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Abstract: Our previous study discovered that sucrose and other non-reducing sugars (e.g., trehalose
and raffinose) could be used to improve the electrotransfer (ET) of molecular cargo, including
DNA, mRNA, and ribonucleoprotein in various cell lines and primary human cells in vitro and
in vivo. To understand the molecular mechanisms of this improvement, we used RNA sequencing
technology to analyze changes in the cell transcriptome after sucrose treatment. The results from our
analysis demonstrated that the sucrose treatment upregulated phospholipase A2 and V-ATPase gene
families, which could potentially influence the acidity of intracellular vesicles through augmenting
vesicle fusion and the influx of proton, respectively. To determine how this upregulation affects
ET efficiency, we treated cells with pharmaceutical inhibitors of phospholipase A2 and V-ATPase.
The data demonstrated that the treatment with the phospholipase A2 inhibitor could reverse the
ET improvement elicited by the sucrose treatment. The V-ATPase inhibitor treatment either had
little influence or further enhanced the effect of the sucrose treatment on the ET efficiency. These
observations provide a molecular explanation for our previous findings, demonstrating that the
sucrose treatment primarily enhanced the ET efficiency by promoting vesicle trafficking and fusion
through the activation of phospholipase A2.
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1. Introduction

Sucrose is a disaccharide composed of glucose and fructose. It is widely known as
table sugar and plays essential roles in our daily life. Besides its use as a sweetener, sucrose
also finds numerous applications in biomedical sciences. Sucrose has been commonly
used as a stabilizing agent in the preservation of biological samples, such as proteins,
extracellular vesicles, cells, and tissues, during cryopreservation [1–4]. Its ability to prevent
the formation of ice crystals and structural damage has led to its incorporation in the
formulation of cryoprotectants used in storing cells and tissues for transplantation and in
the preservation of virus-based and lipid nanoparticle (LNP)-formulated vaccines [5–8]. For
example, sucrose is a listed ingredient in the mRNA-LNP vaccines for COVID-19 provided
by both Pfizer-BioNTech and Moderna that helps maintain the stability of the vaccine after
its production [9,10]. Additionally, sucrose is used in density gradient centrifugation to
isolate specific cellular components, such as exosomes and Golgi membranes, based on
their buoyant density [11,12]. Despite its significance in cell-, tissue-, and vaccine-related
biopharmaceutical and research applications, the impact of sucrose exposure on cell and
tissue physiology has rarely been explored. Understanding such impact is important for
broadening the use of sucrose in clinical practices and understanding the mechanisms of
findings in sucrose-related applications.

Sucrose has also been used in drug and gene delivery [13–15]. One of its applications
is in improving electrotransfer (ET) [14,16,17], which is a technology for the delivery of
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molecular cargo, including DNA, RNA, protein, and ribonucleoprotein (RNP) [18–20]. ET
is cost-effective, versatile, multiplexable, and applicable to almost all cell types [21,22]. It
is usually performed with the help of specially formulated buffers to achieve optimal cell
viability and delivery efficiency [23]. Sucrose has been used as an important component
in ET buffers as an osmotic balancing agent [14,16,17]. Recently, we discovered that ET
efficiency could be enhanced through the pretreatment of cells with sucrose in vitro [24],
partly due to the formation of large, amphisome-like bodies (ALBs) and enlargement
of lysosomes. This enhancement has been observed in tumor cell lines (e.g., HCT116,
HT29, and B16.F10) and non-tumor cell lines (e.g., C2C12, DC2.4, and HEK293), as well
as in primary human cells (e.g., dendritic cells and T cells isolated from peripheral blood
mononuclear cells) [24–26]. To extend the applications of sucrose in vivo, we showed that
sucrose encapsulated in LNPs could be used as a non-inflammatory adjuvant to DNA
vaccines by improving the efficiency of ET in mice [26]. In this previous study, we also
demonstrated, in vivo, that to achieve the same enhancement in transgene expression
post ET, the required sucrose treatment was equivalent to increasing the dose of DNA
approximately 3000-fold. Mechanistically, the sucrose treatment improves ET efficiency
by reducing the lysosomal acidity that impairs the capability of lysosomes to degrade
exogenous DNA delivered into cells, leading to prolonged transgene expression [24,26].
However, the detailed molecular mechanisms behind how the sucrose treatment is able
to alter intracellular vesicle functions and vesicle–vesicle interactions are still unknown.
To understand these mechanisms, in the present study, we investigated transcriptional
responses to the sucrose treatment and determined how changes in endogenous gene
expression affected ET efficiency.

2. Materials and Methods
2.1. Cell Preparation

HCT116 cells were purchased from ATCC. They were cultured in McCoy’s 5A medium
(Gibco, Grand Island, NY, USA) supplemented with 10% bovine calf serum (BCS) and 1%
Pen-Strep (P/S, Gibco). Cells were maintained at 37 ◦C in a humidified incubator with 5%
CO2. For the subculture, cells were detached from flasks with a 0.25% (w/v) Trypsin–0.53 mM
EDTA solution. The cell culture medium was renewed every two to three days.

2.2. Plasmid Preparation

DNA plasmid encoding the enhanced green fluorescent protein (EGFP) was purchased
from Nova Lifetech Inc. (Hong Kong, China) (pEGFP-N1) and prepared using the Pure-
Link Quick Plasmid Miniprep Kit (ThermoFisher Scientific, Waltham, MA, USA). The
concentration of the plasmid was quantified using a NanoDrop One Spectrophotometer
(ThermoFisher Scientific, Waltham, MA, USA). The plasmid was diluted in PBS (Gibco) to
the desired concentrations before use.

2.3. Electrotransfer of Plasmid

Cells were prepared for ET as previously described [21]. Briefly, cells were collected
and suspended in Opti-MEM™ Reduced Serum Medium, GlutaMAXTM Supplement
(Gibco), at a concentration of 10 × 106/mL. After this, the plasmid DNA was added to the
suspension at a concentration of 10 µg/mL. For each sample, a 100 µL suspension was
transferred to a cuvette with aluminum electrodes and a 4 mm gap (Bio-Rad, Hercules, CA,
USA). Two pulses of 250 V in field strength, 10 ms in duration, and 0.1 Hz in frequency were
delivered to the cells using the BTX ECM 830 Square Wave Electroporation System (Harvard
Apparatus, Holliston, MA, USA). Cells were immediately transferred to prewarmed cell
culture media after ET, and cultured at 37 ◦C in a humidified incubator with 5% CO2.

2.4. Inhibitor Treatment

Oleyloxyethyl Phosphorylcholine and Concanamycin A were purchased from Santa
Cruz Biotechnology. The Oleyloxyethyl Phosphorylcholine was initially dissolved in
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ethanol, and then diluted in cell culture medium before being added onto the cells. The
Concanamycin A was initially dissolved in DMSO and then diluted in cell culture medium
before being added onto the cells. Prior to the inhibitor treatment, HCT116 cells were
cultured in medium containing 100 mM sucrose or medium alone (no treatment) for 24 h.
Then, the medium was aspirated and replaced with fresh medium containing different
concentrations of inhibitors, and the cells were further incubated for 6 h before being
harvested for ET.

2.5. RNA Sequencing and Pathway Analysis

HCT116 cells were cultured in the medium without or with sucrose (100 mM) for
24 h. The cell samples were then collected for total RNA extraction with a Qiagen RNeasy
kit. For each treatment group, there were three biological repeats. All RNA samples
were submitted to the Genomic and Computational Biology (GCB) core facility at Duke
University for library preparation using KAPA Stranded mRNA-Seq Kit (Kapa Biosystems,
Wilmington, MA, USA). The libraries were sequenced on one lane of HiSeq 4000, and the
RNA-seq data were processed using the TrimGalore toolkit, which employs Cutadapt to
trim low-quality bases and Illumina sequencing adapters from the 3′ end of the reads. The
reads that were 20 nt or longer after trimming were mapped to the GRCh37v75 version
of the human genome and transcriptome using the STAR RNA-seq alignment tool. For
the reads that could be mapped to single genomic locations, gene counts were compiled
using the HTSeq tool; only genes that had at least 10 reads in any given library were used
in subsequent analyses. The raw count data were used for differential expression analysis
using the DESeq2 Bioconductor package with the R statistical programming environment.
The false discovery rate (FDR) was calculated to control for multiple-hypothesis testing.

Gene set enrichment analysis (GSEA) was performed with the GSEA software (GSEA_4.3.2)
and C5 gene sets [27,28]. The gene set filters (min = 15, max = 500) were employed to
eliminate smaller and larger sets. Consequently, only 7604 out of 16008 gene sets were used
for the identification of differentially regulated pathways and Gene Ontology (GO) terms
for each of the comparisons performed. Outcomes of the analysis were verified with the
fold enrichment analysis using the Protein Analysis Through Evolutionary Relationships
(PANTHER) classification system [29,30]. The fold change in the normalized transcript
counts was visualized with a heat map, where the color intensity indicated the magnitude
of the change relative to the mean of the control samples. For most upregulated genes
after sucrose treatment, GeneMANIA software (https://genemania.org/; accessed on
12 February 2024) was used to predict their functions and interactions with other genes in a
network [31].

2.6. Flow Cytometry Analysis

Cell viability and ET efficiency were quantified with flow cytometry. For this analysis,
24 h after ET, the cells were detached from culture plates and washed twice with PBS.
Collected samples were then stained with 5 µg/mL propidium iodide (PI) diluted in the
flow buffer for the detection of dead cells, and the samples were fully vortexed. EGFP and
PI signals were simultaneously detected in 488 nm and 633 nm channels, respectively, in the
flow cytometer (Agilent Novocyte, Santa Clara, CA, USA). Data analysis was conducted
using the Agilent Novocyte software (version 1.4.1) to quantify the ET efficiency and cell
viability, as described in previous studies [24]. Briefly, effectiveness of electrotransfer (eTE)
was defined as the percentage of live cells expressing EGFP (PI−/EGFP+). The expression
level was defined as the geometric mean of EGFP fluorescence intensity per cell among
the PI−/EGFP+ cells. Similar to the previous studies [24,32–34], the cell viability (%) was
calculated as 100 times the ratio of live cell (PI−) numbers between the experimental and
control samples. The effective expression level was defined as the product of the eTE,
expression level, and cell viability, which is a measure of the overall expression level in
a sample.

https://genemania.org/
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2.7. Statistical Analyses

Comparisons among multiple groups were performed using one-way analysis of
variance (ANOVA) tests with Bonferroni corrections applied. For each pair of groups in
multiple comparisons, a difference in the data was considered to be statistically significant
if the corrected p-value was less than 0.05.

3. Results
3.1. Sucrose Induces Differential Expression of Genes in Mammalian Cells

Transcriptomic profiles in the HCT116 cells were analyzed before and after the cells
were cultured in the medium containing sucrose for 24 h. The sucrose concentration was
maintained at 100 mM, an optimal value determined in our previous study [24]. Among
the 16,242 transcripts detected in the RNA sequence analysis, 2198 showed significant a
fold change (FC) (|Log2(FC)| > 0.58, adjusted p-value < 0.01), with 1181 transcripts being
upregulated and 1017 transcripts being downregulated (Figure 1). The data indicated that
the sucrose treatment could affect the expression of many different genes either directly
or indirectly through interactions in gene networks. The most statistically significant
differential expressions were observed in AQP3, ANK1, and INSIG1 for the upregulated
genes, and SLC7A1, ASNS, and ARRDC4 for the downregulated genes.
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Figure 1. Differential gene expression induced through sucrose treatment. HCT116 cells were cultured
for 24 h in a medium with or without a 100 mM sucrose supplement. Three biological repeats were
prepared for the RNA sequencing analysis in both the sucrose-treated and non-treated groups; the
sequence data were used to determine the average fold change (FC) and adjusted p-value for the
differential expression of specific genes. Each point represents the data of a gene. The dashed lines
represent −Log10(p-value) = 2, and Log2(FC) = ±0.58, respectively, and the adjusted p-value was used
in the calculation. These lines divide the differential expression data into three categories. Gray points:
non-significant (Not Sig) change wherein the magnitude of Log2(FC) is <0.58 or −Log10(p-value) is <2.
Red points: upregulated (Up) transcripts wherein Log2(FC) is >0.58 and −Log10(p-value) is >2. Blue
points: downregulated (Down) transcripts wherein Log2(FC) is <−0.58 and −Log10(p-value) is >2.

The normalized counts were used in the gene set enrichment analysis (GSEA) for
identifying the pathways affected by the sucrose treatment. After applying gene set filters
to eliminate smaller and larger sets, 7604 gene sets annotated with the Gene Ontology
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(GO) terms were examined in the study. Among them, 4922 were overrepresented, with
1437 demonstrating a statistically significant overrepresentation (nominal p-value < 0.05
and false discovery rate (FDR) < 0.25). Moreover, 2682 were underrepresented, and the
underrepresentation was statistically significant in 846 sets. The enrichment results were
verified by using another approach to gene enrichment analysis (PANTHER). For both
the overrepresented and underrepresented gene sets, their fold enrichments were larger
than unity.

To understand how the sucrose treatment could affect ET, we focused on the GO
terms that were potentially linked to the underlying biology of ET (Figure 2) [24]. Several
significantly enriched or overrepresented GO terms were found to be associated with
lipid membranes, which might explain our previous observations regarding the formation
of large ALBs in mammalian cells after treatment with sucrose [24]; certain significantly
underrepresented GO terms were associated with nucleic acid and protein catabolic path-
ways, which was consistent with our previous observations, wherein sucrose treatment
decreased the degradation of plasmid DNA and reporter proteins in cells [24]. Furthermore,
the data shown in Figure 2 indicate that the gene sets related to cell proliferation were
underrepresented in the samples treated with sucrose, which was observed in the previous
study as well [24].
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Figure 2. Enrichment of cellular pathways after sucrose treatment. Gene Ontology (GO) enrichment
analysis was performed for normalized counts of transcripts in HCT116 cells treated with or without
sucrose, based on three biological repeats in both groups, respectively. This plot only includes the
enriched GO terms in three categories (cellular components, biological processes, and molecular
functions) that were potentially linked to the enhancement of ET caused by sucrose treatment. NES,
normalized enrichment score; Sucrose up, overrepresented GO terms with a positive NES; Sucrose
down, underrepresented GO terms with a negative NES.

3.2. Sucrose Activates Phospholipase A2 and V-ATPase in Mammalian Cells

Among the differentially expressed genes associated with the enriched pathways,
we examined the upregulated genes related to ATPase-coupled cation transmembrane
transporter activity, lipid localization, the endocytic vesicle membrane, phospholipase
activity, and phospholipase A2 activity, which are potentially linked to the biological
mechanisms of ET [24,35–37]. A list of these genes is shown in Figure 3, with the top
two most significantly upregulated genes being ATP6V0A4 (up 6.7-fold) and PLA2G3 (up
13.5-fold).

To further understand the functions of ATP6V0A4 and PLA2G3, a gene network
functionally associated with these genes was predicted using the GeneMANIA algorithm
(Figure 4) [31]. The network clearly showed two groups of genes. The V-ATPase-related
genes were connected with ATP6V0A4, presumably because they share functions in pH
regulation, transmembrane proton transport, and the vesicle membrane, whereas phospho-
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lipase A2-related genes were associated with PLA2G3 (Figure 4). The network prediction
was influenced largely by the physical interactions and the co-expression of genes, with
percent weights of 78% and 8%, respectively, and this influence appeared to be dominant in
the first group. In the second group, the prediction was influenced primarily by the shared
protein domains of the gene products. To show functions of the genes in the network,
Figure 4 also includes information on how each gene was associated with five enriched
GO terms potentially linked to the underlying biology of ET. These were the regulation of
pH, the phagocytic vesicle, the endocytic vesicle membrane, ATPase-coupled monoatomic
cation transmembrane transporter activity, and phospholipase A2 activity. Most genes in
the first group were linked to the first four GO terms, while the genes in the second group
were more closely linked to phospholipase A2 activity.
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Figure 3. Heat map visualization of overexpressed genes. This map only includes the genes that
were potentially linked to the enhancement of ET caused by sucrose treatment. They were identified
through the analysis of differential gene expression and the gene set enrichment analysis. These
analyses were based on three biological repeats in the control and sucrose-treated groups, respectively.
The red color intensity indicates the magnitude of the fold change in the normalized transcript counts
relative to the mean of the three control samples. The same intensity is assigned to magnitudes of
five or higher.
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Figure 4. Gene network functionally associated with ATP6V0A4 and PLA2G3. This network was
predicted by using the GeneMANIA algorithm. The prediction was influenced primarily by physical
interactions, co-expression, and shared protein domains. The thickness of each line between two
nodes indicates the extent of the predicted functional association between the two genes; the size
of each node indicates the extent to which the predicted gene is related to ATP6V0A4 or PLA2G3.
Functions of each gene were indicated by their association with five enriched GO terms potentially
linked to the underlying biology of ET.
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3.3. The Effects of Sucrose on ET Can Be Reversed via Inhibition of Phospholipase A2

The analysis above predicted that the sucrose treatment might enhance ET through the
overexpression of genes associated with V-ATPase and secreted phospholipase A2. Thus,
our next focus was to investigate whether the inhibition of V-ATPase or phospholipase A2
could reverse the effects of sucrose treatment on ET. Based on a literature review [38,39],
we chose to use Concanamycin A (CMA) and Oleyloxyethyl Phosphorylcholine (OPC) as
the inhibitors of V-ATPase and phospholipase A2, respectively. To determine the ranges
of the inhibitor concentrations used in the treatments, we searched their IC50 values for
inhibiting enzymatic activities. For OPC, the value provided by the manufacturer is 6.2 to
13.7 µM, depending on the source of the enzyme, and the IC50 value for CMA obtained
from the literature is 10 nM [38]. However, previous data have shown that CMA at the IC50
value can induce significant apoptosis of cells [40]. To avoid this complication in the study,
the cells were treated with CMA at relatively lower concentrations, causing the inhibition
of V-ATPase activity to be less than 50%.

When the cells were pretreated with 100 mM sucrose for 24 h, followed by a treatment
with one of the inhibitors for 6 h at different concentrations (5 µM to 15 µM for OPC; 0.5 nM
to 4 nM for CMA), the number of cells in each group was slightly lower than that in the
non-treated control (Ctrl) (Figure 5). However, none of the differences between the treated
and non-treated groups were statistically significant (corrected p > 0.05), suggesting that
the treatments alone were minimally cytotoxic.
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Figure 5. Number of viable cells after different treatments. HCT116 cells were cultured in medium
supplemented with or without sucrose (100 mM) for 24 h. Then, the medium was aspirated and
replaced with fresh medium containing no inhibitors (sucrose group) or different inhibitors at
indicated concentrations (OPC + Suc and CMA + Suc groups). After the cells were cultured for
another 6 h, the numbers of cells in individual groups were counted with a Countess II FL automated
cell counter after trypan blue staining. The data were normalized according to the mean of the
non-treated control group (Ctrl). The bar and error bar represent the mean and SD, respectively. Each
group contains three independent repeats. No significant differences were observed between any
treated groups and the Ctrl groups (corrected p > 0.05, one-way ANOVA).

Next, we examined the effects of the treatments on ET efficiency and cell viability
post ET. The cells were pretreated with sucrose for 24 h and one of the inhibitors for 6 h,
as described above. The cells were washed with PBS, and pDNA encoding EGFP was
electrotransferred into the cells. Compared to the non-treated (NT) control, the sucrose
treatment alone increased the eTE (i.e., the percentage of EGFP+ cells) from 56% to 67%
(Figure 6A), and the expression level of EGFP per live cell by 80% (Figure 6B). These in-
creases in the eTE and the expression level could be reversed through subsequent treatment
with OPC, except for the treatment at 15 µM, which led to a significant decrease in the eTE,
which was consistent with the data in low-concentration groups, but an increase in the
expression level (Figure 6A,B). This inconsistency was presumably caused by a significant
cell (see the discussion below). The CMA treatment could also reverse the increase in the
eTE at high concentrations (Figure 6A). However, it was ineffective in reversing the sucrose
treatment-induced increase in the expression level at low concentrations (Figure 6B), and at
high concentrations, it caused a further increase in the expression level (corrected p < 0.05).
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Figure 6. Effects of phospholipase A2 or V-ATPase inhibition on ET efficiency and cell viability.
HCT116 cells were cultured in medium supplemented with or without sucrose (100 mM) for 24 h.
Then, the medium was aspirated and replaced with fresh medium containing the indicated con-
centrations of inhibitors, and the cells were cultured for another 6 h prior to the electrotransfer of
DNA encoding enhanced green fluorescence protein (EGFP). Twenty-four hours later, the cells were
harvested for flow cytometry analysis to quantify (A) the %EGFP+ cells, (B) the EGFP expression
level, and (C) the cell viability. The viability data were normalized according to the mean in the
NP control group. The dashed lines in panels (A,B) represent the means in the sucrose group. The
dashed line in panel (C) represents the mean in the NP group. NP, cells were not treated with sucrose
or inhibitor, and no ET was performed; NT, ET was performed but the cells were not treated with
sucrose or inhibitor. N = 3. #: corrected p-value < 0.05, sucrose group versus NT control; *: corrected
p-value < 0.05, group treated with inhibitor and sucrose versus group treated with sucrose alone; &:
corrected p-value < 0.05, any group versus NP control; a.u., arbitrary unit.

The data shown in Figure 5 indicate that the treatments with sucrose alone or in
combination with the inhibitors caused minimal cell death. The question at hand was
whether combining the same treatments with ET would result in cytotoxicity. To answer
this question, we measured the cell viability 24 h post ET, and compared the data between
different groups. The comparison revealed that the ET alone with no treatment (NT) or the
combination of ET and the sucrose treatment caused minimal cell death (corrected p > 0.05)
(Figure 6C). However, the addition of the inhibitor treatment between the sucrose treatment
and the ET exhibited concentration-dependent cytotoxicity, with statistically significant cell
loss observed in the top two concentration groups for both inhibitors (corrected p < 0.05)
(Figure 6C).

The cell death reduced transgene protein (i.e., EGFP) production in the samples. The
total amount of the protein divided by the number of cells prior to the treatment and the
ET was defined as the effective expression level per cell. Compared to the NT control, the
sucrose treatment alone approximately doubled the effective expression level (corrected
p < 0.05) (Figure 7). This increase could be reversed through subsequent treatment with
OPC in a concentration-dependent manner (Figure 7). However, the CMA treatment was
ineffective at reversing the increase in the effective expression level induced by the sucrose
treatment (Figure 7). The data demonstrated that the enhancement in ET efficiency induced
by the sucrose treatment was mediated primarily by activating phospholipase A2.
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the total amount of EGFP per sample. N = 3. The dashed line represents the means in the sucrose
group. NP, cells were not treated with sucrose nor inhibitor, and no ET was performed; NT, ET was
performed but the cells were not treated with sucrose or inhibitor. N = 3. #: corrected p-value < 0.05,
sucrose group versus NT control group; *: corrected p-value < 0.05, group treated with inhibitor and
sucrose versus group treated with sucrose alone; a.u., arbitrary unit.

4. Discussion

Our previous studies demonstrated that sucrose treatment can enhance ET efficiency
and that this enhancement is achieved through changes in vesicle functions and vesicle–
vesicle interactions in cells [24,26]. To understand the molecular mechanisms of these
changes, the current study compared transcriptomic profiles in sucrose-treated and non-
treated cells based on RNA-seq analysis, a powerful technique for identifying differentially
expressed genes [41]. Furthermore, data from the analysis were utilized to determine the
enrichment of pathways and gene sets induced by the sucrose treatment. The results from
this study reveal that the sucrose treatment resulted in the underrepresentation of gene sets
linked to nucleic acid and protein degradation as well as cell cycle regulation, indicating
that the treatment downregulated the genes involved in these processes. Meanwhile, the
treatment led to the enrichment or overrepresentation of gene sets associated with phos-
pholipase activity, lipid localization, and ATPase-coupled ion transmembrane transporter
activity, suggesting that the treatment upregulated the genes involved in vesicle trafficking,
lipid metabolism, and the transmembrane transport of ions in cells. Specifically, we ob-
served a significant overexpression of two genes (ATP6V0A4 and PLA2G3) in the enriched
gene sets, which are associated with V-ATPase and secreted phospholipase A2, respectively.
Inhibiting the phospholipase A2 activity with a pharmaceutical inhibitor (OPC) could
reverse the increase in ET efficiency elicited by the sucrose treatment. However, treatment
of the cells with CMA, a pharmaceutical inhibitor of V-ATPase, was ineffective at reversing
the effects of the sucrose on ET. The data suggest that the sucrose treatment enhances ET
efficiency primarily through the activation of phospholipase A2.

Phospholipase A2 plays an important role in vesicle trafficking [42]. It is involved
in the regulation of lipid membrane curvature through local hydrolysis of membrane
phospholipids at the sn-2 position. This enzymatic activity produces metabolites that
introduce spontaneous curvature stress to the membrane, influencing the bending of the
membrane locally via alteration of the lipid packing and the conformation of membrane
proteins [42]. As a result, it can influence membrane deformation, budding, and fusion
processes. Data in the current study demonstrated that PLA2G3 was overexpressed in cells
treated with sucrose, upregulating phospholipase A2 activity. This upregulation potentially
drives vesicle fusion to form large multi-origin vesicles (e.g., ALBs), such as those observed
in our previous study [24]. The increased vesicle fusion could also contribute to decreased
lysosomal acidity, as the fusion between lysosomes and other non-acidic vesicles would
dilute the protons in lysosomes, reducing its acidity [24].

The V-ATPase complex is responsible for acidifying vesicles in eukaryotic cells through
facilitating proton transport across vesicular membranes [43,44]. Data from the current
study demonstrated that the sucrose treatment upregulated the expression of the gene
(ATP6V0A4) encoding the α4 subunit of V-ATPase [45], implying that the treatment in-
creased the V-ATPase activity in treated cells. This activity increase is expected to cause an
increase in the acidity of vesicles, including late endosomes and lysosomes, which appears
to contradict our previous observations of sucrose treatment decreasing the number of
acidic lysosomes [24,26]. To elucidate this discrepancy, we hypothesize that the sucrose
treatment decreases the lysosomal acidity through mechanisms associated with vesicle
fusion, independent of the V-ATPase activity. This hypothesis is supported by two observa-
tions in the current study. First, the sucrose treatment could enhance vesicle fusion through
the upregulation of phospholipase A2 activity, as discussed above. The fusion between
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non-acidic vesicles and lysosomes caused a decrease in lysosomal acidity. Second, the CMA
treatment was ineffective at reversing the increase in ET efficiency induced by the sucrose
treatment (Figures 6 and 7). And, at higher concentrations, the CMA treatment could
further augment the effects of the sucrose treatment on ET, presumably due to a decrease in
the influx of protons into the lysosome. It is also worth mentioning that some genes strongly
associated with ATP6V0A4, as predicted with GeneMANIA, were not overexpressed in
the sucrose-treated cells (Figures 3 and 4), indicating that these associated genes are not
crucial for the ET enhancement. The observations discussed above suggest that this sucrose
treatment activates both phospholipase A2 and V-ATPase, and that any potential decrease
in the lysosomal pH caused by V-ATPase activation can be offset via the activation of phos-
pholipase A2. As a result, the lysosomal pH was increased, which led to inactivation of the
nucleases and a subsequent decrease in the degradation of electrotransferred DNA within
the lysosome [24,26]. Additional studies are needed to further investigate this hypothesis.

In summary, the findings in this study reveal the molecular targets of sucrose treatment
in mammalian cells that can be exploited for improving gene delivery based on ET. The
data in this study explain how the sucrose treatment was able to increase the efficiency
of ET through interfering with vesicle trafficking and fusion, which led to a decrease in
lysosomal degradation of the exogenous DNA endocytosed by cells. These data underscore
the potential of using sucrose as a nontoxic and non-inflammatory agent to improve the
outcomes of ET in clinical applications.
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