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Abstract: Toxoplasma gondii is an intracellular parasitic protozoan with a high infection rate in mam-
mals, including humans, and birds. There is no effective vaccine, and treatment relies on antiparasitic
drugs. However, existing antiprotozoal drugs have strong side effects and other problems; therefore,
new treatment approaches are needed. Metal nanoparticles have attracted increased interest in the
biomedical community in recent years because of their extremely high surface area to volume ratio
and their unique reactivity that could be exploited for medicinal purposes. Previously, we con-
firmed the anti-Toxoplasma effects of gold, silver, and platinum nanoparticles, in a growth inhibition
test. Here, we asked whether the anti-Toxoplasma effect could be confirmed with less expensive
metal nanoparticles, specifically iron oxide nanoparticles (goethite and hematite). To improve the
selective action of the nanoparticles, we modified the surface with l-tryptophan as our previous
findings showed that the bio-modification of nanoparticles enhances their selectivity against T. gondii.
Fourier-Transform Infrared Spectroscopy (FTIR) analysis confirmed the successful coating of the iron
oxide nanoparticles with l-tryptophan. Subsequently, cytotoxicity and growth inhibition assays were
performed. L-tryptophan-modified nanoparticles showed superior anti-Toxoplasma action compared
to their naked nanoparticle counterparts. L-tryptophan enhanced the selective toxicity of the iron
oxide nanoparticles toward T. gondii. The bio-modified nanoparticles did not exhibit detectable host
cell toxicity in the effective anti-Toxoplasma doses. To elucidate whether reactive oxygen species
contribute to the anti-Toxoplasma action of the bio-modified nanoparticles, we added Trolox antiox-
idant to the assay medium and found that Trolox appreciably reduced the nanoparticle-induced
growth inhibition.

Keywords: nanoparticle; parasite; tryptophan

1. Introduction

T. gondii is a protozoan parasite that infects most birds and mammals and causes
the zoonotic disease toxoplasmosis. In the life cycle of Toxoplasma, oocysts expelled from
the terminal host cat by feces or other means enter the bodies of mammals and birds,
where they transform into tachyzoites [1]. T. gondii infects more than one-third of all
humans and is asymptomatic in healthy individuals but causes severe symptoms in the
immunocompromised [2–4]. In addition, if a pregnant woman is infected with T. gondii,
it can cause in utero infection, resulting in miscarriage or birth defects [5–7]. It is also
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the second leading cause of death from food poisoning [8], resulting in many economic
and human losses worldwide. There is no effective vaccine against T. gondii, and the
treatment of infections caused by this protozoan is dependent on antiparasitic drugs.
Pyrimethamine, one of the drugs used to treat toxoplasmosis, is also known to have side
effects [9]. Therefore, a new approach to treatment is required.

We have focused on metal nanoparticles (NPs), which have attracted increased interest
in the biomedical community [10], and have analyzed their antiparasitic effects against
T. gondii. Metal nanoparticles have been the subject of various biological studies due to their
characteristics. Examples include drug carriers for drug transport due to their easy surface
modification and targeting specific molecules in cells due to their high light scattering and
absorption efficiency. Experiments using metal nanoparticles as a therapeutic agent for para-
sitic infections have also been conducted for other parasites as well, indicating the potential
of metal nanoparticles [11]. Metal NPs exhibit different properties than their bulk counter-
parts due to their large surface area relative to their volume [12]; therefore, they are thought
to stimulate the generation of reactive oxygen species in cells and exhibit parasitic activ-
ity [13–15]. The small size of NPs also allows them to penetrate cell membranes, making
them highly reactive. Metal NPs are already being used for biomedical applications [16–18].
Although it has been shown that gold, silver, and platinum metal NPs exhibit antiparasitic
activity [19–22], these are precious metals and are expensive. In this study, we focused on
iron, an inexpensive metal, and asked whether iron oxide NPs exhibit antiparasitic activity
against T. gondii. Iron oxide nanoparticles have a variety of medical applications, including
MRI and cancer therapy [23]. It has also been reported to have no significant side effects un-
der certain conditions [24], leading to this verification as a candidate for an anti-Toxoplasma
drug. We examined three relatively stable iron oxides: goethite, hematite, and magnetite.
Previous studies have also shown that the L-tryptophan coating of metal NPs increases
their anti-Toxoplasma effect [25,26]. Since Toxoplasma has a tryptophan requirement [27–30],
we also investigated whether the l-tryptophan modification of iron oxide NPs enhances the
anti-Toxoplasmic effect.

2. Materials and Methods
2.1. Materials

Goethite NPs (FeO(OH)NP, 60 nm), hematite NPs (Fe2O3NP, 50 nm), and magnetite
NPs (Fe3O4NP, 50–100 nm) were purchased from Future Materialz (Tokyo, Japan). L-
tryptophan and bovine serum albumin (BSA) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) was pur-
chased from Santa Cruz Biotechnology Inc. (Dallas, TA, USA).

2.2. Methods
2.2.1. Parasites

We used T. gondii RH strain 2F in this study. The parasite was maintained by repeated
passages in monolayers of Vero cells (American Type Culture Collection, Manassas, VA,
USA) cultured in Dulbecco’s Modified Eagle’s medium (DMEM; Nacalai Tesque, Kyoto,
Japan) supplemented with 5% (v/v) fetal bovine serum (FBS) and penicillin and strepto-
mycin (100 U/mL; Thermo Fisher Scientific Inc, Waltham, MA, USA). Host cells infected
with T. gondii tachyzoites were passed through a 27 G needle to lyse them. The cell lysates
were then filtered through a 5 µm filter to obtain a tachyzoite suspension free of host cell
debris. The suspension was centrifuged (400× g, 10 min, 23 ◦C), and the supernatant was
removed and suspended in fresh culture medium. Then, the parasite density was measured
by using a hemocytometer and adjusted for in vitro experimental infection analyses.

2.2.2. Cytotoxicity of Metal NPs in Mammalian Cells

By using previously reported methods [16], we maintained HFF cells in DMEM sup-
plemented with 5% (v/v) FCS and penicillin and streptomycin (100 U/mL). Cells were
grown to confluence at 37 ◦C in a 5% CO2 atmosphere. All experiments were performed in
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96-well plates (Nunc) unless otherwise stated. At confluence, cells were trypsinized and
resuspended to the desired cell density. The cells were seeded onto plates at a density of
1.0 × 104 cells/well and incubated for 48 h followed by treatment with various concentra-
tions (between 0.01 and 100 µg/mL) of the NPs (goethite NPs, hematite NPs, and magnetite
NPs). Culture medium lacking the test compounds was added to the control well, and the
medium-only well was used to correct for any background signal. The treated cells were
incubated for 48 h before being subjected to the cell viability assay.

Cell viability was determined using the CellTiter 96® AQueous One Solution Cell
Proliferation Assay kit (Promega, Madison, WI, USA). Briefly, the well plate and its contents
were equilibrated to room temperature. Then, 100 µL of the CellTiter 96® AQueous One
reagent was added to each well. The contents were briefly mixed on an orbital shaker and
then incubated at 37 ◦C in a 5% CO2 atmosphere for 1–4 h. The absorbance signal was
recorded at 490 nm using a microplate reader (GloMax Navigator 96; Promega). The assay
was repeated three times in triplicate. The results are presented as the mean ± standard
error of the mean (SEM; n = 3) of three independent experiments.

2.2.3. In Vitro Growth Inhibition Assessment by Use of Luciferase Reporter Assays

The number of T. gondii tachyzoites was determined by using a luminescence-based
assay of β-galactosidase (β-gal) activity expressed by the parasite strain RH-2F, as described
previously [16]. To obtain a purified parasite suspension for the assays, infected cells were
syringe-released, and the lysates were filtered to remove cell debris.

The growth inhibition assays and in vitro invasion assays were performed as described
elsewhere [26]. For the growth inhibition assay, purified parasite (1 × 104) suspension
was added to growing monolayers and invasion was allowed to occur for 1 h. Then, fresh
medium containing the NPs (reconstituted in culture medium) was added. The monolayers
were then incubated for 48 h. The mock-treated (treated with NP vehicle only; in this case,
culture medium) cells served as a positive control, whereas the medium-only well was
used to correct for any background signal. After the 48 h incubation at 37 ◦C in a 5% CO2
atmosphere, the viability of the RH-2F parasite strain was determined by measuring the
galactosidase expression in a Beta-Glo® Luminescent Assay kit (Promega, Madison, WI,
USA). The assay was performed in triplicate and repeated three times. All experiments
were performed in 96-well optical bottom plates (Nunc; Fisher Scientific, Pittsburgh, PA,
USA) unless otherwise stated.

2.2.4. Tryptophan-Coated Iron Oxide Nanoparticles

Tryptophan was purchased from Sigma-Aldrich (St. Louis, MO, USA). Using previ-
ously reported methods [26], powdered tryptophan was added to DMSO and stirred for
10 min, then goethite and hematite were added, and the mixture was stirred for another
10 min. Then, with the support of the ARIM Support Office of Chitose University of Science
and Technology, the coating was assessed by the use of FTIR spectroscopy to confirm that
it was successful. We determined the concentration of the bio-modified TiO2 NPs by the
use of a gravimetric method.

3. Results
3.1. Optimal Nanoparticle Concentration Assessment

First, to test the growth inhibition of Toxoplasma at NP concentrations that would not
significantly affect host cell viability, toxicity tests were conducted on host cells in the ab-
sence of Toxoplasma using various iron oxide NPs (Figure 1). We found that the survival rate
exceeded 80% at concentrations of 10 µg/mL or less for goethite, hematite, and magnetite,
respectively. Therefore, we used concentrations of ≤10 µg/mL in subsequent experiments.
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Figure 1. In the absence of T. gondii infection, host monolayers were treated with NPs at the effective
anti-T. gondii concentration, and cell viability was determined after a 48 h incubation. HFF was
seeded at a desired density of 4.0 × 104 cells/well. The experiment was conducted three times
independently in triplicate. The data shown are the means ± standard deviation (SD).

3.2. Concentration-Dependent Growth Inhibition by Iron Oxide Nanoparticles

Based on the results obtained from the cytotoxicity test, we conducted a growth
inhibition test at NP concentrations that caused ≤20% toxicity. The relative numbers of
Toxoplasma were significantly reduced at concentrations of ≥10 µg/mL for goethite and
≥1.0 µg/mL for hematite (Figure 2). These results suggest that iron oxide NPs of goethite
and hematite may have growth inhibitory effects on Toxoplasma.

Pharmaceutics 2024, 16, x FOR PEER REVIEW 4 of 10 
 

 

magnetite, respectively. Therefore, we used concentrations of ≤10 µg/mL in subsequent 
experiments. 

 
Figure 1. In the absence of T. gondii infection, host monolayers were treated with NPs at the effective 
anti-T. gondii concentration, and cell viability was determined after a 48 h incubation. HFF was 
seeded at a desired density of 4.0 × 104 cells/well. The experiment was conducted three times inde-
pendently in triplicate. The data shown are the means ± standard deviation (SD). 

3.2. Concentration-Dependent Growth Inhibition by Iron Oxide Nanoparticles 
Based on the results obtained from the cytotoxicity test, we conducted a growth in-

hibition test at NP concentrations that caused ≤20% toxicity. The relative numbers of Tox-
oplasma were significantly reduced at concentrations of ≥10 µg/mL for goethite and ≥1.0 
µg/mL for hematite (Figure 2). These results suggest that iron oxide NPs of goethite and 
hematite may have growth inhibitory effects on Toxoplasma. 

 
Figure 2. Relative number of Toxoplasma parasites after 48 h of infection of HFFs with Toxoplasma 
and addition of iron oxide nanoparticles (goethite, hematite, and magnetite). Figures are triplicates 
and averages of three independent runs. Data are means ± standard deviation (SD). Experiments 
were performed in triplicate and repeated three times independently; ns, not significant at p > 0.05; 
*, significant at p < 0.05. 

3.3. Surface Modification of Iron Oxide Nanoparticles with Tryptophan 
Previous studies have shown that tryptophan coating on gold, silver, and platinum 

nanoparticles increases their growth inhibitory effect on Toxoplasma [31]. Therefore, we 

Figure 2. Relative number of Toxoplasma parasites after 48 h of infection of HFFs with Toxoplasma
and addition of iron oxide nanoparticles (goethite, hematite, and magnetite). Figures are triplicates
and averages of three independent runs. Data are means ± standard deviation (SD). Experiments
were performed in triplicate and repeated three times independently; ns, not significant at p > 0.05;
*, significant at p < 0.05.

3.3. Surface Modification of Iron Oxide Nanoparticles with Tryptophan

Previous studies have shown that tryptophan coating on gold, silver, and platinum
nanoparticles increases their growth inhibitory effect on Toxoplasma [31]. Therefore, we
applied tryptophan coating to goethite and hematite. FTIR spectroscopic analysis showed
that tryptophan-coated goethite and hematite peaked in the same wave number range as
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tryptophan (Figure 3). This suggests that the iron oxide NPs were coated with tryptophan,
albeit in small amounts.
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3.4. Host Cytotoxicity Testing of Tryptophan-Coated Iron Oxide Nanoparticles

Before testing the inhibitory effect of the tryptophan-coated iron oxide NPs on Toxo-
plasma growth, we tested their toxicity in host cells. Strong toxicity (approximately 90%
reduction in cell viability) was observed at a concentration of 50 µg/mL for tryptophan-
coated goethite, whereas concentrations up to 2.0 µg/mL of tryptophan-coated hematite
resulted in a 20% reduction in cell viability (Figure 4). Based on these results, growth inhi-
bition studies were conducted at concentrations below 25 µg/mL for tryptophan-coated
goethite and 2.0 µg/mL for tryptophan-coated hematite.
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Figure 4. The cytotoxicity testing of tryptophan-coated iron oxide nanoparticles (goethite and
hematite). The maximum concentration was adjusted for both goethite and hematite, and three
concentrations were prepared by two-fold dilution. Data are means ± standard deviation (SD).
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3.5. Tryptophan-Coated Iron Oxide Nanoparticles Increase the Growth Inhibitory Effect of the
Nanoparticles on Toxoplasma

To investigate the effect of the tryptophan coating on the growth inhibitory effect
of iron oxide nanoparticles, we performed the growth inhibition test using tryptophan-
coated nanoparticles at various concentrations less than 50 µg/mL. The relative number
of Toxoplasma was significantly reduced at a concentration ≥ 12.5 µg/mL of tryptophan-
coated goethite NPs. For hematite NPs, the relative number of Toxoplasma was significantly
reduced at concentrations ≥ 1.0 µg/mL (Figure 5A,B).
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of Toxoplasma was calculated after 48 h of incubation. (A) Results for tryptophan-coated goethite;
(B) results for tryptophan-coated hematite. Data are means ± standard deviation (SD). Experiments
were performed in triplicate and repeated three times independently; *, significant at p < 0.05.

In addition, a significant difference in the relative number of Toxoplasma was observed
for both types of tryptophan-coated iron oxide NPs compared to the same concentration
without coating. These results suggest that the tryptophan coating of iron oxide NPs may
increase their growth inhibitory effect on Toxoplasma.

3.6. The Growth Inhibitory Effect of Iron Oxide Nanoparticles May Be Due to the Generation of
Reactive Oxygen Species

Prior studies have suggested that the mechanism by which gold, silver, and platinum
NPs inhibit growth involves the generation of reactive oxygen species (ROS) [32]. To
test whether the same mechanism of action is true for iron oxide NPs, we examined the
role of ROS by adding the antioxidant Trolox [33,34] to the Toxoplasma growth inhibition
assay medium.

Trolox attenuated the growth inhibition induced by tryptophan-coated goethite and
hematite (Figure 6A,B). There was no significant difference in the non-tryptophan-coated
goethite and hematite to the Trolox group, which may be because the lower concentrations
of goethite and hematite did not show growth inhibition effects. These results suggest that
ROS may be involved in the growth-inhibiting action of tryptophan-coated iron oxide NPs
against Toxoplasma.
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4. Discussion

Metal nanoparticles are known to have antimicrobial effects [19–22], and this study
tested whether they could be applied to Toxoplasma. Although previous studies have
shown that gold, silver, and platinum NPs exhibit anti-Toxoplasma effects [16], these are
expensive metals, and therefore their extensive use, including in livestock, is financially
probative necessitating the use of NPs of less expensive metals. Here, we confirmed the
anti-Toxoplasmic effect and the lack of host cytotoxicity of NPs of iron oxide.

Since damage to host cells by iron oxide NPs (goethite, hematite, and magnetite) could
cause strong side effects, we first examined their effect on host cell viability. Cell survival
rates in the presence of each iron oxide nanoparticle exceeded 80% at concentrations of
>10 µg/mL. Based on these results, we performed a growth inhibition test at concentrations
of >10 µg/mL.

To determine the effect of iron oxide nanoparticles on Toxoplasma growth, we analyzed
the relative survival of Toxoplasma after 48 h of incubation with iron oxide NPs in HFFs
infected with Toxoplasma. We found that the relative number of Toxoplasma was significantly
reduced at concentrations of ≥10 µg/mL for goethite and ≥1.0 µg/mL for hematite.
The EC50 could not be calculated because the relative counts were not less than 50%
at the concentrations used in this study. These results confirm the growth inhibitory
effect of goethite and hematite NPs on Toxoplasma. Our results thus confirmed previous
studies [16] demonstrating that metal NPs other than those bearing precious metals have
anti-Toxoplasma effects. Considering the widespread use of anti-Toxoplasma drugs in
humans and livestock, it is significant that an anti-Toxoplasma effect was observed in such
a relatively inexpensive metal.

Tryptophan coating on gold, silver, and platinum nanoparticles has been shown to
increase their growth inhibitory effect on Toxoplasma [31]. Therefore, we thought that
tryptophan coating on iron oxide nanoparticles would increase the growth inhibitory effect.
We coated iron oxide NPs with tryptophan, and a solution of tryptophan dissolved in
DMSO was analyzed by FTIR spectroscopy with the support of the ARIM Support Office
of the Chitose University of Science and Technology. The results showed that tryptophan-
coated goethite and hematite showed peaks at 2500–3500 cm−1, which is the specific
wavenumber range of tryptophan. This result means that a small amount of tryptophan
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coated the surface of the goethite and hematite NPs. The tryptophan-coated iron oxide
NPs were used for cytotoxicity testing, and all but 50 µg/mL of tryptophan-coated goethite
resulted in survival rates exceeding 80%. To our knowledge, no previous studies have
reported increased toxicity with tryptophan coating [26]. Therefore, the reason for the
very strong toxicity at 50 µg/mL of goethite in this study is not clear and is a subject for
future investigation.

The growth inhibition effect of tryptophan-coated iron oxide NPs was verified, and
significant growth inhibition was shown for both goethite and hematite. A comparison
of the same concentration of NPs with and without the amino acid coating showed that
the l-tryptophan-coated iron oxide NPs exhibited a significant growth inhibitory effect.
As reported elsewhere [16], the tryptophan requirement of Toxoplasma may contribute to
its increased sensitivity to the amino acid-coated NPs. Coating the nanoparticles with
l-tryptophan might have led to an increased local concentration in the Toxoplasma as the
parasite sought to acquire this nutrient from its host. However, it is not clear from the
results of this study whether the iron oxide nanoparticles penetrate the parasite, and further
analysis is needed to determine the mechanism by which the growth inhibitory effect of
Toxoplasma was enhanced.

Prior studies have suggested that the mechanism of action of gold, silver, and platinum
NPs involves decreasing the mitochondrial membrane potential by generating ROS [32].
We confirmed the effect of adding Trolox, an antioxidant, on the relative viability of
Toxoplasma in the presence of the NPs. The attenuation of growth inhibition by the addition
of Trolox was confirmed in both tryptophan-coated goethite and hematite. There was no
significant difference in the non-tryptophan-coated goethite and hematite compared to the
Trolox group, which may be because the lower concentrations of goethite and hematite
did not show growth inhibition effects. These results suggest that ROS may be involved
in the growth-inhibiting action of tryptophan-coated iron oxide NPs against Toxoplasma,
consistent with previous reports on gold, silver, platinum, and titanium dioxide [2,16].
Previous studies have reported that ROS reduces the membrane potential of Toxoplasma,
thereby decreasing the production of ATP and causing a growth-inhibitory effect, and it is
possible that a similar mechanism of action caused the growth-inhibitory effect [8]. The
fact that the addition of Trolox did not result in 100% relative parasite survival suggests
that factors other than ROS development may be involved in the growth inhibition effect,
which needs to be verified in the future.

5. Conclusions

Our data show that iron oxide NPs inhibit the growth of Toxoplasma tachyzoites
in vitro. Goethite and hematite show promising anti-Toxoplasma properties. Furthermore,
the coating of goethite and hematite with l-tryptophan enhances their anti-Toxoplasma
action without a corresponding increase in host cell toxicity. Collectively, our findings
support the potential of nanoparticles as novel treatment agents for toxoplasmosis. In
addition, ROS may be involved in this growth inhibitory effect. The demonstration of
the anti-toxoplasmic effect of iron oxide, a relatively inexpensive metal, in this study is
very important for the future use of anti-toxoplasmic drugs in a wide range of human
and animal species. Future research will aim to further strengthen the growth-inhibitory
effect of iron oxide nanoparticles by elucidating the more detailed mechanism of action
and clarifying what points affect the growth-inhibitory effect.
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