion of C. albicans to mucosal cell lines. Additionally, its extract
diminishes cytokine-induced inflammatory responses in Caco-2 cells, evident through the
suppression of IL-8 expression [53]. S. boulardii strains have also been identified to reduce
filamentation, impede biofilm formation, and inhibit the translocation of C. albicans [44,54].
In our study, both S. cerevisiae and S. boulardii significantly inhibited the growth of C. albi-
cans at all the time points, especially in the multi-species conditions. The competition for
resources was apparent. Saccharomyces species competed with C. albicans and S. mutans
for available nutrients. By utilizing sugars in the environment, Saccharomyces may limit
the substrate available for the acid production by C. albicans and potentially reduce the
metabolic activities of C. albicans [55]. The reduced inhibitory effect of Saccharomyces on the
growth of S. mutans may be attributed to the slower growth rate of Saccharomyces compared
to that of S. mutans. We also speculate that in a mixed environment, Saccharomyces species
may demonstrate less competitiveness in utilizing available nutrients, resulting in a better
proliferation of S. mutans.

Saccharomyces species, including S. boulardii and S. cerevisiae, are known for their
fermentation activities. They metabolize sugars and generate organic acids (such as acetic
acid and lactic acid), along with carbon dioxide and ethanol [23]. This genus can be
characterized as the “sugar fungus,” particularly since its members naturally thrive in
substrates rich in sweetness, such as nectar and fruits. This may explain their similar
growth curves in YPD and TSBYE with 1% glucose. The optimum pH for the growth of
Saccharomyces species is 4.5–6.5, and oxygen is important to maintain viability, but they
survive under microaerophilic conditions [56]. C. albicans inhabits various ecological niches
within the host and needs to endure a broad spectrum of environmental pH levels. The
primary regulator of cytosolic pH in fungi is the plasma membrane H+-ATPase Pma1p.
The neutral pH maintained in the culture medium when S. boulardii and S. cerevisiae
interacted with S. mutans and C. albicans could be attributed to several potential mechanisms,
detailed below.

Firstly, Saccharomyces may limit the substrate available for the acid production by
S. mutans and potentially reduce the metabolic activities of C. albicans [55]. Saccharomyces
species have been reported to produce antimicrobial compounds that could potentially
inhibit the growth or metabolic activities of S. mutans and C. albicans, indirectly contributing
to pH regulation [57]. Secondly, Saccharomyces species could also influence the expression
or activity of these virulence factors, indirectly impacting the acid production and biofilm
formation of S. mutans and C. albicans [44]. This is verified by our PCR results, which
showed that S. boulardii significantly reduced the virulence gene expression of S. mutans
(atpD and eno). The gene atpD is acid-adaptive and related to the acid stress tolerance
response, while eno is related to the degradation of carbohydrates via glycolysis. Lastly,
the capability of Saccharomyces species for biofilm formation and matrix production may
indirectly impact the local pH environment [23].

The expressions of several genes associated with S. mutans virulence were altered
in the multi-species models when Saccharomyces species were added. S. boulardii up-
regulated two virulence genes of S. mutans, lacC and lacG. The tagatose 6-phosphate
kinase (lacC) and intracellular 6-phospho-β-galactosidase (lacG) both participated in galac-
tose metabolism by S. mutans [58]. According to Liu et al., the S. boulardii strain can
assimilate galactose, although at a significantly lower rate compared to other S. cerevisiae
strains [59]. This lower galactose utilization by S. boulardii was attributed to a single point
mutation, G1278A. However, the G1278A mutation enables S. boulardii cells to grow on
glucose [59]. When S. boulardii and S. mutans were co-cultured for carbon source utiliza-
tion, to maintain energy efficiency and competitiveness, S. boulardii selectively utilized
more rapidly metabolizable glucose, while S. mutans favored galactose. This may ex-
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plain why S. mutans expressed higher levels of galactose metabolism-related genes with
S. boulardii rather than with S. cerevisiae.

Finally, we found that Saccharomyces has a strong inhibitory effect on the crucial
virulence factors of C. albicans, i.e., the ability to form filaments. It is a distinctive ability of
C. albicans that it can exist in three phases, budding yeast, pseudohyphae, and hyphae [60].
C. albicans is recognized for adopting a filamentous morphology when exposed to serum at
37 ◦C, and this capability is essential for the virulence of the organism. The adaptability
of the mycelial form is a crucial factor influencing drug resistance and plays a significant
role during the infection stage [61]. Moreover, the transition of C. albicans from yeast
to hyphae aids the fungi in evading macrophage phagocytosis, thereby elevating the
probability of invading host tissues and causing more extensive damage [62]. In this study,
hyphae/pseudohyphae formation of C. albicans was assessed in the C. albicans–S. mutans
dual-species condition; C. albicans had a typical pseudohyphae formation at 6 h and
elongated hyphal formations at 20 h. The addition of S. cerevisiae or S. boulardii inhibited
the growth of C. albicans in both yeast form and the transition from yeast to hyphae or
pseudohyphae form. Like our current investigation, Krasowska et al. [44] also illustrated
that the suppressive impact of live S. boulardii cells on the filamentation of C. albicans strains
is directly correlated with the quantity of S. boulardii added. Live cells of S. boulardii and the
extract from its culture filtrate exhibited a potent inhibitory influence on the filamentation
and biofilm formation of C. albicans. It is worth noting that despite the reduction in
C. albicans hyphae formation by S. cerevisiae or S. boulardii observed under the microscope,
the virulence gene expression of C. albicans (HWP1, ECE1, and CHT2) was found to be
up-regulated by Saccharomyces species. This discrepancy between the gene expression and
the observed hyphae formation reduction phenomena could be explained by the fact that
S. cerevisiae or S. boulardii might have impacted the translation and protein synthesis process,
which deserves further investigation in future studies.

Overall, our results provided evidence to fill an important gap in dental caries research
by examining the effect of probiotic S. boulardii and S. cerevisiae on the growth of S. mutans
and C. albicans in a cariogenic planktonic model that mimics a high-caries-risk clinical
condition. The following limitations are recognized with the intriguing findings: Although
our study results indicated the interactions between Saccharomyces species, S. mutans and
C. albicans, other cariogenic factors, such as biofilm formation and enamel demineraliza-
tion, need to be assessed in biofilm and animal models. Second, our study introduced
glucose as the sugar challenge in the planktonic model and future studies should assess
other forms of carbohydrates, such as sucrose. Third, we used qRT-PCR to assess several
virulence genes; however, high-throughput methods such as RNA sequencing would offer
more comprehensive understanding of the global transcriptomic changes in S. mutans and
C. albicans when they interact with Saccharomyces species, which we plan to assess in future
investigations. Fourth, different methods for probiotic application, including oral rinse,
and local and topical delivery have been reported in clinical trials. Animal studies and
human clinical trials are warranted to further assess the preventive and therapeutic effects
of probiotic S. boulardii and S. cerevisiae.

5. Conclusions

To the best of our knowledge, this is the first study to demonstrate the inhibitory
effect of S. cerevisiae and S. boulardii on the growth of C. albicans in a cariogenic planktonic
model. The results shed light on a new promising candidate, Saccharomyces, for dental
caries prevention due to its potential to create a less cariogenic environment marked by a
neutral pH and reduced growth of common cariogenic pathogens.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics16020215/s1. Table S1: Primers used in PCR;
Figure S1: PCR amplification products obtained with four types of primers.
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