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Abstract: Since prostate cancer (PCa) relies on limited therapies, more effective alternatives are
required. Essential oils (EOs) and their bioactive compounds are natural products that have many
properties including anticancer activity. This review covers studies published between 2000 and
2023 and discusses the anti-prostate cancer mechanisms of the EOs from several plant species and
their main bioactive compounds. It also provides a critical perspective regarding the challenges to
be overcome until they reach the market. EOs from chamomile, cinnamon, Citrus species, turmeric,
Cymbopogon species, ginger, lavender, Mentha species, rosemary, Salvia species, thyme and other
species have been tested in different PCa cell lines and have shown excellent results, including the
inhibition of cell growth and migration, the induction of apoptosis, modulation in the expression
of apoptotic and anti-apoptotic genes and the suppression of angiogenesis. The most challenging
aspects of EOs, which limit their clinical uses, are their highly lipophilic nature, physicochemical
instability, photosensitivity, high volatility and composition variability. The processing of EO-based
products in the pharmaceutical field may be an interesting alternative to circumvent EOs’ limitations,
resulting in several benefits in their further clinical use. Identifying their bioactive compounds,
therapeutic effects and chemical structures could open new perspectives for innovative developments
in the field. Moreover, this could be helpful in obtaining versatile chemical synthesis routes and/or
biotechnological drug production strategies, providing an accurate, safe and sustainable source of
these bioactive compounds, while looking at their use as gold-standard therapy in the close future.

Keywords: essential oil; prostate cancer; natural treatment; natural products

1. Introduction
1.1. Overview of Prostate Cancer

Cancer has been considered one of the most alarming diseases in the last few decades,
worldwide. It is a term used to cover more than 200 multifactorial diseases characterized
by the uncontrolled growth and invasion of abnormal cells leading to the formation of
tumors in healthy tissues [1]. Prostate cancer (PCa) is the second most prevalent cancer
in men across the world and the fourth overall [2]. Its risks factors include age, ethnicity,
diet, genetic, environmental factors and others. The incidence rate for men under the age
of 50 years is 1 in 350 men, but it increases to nearly 60% in men over the age of 65 years [3].
PCa is a highly heterogeneous disease whose subtypes remain poorly understood [4].

In the early stages, PCa’s primary treatment is based on radiation and surgery. How-
ever, up to 53% of these cases progress to recurrence. Recurrence or metastatic tumors are
usually treated with androgen deprivation therapy (ADT) in the form of gonadotropin-
releasing hormone (GnRH) and androgen receptor (AR) antagonists, so progression can
be prevented and patient survival can be improved. However, in most cases, despite their
initial response, the cells become therapy-resistant, progressing to castration-resistant PCa
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(CRPC) and metastatic CRPC (mCRPC), which lead to lethal disease [5]. CRPCs are charac-
terized by the consecutive activation of AR signaling through the expression of AR variants,
AR gene/enhancer amplification, AR mutations, the overexpression of AR coactivators,
AR-independent pathways and other mechanisms [6,7].

In PCa cells, defective phosphatase and tensin homolog (PTEN) and the uncontrolled
activation of phosphatidylinositol-3 kinase (PI3K)/AKT signaling frequently promotes
cancer progression (Figure 1). The tumor suppressor PTEN is frequently mutated and
shows a loss of function in PCa, allowing for the strong activation of the PI3K/AKT
signaling pathway. Downstream of PI3K and AKT, the protein kinase mechanistic target of
rapamycin (mTOR) plays an important role in cell growth regulation, and is often associated
with tumorigenesis [8]. Other target molecules of downstream PI3K/AKT signaling, such
as cyclin-dependent kinases (CDKs) and forkhead box subgroup O (FoxO), contribute to
suppressing cell cycle control and apoptotic mechanisms, leading to PCa’s resistance to
chemotherapeutic drugs [9].

The Ubiquitin-Proteasome (UPS) pathway plays a key role in the degradation of
intracellular proteins involved in the regulation of several cellular processes, such as
the cell cycle, DNA damage response, cell growth, apoptosis, angiogenesis and others
(Figure 1). In PCa cells, the degradation of PTEN, cyclin-dependent kinase inhibitor p27
and Bcl2-associated x (Bax) by the UPS pathway are increased [10].

DNA damage repair (DDR) is another pathway altered in PCa cells. DDR deficiency
induces cell dependence on poly (ADP-ribose) polymerase (PARP)-1 protein for DNA
repair. The use of a PARP-1 inhibitor leads to PCa cell death [11,12].

Treatment options for PCa remain limited once chemotherapeutics present severe side
effects, acting not only on cancer cells but also on normal tissues. Therefore, searching
for new safe and efficient active compounds to treat PCa is necessary [13]. In this sense,
natural products could be great potential therapeutics in cancer treatment, given that
several pharmaceutical drugs have been developed from compounds derived from plants.

1.2. PCa Culture Cell Lines

Before proceeding with this review, it is important to understand the main PCa cell
line models. DU145, PC3 and LNCaP were the first three PCa cell lines established from
metastasized tumors and are the most frequently used to date, even with several other
cell lines and sublines having been developed [14]. DU145 is an androgen-resistant cell
line isolated in 1975 from the brain-metastatic PCa of a 69-year-old white man [15]. The
androgen-resistant PC3 cell line was stablished in 1979 and derived from the lumbar-
vertebral-metastatic PCa of a 62-year-old white man [16]. A subline was developed in 1984
from a PC3 xenograft tumor in an athymic mouse, called PC-3M, and revealed to be more
aggressive than its parental PC3 cell line [17]. The androgen-responsive LNCaP cell line
was established in 1980 and obtained from the needle aspiration biopsy of a lymph node
metastatic lesion from a 50-year-old white man [18]. A subline from the vertebral metastasis
of LNCaP xenografts in castrated mice was isolated in 1994 and called the C4-2 cell line.
These cells became androgen-resistant upon interaction with bone fibroblasts [19]. Another
subline (C4-2B) was developed from the bone metastasis of C4-2 xenografts in the same
year [20]. The 22Rv1 is an androgen-responsive cell line isolated in 1999 from a CWR22R
xenograft tumor in mice, which was obtainedfrom a patient with bone metastasis [21].
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Figure 1. EOs and their bioactive compounds have roles in multiple pathways in PCa cells. EOs have
cell membrane permeability and interact with several cellular targets involved in different pathways.
EOs are able to interact with different targets of the PI3K/Akt pathway, leading to cell cycle arrest,
apoptosis, the inhibition of cell growth and proliferation. EOs can also play a role as proteasome
inhibitors, resulting in apoptosis, a decrease in cell proliferation and the suppression of angiogenesis.
EOs modulate DNA damage repair mechanisms by acting as DNA polymerase inhibitors, which leads
to PARP cleavage, resulting in apoptosis. EOs were demonstrated to induce mitochondrial stress,
leading to changes in the expression of BCL2/BAX genes and membrane depolarization, resulting in
the increased release of cytochrome-C to the cytoplasm and the induction of apoptosis. In addition,
EOs increase intracellular ROS levels, resulting in PCa cells’ apoptosis.

1.3. Essential Oils: Their Nature and Biological Activities

Essential oils (EOs) are natural lipid products present in various aromatic plants,
derived from their secondary metabolites. They are usually obtained from leaves, flow-
ers, fruits, seeds, buds, rhizomes, roots and/or bark [22,23], and are extracted by steam
distillation and cold pressing processes [24]. EOs are defined as complex mixtures of ap-
proximately 20 to 60 components, with two or three of them found in high concentrations
(20–70%) [25–27]. The chemical composition of their volatile fractions mainly includes
mono- and sesquiterpenes, followed by several oxygenated derivatives, alcohols, aliphatic
aldehydes and esters. On the other hand, non-volatile fractions comprise 1–10 wt% of EOs
and are composed of carotenoids, fatty acids, flavonoids and waxes [26]. Generally, they
are lipophilic, soluble in organic solvents and water-immiscible products [28].



Pharmaceutics 2024, 16, 583 4 of 24

Considering their wide chemical diversity, EOs have many properties and have been
used since Ancient times as medicine. Among their activities, can be mentioned their
antioxidant, anti-inflammatory, antibiotic, antiviral, antifungal, anti-parasitical, insecticidal,
anticancer, wound healing, antihypertensive, analgesic and other clinical uses, such as a
sedative, spasmolytic, analgesic, anesthetic or anxiolytic [29–32]. Furthermore, the global
EO industry is valued at USD 18.6 billion and expected to reach USD 35.5 billion by
2028. This exponential growth can be attributed to increasing preference of people for
a healthy lifestyle. The commercial use of EOs in aromatherapy, (mainly in spa and
massage therapies) is their dominant application area, followed by the food and beverage
industries [33]. Pharmaceutical fields also have a great interest in EOs’ properties, as they
are rich sources of therapeutic compounds.

EOs are considered promising candidates for cancer treatments through their antioxi-
dant, antimutagenic, antiangiogenic, antiproliferation effects; enhancement of the immune
system; enzyme induction; and modulation of multidrug resistance mechanisms [34,35].
In PCa cells (Figure 1), EOs were demonstrated to act on PI3K/AKT signaling and the
Ubiquitin-Proteasome (UPS) pathway, resulting in apoptosis. Moreover, EOs are able
to induce mitochondrial stress, leading to changes in the expression of Bcl-2/Bax genes
and membrane depolarization, resulting in the increased release of cytochrome-C to the
cytoplasm and the induction of apoptosis. In addition, EOs are able to increase intracellular
reactive oxygen species (ROS) levels, resulting in the apoptosis of PCa cells [35]. All of
these signaling pathways may be targets for novel therapeutic drugs for PCa treatments.

In this context, the present work carried out a review of the anticancer effects of EOs
from several plant species, while also focusing on their main bioactive compounds as
effective treatments against PCa cells. Table 1 lists the successful in vitro studies of EOs
extracted from several plants against different PCa cell lines. Table 2 displays the in vitro
results of the major EOs compounds. Figure 2 shows the chemical structures of the bioactive
compounds found in EOs that have been tested for anti-prostate cancer activity.



Pharmaceutics 2024, 16, 583 5 of 24

Table 1. Essential oils investigated for in vitro anti-prostate cancer potential, and the major results reported.

Common Name Scientific Name Cell Line Effects References

Balsam fir Abies balsamea PC3 Inhibition of cell growth [36]
Basil Ocimum basilicum PC3 and LNCaP Inhibition of cell growth [37]
Chamomile Anthemis nobilis PC3 Inhibition of cell growth and induction of apoptosis [38]

Cinnamon Cinnamomum
zeylanicum PC3 Inhibition of cell growth [38]

Citronella Cymbopogon nardus LNCaP Inhibition of cell growth, cell cycle arrest and changes to cell morphology [39]
Embira Xylopia frutescens PC-3M Inhibition of cell growth [40]

Ginger Zingiber officiale PC3 Inhibition of cell growth [38]
PC3 and LNCaP Inhibition of cell growth [37]

Grapefruit Citrus paradisi PC3 Inhibition of cell growth [38]
Horsemint Menthalongifolia LNCaP Inhibition of cell growth [41]
Jasmine Jasminum grandiflora PC3 Inhibition of cell growth [38]

Kumquat Fortunella margarita LNCaP Inhibition of cell growth, induction of apoptosis, increased Bax/Bcl2 ratio, induced caspase-3
cleavage and inhibition of inflammation due to decreased expression of NFκB and Cox-2 [42]

Lavender
Lavandula stoechas

PC3 Inhibition of cell growth [38]
LNCaP Inhibition of cell growth [43]

Lavandula angustifolia PC3 and DU145 Inhibition of cell growth and migration, induction of apoptosis and cell cycle arrest [44]
Lavandula officialis PC3 Slight Inhibition of cell growth [45]

Lemon Citrus limon PC3 Inhibition of cell growth [38]
Lemon grass Cymbopogon citratus PC3 and LNCaP Inhibition of cell growth [46]
Lippia Lippia multiflora PC3 and LNCaP Inhibition of cell growth [37]

Mandarin Citrus reticluata PC3 Inhibition of cell growth, induction of apoptotic DNA fragmentation and ROS generation;
alterations in the expression of apoptotic and anti-apoptotic genes [47]

Mentrasto Ageratum conyzoides PC3 and LNCaP Inhibition of cell growth [37]
Mullein nightshade Salanum erianthum PC3 Inhibition of cell growth [48]
Myrtle Myrtus communis PC3 and DU145 Inhibition of cell growth and migration and induction of apoptosis [49]
Navel orange Citrus sinensis 22RV1 Inhibition of cell growth and induction of apoptosis [50]

Oregano Origanum vulgare PC3
Inhibition of cell growth; induction of apoptosis; cellular damage; DNA fragmentation;
enhanced Bax expression, cytochrome c release and caspase-3 activation; and decreased
Bcl2 expression

[51]

Peppermint Mentha piperita LNCaP Inhibition of cell growth [41]
Potato tree Salanum macranthum PC3 Inhibition of cell growth [52]
Rose Rosa centifolia PC3 Inhibition of cell growth [38]
Rosemary Rosmarinus officinalis LNCaP Inhibition of cell growth [53]
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Table 1. Cont.

Common Name Scientific Name Cell Line Effects References

Sage
Salvia aurea DU145 Inhibition of cell growth; induction of apoptosis; DNA fragmentation; increased LDH, caspase

activity, Bax/Bcl-2 ratio and ROS generation; and decreased GSH [54]

Salvia Judaica DU145 Inhibition of cell growth; induction of apoptosis; DNA fragmentation; increased LDH, caspase
activity, Bax/Bcl-2 ratio and ROS generation; and decreased GSH [54]

Salvia viscosa DU145 Inhibition of cell growth; induction of apoptosis; DNA fragmentation; increased LDH, caspase
activity, Bax/Bcl-2 ratio and ROS generation; and decreased GSH [54]

Spearmint Mentha spicata LNCaP Inhibition of cell growth [41]
PC3 Inhibition of cell growth [38]

Thyme Thymus vulgaris PC3 Inhibition of cell growth [38]
Tsauri grass Cymbopogon giganteus PC3 and LNCaP Inhibition of cell growth [46]

Turmeric Curcuma longa PC3 Inhibition of cell growth [52]
LNCaP Inhibition of cell growth [55]

Wild mint Menthaarvensis LNCaP Inhibition of cell growth [41]
Wild spikenard Hyptis suaveolens LNCaP Inhibition of cell growth and cell cycle arrest [56]

Achillea wilhelmsii PC3 Inhibition of cell growth [57]
Aloysia polystachya PC3 Inhibition of cell growth [58]
Amomum tsao-ko PC3 Inhibition of cell growth [59]
Anaxagorea brevipes PC3 Inhibition of cell growth [60]
Annona sylvatica PC3 Inhibition of cell growth [61]
Artemisia arborescens LNCaP and DU145 Inhibition of cell growth, DNA fragmentation and ROS generation [62]
Bursera glabrifolia PC3 Inhibition of cell growth [63]
Euodia ruticarpa PC3 Inhibition of cell growth [64]
Guatteria elliptica PC3 Inhibition of cell growth [65]

Hedychium spicatum PC3 Inhibition of cell growth, induction of apoptosis, cell cycle arrest, increased caspase activity,
Bax/Bcl-2 ratio and ROS generation [66]

Hedychium coccineum,
Hedychium
gardnerianum,
Hedychium greenii and
Hedychium.
griffithianum

PC3 Inhibition of cell growth [67]

Hypericum hircinum PC3 Inhibition of cell growth [68]
Iryanthera polyneura PC3 Inhibition of cell growth [69]
Liquidambar orientalis PC3 Inhibition of cell growth [70]
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Table 1. Cont.

Common Name Scientific Name Cell Line Effects References

Symphyopappus
itatiayensis, Myrciaria
floribundus, Talauma
ovata, Psidium
cattleyanum,
Nectandra
megapotamica

PC3 Inhibition of cell growth [71]

Guatteria pogonopus PC-3M Inhibition of cell growth [72]
Perralderia
coronopifolia PC3 Inhibition of cell growth [73]

Pinus mugo DU145
Inhibition of cell growth and constitutive STAT3 activation; decreased expression of cyclin D1,
Bcl-2, survivin, XIAP, Cox2 and IL-6; decrease in GSH levels and increase in ROS generation;
induced caspase-3 and PARP cleavage; and inhibition of cell migration

[74]

Zataria Multiflora PC3
Inhibition of cell growth, induction of apoptosis, DNA fragmentation, cell cycle arrest,
increased ROS generation and caspase activation, upregulation of Bax and downregulation of
Bcl-2 expression

[75]

Table 2. Essential oils’ constituents investigated for their in vitro anti-prostate cancer potential and the major resultsreported.

Constituent Plant Cell Line Effects References

α-humulene Salvia species LNCaP Inhibition of cell growth [76]

α-pinene Rosemary, lavender and
others PC3 and DU145 Inhibition of cell growth, induced apoptosis and cell cycle arrest [77]

β-Caryophyllene oxide Cinnamon, oregano, clove
and black pepper

PC3

Inhibition of cell growth; induced apoptosis by inhibiting PI3K/AKT/mTOR/S6K1
signaling; reduced mitochondrial membrane potential; cytochrome c release; activating
caspase-3; cleavage of PARP; ROS generation; downregulation of Bcl-2, Bcl-xL, survivin,
IAP-1, IAP-2 and cyclin D1; upregulation of p53 and p21; and downregulation of COX-2
and VEGF

[78,79]

DU145 Inhibition of cell growth and invasion and constitutive STAT3 activation [80]

β-elemene Curcuma and
Cymbopogon species PC3 and DU145 Inhibition of cell growth; induced apoptosis through cleaved caspase-3, caspase-9 and

increasing PARP levels; and downregulated and Bcl-2 [81]
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Table 2. Cont.

Constituent Plant Cell Line Effects References

Carvacrol Thyme, oregano
and others

DU145 Inhibition of cell growth, induction of apoptosis, cell cycle arrest increased caspase-3
activation and ROS generation [82]

PC3

Inhibition of cell growth; migration and invasion; induction of apoptosis increased
caspase activation and ROS generation; disruption of mitochondrial membrane
potential; cell cycle arrest; upregulation of Bax and downregulation of Bcl-2 expression;
decreased expression of Notch1, Jagged-1, cyclin D1 and CDK4; and increased
expression of p21

[83]

PC3 and DU145
Inhibition of cell growth, migration, and invasion; decreased TRPM7-like current and
reduced MMP-2 protein expression and F-actin dynamics; alterations of PI3K/Akt and
MEK/MAPK signaling pathways

[84,85]

Cinnamaldehyde Cinnamon
PC3 and LNCaP Inhibition of cell growth and proteasome activity; upregulated Hsp70 and

downregulated VEGF and VEGFR expression [86]

Prostate CAF Inhibition of cell growth, induction of apoptosis induction, cell cycle arrest, increased
ROS generation and caspase activation and decreased GSH levels [87]

Prostate CAF Relieves the immunosuppressive effects in a TLR4-dependent manner [88]

Cinnamic acid Cinnamon PC3 and LNCaP Inhibition of cell growth and proteasome activity; upregulated Hsp70 and
downregulated VEGF and VEGFR expression [86]

Citral Cymbopogon species PC3 and PC3M

Inhibition of cell growth, reduced clonogenic potential, induced morphological
alterations, expulsion of lipid droplets, activation of AMPK protein expression,
induction of apoptosis, DNA fragmentation, upregulation of Bax and downregulation of
Bcl-2 expression

[89]

Eugenol Cinnamon, clove
and others

DU145 Inhibition of cell growth [90]

PC3 and LNCaP Inhibition of cell growth and proteasome activity; upregulated Hsp70 and
downregulated VEGF and VEGFR expression [86]

Geraniol Cymbopogon species PC3

Inhibition of cell growth; increased LDH and caspase-3 activity; induced mitochondrial
membrane depolarization and cell cycle arrest at the G1 phase; reduced expressions of
cyclin A, B, D and E, CDK1 and CDK4, and Bcl-2 and Bcl-w; elevated expressions of p21
and p27 and Bax and BNIP3

[91]

Inhibition of cell growth, induced autophagy and inhibited AKT-mTOR signaling [92]
Downregulated the transcription factor E2F8 [93]

Limonene Citrus and Mentha species DU145
Inhibition of cell growth, induction of apoptosis, ROS generation, DNA fragmentation,
caspase-3 and caspase-9 cleavage, upregulation of p21, p53 and Bad, downregulation of
Bcl-xL and cleavage of PARP protein

[94]
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Table 2. Cont.

Constituent Plant Cell Line Effects References

Linalool Lavender, Salvia species
and others

PC3 and DU145 Inhibition of cell growth and migration, induction of apoptosis and cell cycle arrest [44]

22Rvl Inhibition of cell growth; induction of apoptosis; cell cycle arrest; increased expression of
Bax, Bcl-2, p53, DR4, DR5; and cleaved caspases [95]

Linalyl acetate Lavender, Salvia species
and others PC3 and DU145 Inhibition of cell growth and migration, induction of apoptosis and cell cycle arrest [44]

Menthol Mentha species

PC3, LNCaP and DU145 Inhibition of cell growth [96]
PC3 and LNCaP Inhibition of cell growth [97]

LNCaP Inhibition of cell growth [98]
DU145 Inhibition of cell growth and migration and cell cycle arrest [99]

Thymol Thyme PC3 and DU145 Inhibition of cell growth and induction of apoptosis [100]
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essential oils tested for anti-prostate cancer activity.

2. Methodology

This review follows the PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analysis) verification protocol [101]. The keywords used in the search for re-
ports were “Prostate cancer”, “Essential oil”, “Basil”, “Chamomile”, “Citrus”, “Turmeric”,
“Cymbopogon”, “Ginger”, “Jasmine”, “Lavender”, “Mentha”, “Myrtle”, “Oregano”, “Rose”,
“Rosemary”, “Salvia” and “Thyme”. The search was performed in the Pubmed, ScienceDi-
rect, WebOfScience and Scopus databases, focusing on the anti-prostate cancer activity of
EOs and their bioactive compounds.

The works that were considered eligible have met the following criteria for inclusion:
(1) retrospective experimental and clinical studies in human and mammal models and/or
cell lines, (2) research investigating the anti-prostate cancer activity of EOs, (3) works
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containing quantitative and qualitative data, (4) without any language restrictions, (5) pub-
lished between 2000 and 2023 and (6) manuscripts published in journals with impact
indexes. On the other hand, the works that were not considered eligible met the following
criteria for exclusion: (1) not meeting the objectives of this article, (2) university theses,
(3) book chapters or books and (4) review articles.

3. EOs and Their Bioactive Compounds Tested in PCa Cell Lines
3.1. Chamomile

Chamomile is one of the most common and well-known herbs widely used in medici-
nal applications and is from the Asteraceae family. It has been traditionally used to treat
several diseases due to its antioxidant, anti-inflammatory, antibacterial, antifungal, antipar-
asitic, insecticidal, antidiabetic and anti-tumoral activities. Chamomile EO is obtained from
flowers by steam distillation [102,103]. German chamomile (Matricaria chamomilla) and
Roman chamomile (Chamaemelum nobile, also called Anthemis nobilis) EOs mainly contain
the terpenoid α-bisabolol, and its oxides A and B, and chamazulene [103,104].

In a previous report, the cytotoxicity of chamomile (Anthemis nobilis) EO was evaluated
in the PC3 PCa cell line and it was found to generate a dose-dependent decrease in the
survival of cells with an IC50 value of 0.071% (v/v). At a concentration of 0.2% (v/v) the
EO exhibited strong cytotoxicity, showing cell viability lower than 4% [38]. A comparative
study has evaluated the viability of PC3, DU145 and LNCaP human PCa cells exposed to
aqueous and methanolic extracts of chamomile (Matricaria chamomilla). The aqueous extract
treatment resulted in a time- and dose-dependent reduction in cell viability for all the cell
lines studied, with IC50 values ranging from 2000 to 3000 µg/mL after 72 h of treatment.
Similar results were found in all the cells lines after treatment with the methanolic extract,
with IC50 values ranging from 100 to 200 µg/mL after 24 h treatments. In addition, the
exposure to both chamomile extracts for 48 h led to apoptosis in all PCa cell lines with the
formation of internucleosomal DNA fragments. Still, such treatments did not reduce the
viability nor induce apoptosis in virally transformed normal human prostate epithelial
PZ-HPV-7 cells [105].

3.2. Cinnamon

The Cinnamon genus belongs to the Lauraceae family and includes more than 250 species
of evergreen trees. It is a common spice that possesses several biological properties such as
antioxidant, anti-inflammatory, antibacterial, antifungal, anti-parasitic, antidiabetic and
antitumor characteristics [106,107]. Cinnamon (Cinnamomum zeylanicum, also called Cin-
namomum verum) EO is obtained by steam distillation, usually from the bark, and its main
components are cinnamaldehyde and eugenol [108,109].

The viability of PC3 PCa cells treated with cinnamon EO was determined by an MTT
essay. The results revealed a dose-dependent decrease in the survival of cells with an IC50
value of 0.012% (v/v) [38]. Another work demonstrated that aqueous cinnamon extract and
procyanidin B2 (PCB2), a hydrophilic component, induced a time- and dose-dependent
decrease in the viability of PC3 and LNCaP cells. Moreover, apoptosis occurred through
the inhibition of 26S proteasome activity, the induction of a dose-dependent increase in
caspase-3 activity, a decrease in Akt protein levels and a decrease in anti-apoptotic (Survivin
and XIAP) and angiogenic (VEGF and VEGF receptor) gene markers’ expression in both
cancer cells lines [110]. An HPLC analysis of this aqueous cinnamon extract revealed the
presence of high amounts of cinnamaldehyde [86].

Other relevant compounds that have been isolated from cinnamon include eugenol
and cinnamic acid. Cinnamaldehyde, eugenol and cinnamic acid compounds were able
to inhibit proteasome activity in both PC3 and LNCaP cells, resulting in an increase in
the expression of the chaperone protein (Hsp70), which negatively regulates the expres-
sion of FoxM1, an oncogenic transcription factor. In addition, cinnamon compounds
downregulated the expression of angiogenic factors (VEGF and VEGFR), acting as antian-
giogenic agents. The treatment of tumor cells with cinnamon compounds also led to a
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dose-dependent decrease in cell viability with IC50 values of 14.3 µM for cinnamaldehyde,
73.2 µM for eugenol and 6.2 µM for cinnamic acid [86]. Eugenol also inhibits the growth
of DU145 cells [90]. Other authors reported that cinnamaldehyde inhibited the growth of
PCa-associated fibroblasts (CAFs) in a dose-dependent manner, showing an IC50 value of
74.66 µM. Prostate CAFs play an important role in promoting carcinogenesis and the pro-
gression of prostate cancer. In addition to that, cinnamaldehyde induced apoptosis via cell
cycle arrest at the G2/M phase, increased ROS generation and decreased Glutathione (GSH)
levels and caspase activation on prostate CAFs [87]. It also relieved the immunosuppressive
effects on prostate CAFs in a Toll-Like Receptor 4 (TLR4)-dependent manner [88].

β-Caryophyllene oxide, a bicyclic sesquiterpene isolated from several EOs including
cinnamon EO, inhibited the growth of PC3 PCa cells in a time- and dose-dependent manner.
The sesquiterpene has also induced apoptosis by inhibiting PI3K/AKT/mTOR/S6K1
signaling, which reduced mitochondrial membrane potential and cytochrome c release,
activating caspase-3, the cleavage of PARP, ROS generation, the downregulation of anti-
apoptotic proteins (Bcl-2, Bcl-xL, survivin, IAP-1 and IAP-2), cell cycle protein cyclin
D1 and the upregulation of the tumor suppressor protein p53 and CDK inhibitor p21.
In addition, β-Caryophyllene oxide downregulated proteins linked with metastasis and
angiogenesis (COX-2 and VEGF) [78,79]. Another report showed that β-Caryophyllene
oxide inhibited the cell growth, invasion and constitutive STAT3 activation in DU145 cells.
The constitutive activation of STAT3 is often active and linked with proliferation, survival,
invasion, metastasis and angiogenesis in tumor cells [80].

3.3. Citrus Species

The genus Citrus (Rutaceae family) is one of the most ancient and popular crops [111].
Citrus fruit are a significant source of vitamins such as ascorbic acid. The biological activities
of citrus fruit include antioxidant, anti-inflammatory, antibacterial, antifungal, antitumor
activities and others. The use of their EOs as natural preservatives in the food industry has
been extensively studied [112]. Generally, the EOs of citrus fruit are obtained via a cold
pressing method from different parts of the plants, such as fruit peel and leaves, and are
mainly composed by limonene [109,112–115].

Mandarin (Citrus reticluata)-EO-treated PC3 PCa cells exhibited a dose-dependent
decrease in viability with an IC50 value of 10.97 µg/mL. In addition, mandarin EO induced
apoptotic DNA fragmentation, ROS generation and a decrease the expression of B-cell
lymphoma 2 (Bcl2) and Murine Double Minute 2 (MDM2) genes, while it increased the ex-
pression of the p53 and Bax genes [47]. Lemon (Citrus limon) and grapefruit (Citrus paradisi)
EO treatments in the PC3 cell line revealed a dose-dependent decrease in the survival of
cells with IC50 values of 0.083% and 0.094% (v/v), respectively [38]. A navel orange (Citrus
sinensis) EO treatment revealed a time- and dose-dependent inhibition of the proliferation
of 22RV1 cells by inducing apoptosis. Its IC50 values at 24, 48 and 72 h were 45.74, 42.83,
and 39.79 µg/mL, respectively [50]. Kumquat (Fortunella margarita) EO showed time- and
dose-dependent antiproliferative activity against LNCaP cells by inducing apoptosis and
the inhibition of inflammation. The treatment increased the Bax/Bcl2 ratio and induced
the cleavage of caspase-3, indicating induction of apoptosis. Additionally, it decreased
expression of inflammatory transcription factor NFκB and Cox-2, a downstream product of
NFκB, indicating its inhibition of inflammation [42].

Limonene, a hydrocarbon monoterpene present in several citrus oils, inhibited the
growth of DU145 cells in a dose-dependent manner with an IC50 value of 2.8 nM. In
combination with docetaxel, limonene has enhanced cell growth inhibition. Moreover,
this combined treatment induced ROS generation and enhanced apoptotic cell death by
inducing cytoplasmic histone-associated DNA fragmentation; caspase-3 and caspase-9
cleavage; the upregulation of p21, p53 and Bad; and the downregulation of Bcl-xL and
cleavage PARP protein. No effect on caspase-8 cleavage or on the expression of Bax and
Bcl-2 were observed [94].
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3.4. Turmeric

The genus Curcuma from the Zingiberaceae family is constituted by perennial rhi-
zomatous herbs and includes about 100 species [116]. Turmeric (C. longa) has been widely
explored as a coloring and flavoring agent, as well as in the pharmaceutical industry due to
its antioxidant, anti-inflammatory, antimicrobial, antiviral, antitumor, antidiabetic, antiasth-
matic, hypoglycemic, neuro- and dermoprotective and other properties. Its EO is obtained
from its rhizome and is mainly composed of α and β-turmerone [116,117].

Turmeric EOs obtained from C. longa rhizomes collected from 20 different habitats were
investigated for their cytotoxicity activity against LNCaP cells. It was revealed that they led
to an inhibition of cell growth with IC50 values ranging from 16.41 to 124.27 µg/mL [55].
Turmeric-EO-treated PC3 prostate cancer cells revealed an inhibition of cell growth with an
IC50 value of 97.94 µg/mL [52].

β-elemene reduced PC3 and DU145 cell growth in a time- and dose-dependent manner,
with IC50 values of 105, 102 and 96 µg/mL at 24, 48 and 72 h; and 75, 70 and 66 µg/mL at
24, 48 and 72 h, respectively. Treatment with β-elemene also induced apoptosis in a time-
and dose-dependent manner through cleaved caspase-3 and caspase-9, increased PARP
and Bcl-2 downregulation [81].

3.5. Cymbopogon Species

The Cymbopogon genus belongs to the Andropoganeae family and includes more than
144 species of aromatic grass plants comprising lemon grass (C. citratus), tsauri grass (C.
giganteus), citronella (C. nardus) and camel grass (C. schoenanthus). Cymbopogon species have
several biological activities such as antioxidant, anti-inflammatory, antibacterial, antifungal,
insecticidal and antitumor activities among others. Cymbopogon EOs are extensively
used in the fragrance, cosmetics, food and flavor industries. They are obtained by the
hydrodistillation of the species’ leaves and their main components are geraniol, citral and
citronellal, depending on the species [118].

Treatments with lemon grass and tsauri grass EOs in PC3 and LNCaP cells showed
that they act as antiproliferative agents. The IC50 values of lemon grass were 32.1 µg/mL for
PC3 cells and 6.34 µg/mL for LNCaP. Tsauri grass exhibited values around 303.2 µg/mL for
PC3 cells and 160.1 µg/mL for LNCaP [46]. Citronella EO also has antiproliferative activity
in LNCaP cells (IC50 values of 58 µg/mL), caused by cell cycle arrest at the G2/M phase
and changes in cell morphology [39]. Camel grass EO showed antiproliferative activity in
LNCaP cells (IC50 values of 135.53 µg/mL), which was associated with its anti-migration
property and cell cycle arrest in the G2/M phase [119].

Geraniol, an acyclic monoterpene, inhibited the cell growth of PC3 in the range of
0.25–1 mM. In the cells treated with geraniol, increased LDH and caspase-3 activity were
observed, as were induced mitochondrial membrane depolarization and cell cycle arrest at
the G1 phase. Additionally, the expressions of four cyclin isotypes (cyclin A, B, D, and E),
two CDK family members (CDK1 and CDK4) and two anti-apoptotic Bcl-2 family members
(Bcl-2 and Bcl-w) were reduced while the expressions of two CDK inhibitory proteins (p21
and p27) and two pro-apoptotic Bcl-2 family members (Bax and BNIP3) were noticeably
elevated in cells treated with geraniol. In addition, the geraniol treatment, in a PC3 cell
xenograft tumor in nude mice, efficiently suppressed tumor growth by inducing apoptosis
and cell cycle arrest [91]. Geraniol-treated PC3 cells also experienced induced autophagy,
inhibited AKT/mTOR signaling [92] and downregulated E2F8 transcription factor [93].

Citral, an acyclic monoterpene, when used as a treatment in PC3 and PC3M PCa cells,
inhibited cell viability in a dose-dependent manner with IC50 values of 10 and 12.5 µg/mL.
Citral treatment also reduced the cells’ clonogenic potential, induced morphological alter-
ations and the expulsion of lipid droplets by the activation of AMPK protein expression
and the subsequent downregulation of AMPK pathway genes such as SREBP1, ACC and
HMGR. In addition, the Citral treatment induced apoptosis via DNA fragmentation, the
upregulation of Bax and the downregulation of Bcl-2 expression [89].
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3.6. Ginger

Ginger (Zingiber officinale), a member of the Zingiberaceae family, is a common spice
used as a flavoring agent in beverages and food preparations. Ginger is also known to
possess many therapeutic uses such as antioxidant, anti-inflammatory, anti-microbial and
antitumor activities [120,121]. The EO of ginger is obtained from its rhizome and contains
mainly zingiberene, curcumene and farnesene molecules, in its complex mixture [121].

A ginger EO treatment in PC3 cells exhibited a dose-dependent cytotoxicity, showing
an IC50 value of 0.077% (v/v) [38]. Another work also showed the time- and dose-dependent
antiproliferative activity of ginger EO in PC3 and LNCaP cell lines, with IC50 values of
0.42 mg/mL and 0.38 mg/mL, respectively [37]. Moreover, the ginger extract treatment
was able to inhibit the proliferation of PC3 (IC50 of 250 µg/mL), LNCaP (IC50 of 75 µg/mL),
DU145 (IC50 of 95 µg/mL), C4-2 (IC50 of 512 µg/mL) and C4-2B (IC50 of 240 µg/mL) PCa
cells, while no effect was observed in normal prostate epithelial cells (PrEC). In addition, a
treatment with ginger extract led to cell cycle arrest in PC3 cells by decreasing cyclin D1,
cyclin E and CDK4 levels and increasing p21 and the CDK4 inhibitor. Additionally, a ginger
extract induced apoptosis in PC3 cells by increasing Bax and decreasing Bcl2 expressions,
releasing cytochrome c, increasing caspase-3 activity and cleaving PARP protein levels. In
LNCaP cells, ginger extract also led to cell cycle arrest and increased caspase-3 activity.
Mice treated with ginger extract had their tumor tissue suppressed and no detectable
toxicity in their normal tissues was reported [122].

3.7. Lavender

The genus Lavandula (Lamiaceae family) comprises herbs popularly known for re-
lieving stress, anxiety and depression. It also has other important therapeutic properties,
such as antioxidant, anti-inflammatory, antibacterial and antitumor activities [33,44,45].
Lavender EO is obtained from flower heads and foliage by steam distillation and its main
components are linalyl acetate and linalool molecules [123,124].

The cytotoxicity activity of lavender (L. stoechas) EO was evaluated in PC3 PCa cells.
A dose-dependent decrease in the survival of cells was found, with an IC50 value of 0.05%
(v/v) [38]. L. stoechas EO was also cytotoxic in LNCaP PCa cells [43]. PC3 cells were also
treated with lavender (L. officialis) EO and showed a slight reduction in the viability of
the cells [45]. A lavender (L. angustifolia) EO treatment in PC3 and DU145 cells revealed a
time-dependent decrease in the viability of cells, with IC50 values of 0.037% and 0.199%
(v/v), respectively. A treatment with the major components, linalyl acetate and linalool,
also showed a potent cytotoxicity against both cell lines, with IC50 values of 4.98 µM
and 11.74 µM in PC3 and 3.06 µM and 7.22 µM in DU145 cells, respectively. In addition,
EO, linalyl acetate and linalool treatments inhibited migration and induced apoptosis via
cell cycle arrest at the G2/M phase in PC3 and at the S phase in DU145 PCa cell lines.
Lavender EO and its components have also inhibited the tumor growth of human PCa
xenografts in mice [44]. Moreover, a linalool treatment inhibited the cell proliferation of
22Rvl PCa cells in a dose-dependent manner, showing an IC50 value of 3.38 mM. Linalool
has also induced apoptosis, cell cycle arrest at the G0/G1 phase and a significant increase
in expression of Bax, Bcl-2, p53, TRAIL receptors 1 (DR4), TRAIL receptors 2 (DR5) and
cleaved caspases. Treatment with linalool suppressed significantly the tumor growth of
human PCa xenografts in mice by inhibiting tumor cell proliferation and apoptosis [95].

3.8. Mentha Species

The genus Mentha belongs to the Lamiaceae family and possess more than 25 species
including M. arvensis (wild mint), M. piperita (peppermint), M. longifolia (horsemint) and M.
spicata (spearmint). The EOs and extracts from Mentha species have been used since ancient
times for the treatment of several gastrointestinal system diseases. These EOs are obtained
from the leaves and flowering aerial parts of these species and their main components are
carvone, limonene, menthone and menthol [41,124,125].
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The cytotoxicity of four Mentha species-based EOs has been assessed in LNCaP PCa
cells. All of them showed strong cytotoxicity against the cancer cell line, with IC50 values
of 55.7, 95.7, 52.0 and 90.0 µg/mL, respectively [41]. Another work has evaluated the
cytotoxicity of spearmint EO in PC3 cells and it a dose-dependent decrease in the survival
of cells was found, with an IC50 value of 0.088% (v/v) [38].

Menthol can evoke a cold sensation, mediated by cold-sensitive transient receptor
potential melastatin 8 (TRPM8). This receptor was found to be expressed at high levels in
several tumors, including PCa tissue and the PC3, LNCaP and DU145 culture cell lines [96].
Researchers have demonstrated a dose-dependent decrease in viability of PC3, LNCaP and
DU145 cells treated with menthol [96–99]. Menthol also inhibits DU145 cell migration and
induces cell cycle arrest at the G0/G1 phase [99]. On the other hand, the PC3 and LNCaP
cell cycles were not affected by menthol treatments [97]. Although all three tested cell lines
have expressed the TRPM8 receptor, menthol activity seems to not be mediated by the
TRPM8 pathway [96,97].

3.9. Rosemary

Rosemary (Rosmarinus officinalis), a member of the Lamiaceae family, has been used
as stimulant, analgesic and anti-inflammatory compound. Additionally, the pharmaco-
logical properties of rosemary include its antioxidant, antibacterial, antifungal, antiviral
and antiproliferative activities. Its EO is mainly composed of eucalyptol, α-pinene and
camphor [126].

A report has evaluated the cytotoxicity of rosemary EO in the LNCaP cell line and an
IC50 value of 180.9 µg/mL has been found [53]. Rosemary extract treatments in LNCaP
and 22Rv1 prostate cells inhibit cell growth (with IC50 values of 27 and 13.3 µg/mL,
respectively), induced cell cycle arrest at the G1/G2 phase and G2 phase, respectively,
and induced apoptosis by increasing the expression of Bax and cleaved caspase-3 [127].
Rosemary extract also inhibited cell growth, survival and migration, inducing apoptosis in
PC3 PCa cells, while it had no significant effect on the proliferation of PNT1A normal PCa
cells [128].

α-pinene, one of the most common terpenes of rosemary EO, possesses a strong
inhibitory effect on the growth of PC3 and DU145 PCa cells, with IC50 values of 2.9 and
5.8 µM, respectively. In addition, α-pinene induced apoptosis and cell cycle arrest at the
S phase in PC3 cells and at the G2/M phase in DU145. In xenograft tumors, α-pinene
suppresses, significantly, their growth and induces apoptotic cells death [77].

3.10. Salvia Species

The Salvia genus (Lamiaceae family) comprises about 1000 species that are herbaceous,
suffruticosus or shrubby perennial plants. Sage EO is commonly used as an analgesic,
anti-inflammatory, anti-viral, or antitumor compound, in the treatment of cardiovascular
and liver diseases, and in food and cosmetics industries, among other applications. Sage
EO is obtained via a steam distillation process and its main components are linalyl acetate
and linalool [129,130].

A group of researchers studied the effects of S. aurea, S. Judaica and S. viscosa EOs on
DU145 PCs cells. Treatment with the three EOs in the range of 12.5–50 µg/mL induced
a dose-dependent decrease in cell growth. However, only at 50 µg/mL was an increase
in lactate dehydrogenase (LDH) observed, indicating the induction of necrosis, cell death,
at this concentration. Furthermore, at 12.5 and 25 µg/mL, the EOs treatments caused
an increase in DNA fragmentation, caspase activity and the Bax/Bcl-2 ratio and, at all
three concentrations, it caused an increase in ROS generation and a decrease in GSH levels
in a dose-dependent manner [54]. Although an S. officialis EO treatment in the range of
5–400 µg/mL in LNCaP cells has no significant effect, treatment with the sesquiterpene
α-humulene showed high cytotoxicity with an IC50 value of 11.24 µg/mL [76].
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3.11. Thyme

The Thymus genus of the Lamiaceae family contains about 400 species of perennial
aromatic, evergreen or semi-evergreen herbaceous plants [131,132]. Thymus species have
been used to treat several cardiorespiratory and gastrointestinal diseases due to their
antioxidant, antibacterial, antifungal, antiviral and antispasmodic, among other, properties.
Moreover, thyme EO is used in food and cosmetics as an antioxidant and preservative [133].
It is a product obtained from the flowering tops of Thymus vulgaris or Thymus zygis, or both
species, by steam distillation. The main components found in thyme EO are thymol and
carvacrol [131,134,135].

A previous work has evaluated the cytotoxicity of Thyme (T. vulgaris) EO in the PC3
cell line and found a dose-dependent decrease in the survival of cells with an IC50 value
of 0.01% (v/v). At a concentration of 0.2% (v/v), the EOexhibited strong toxicity, showing
a cell viability lower than 4%. Compared to the other nine EOs evaluated in this study,
thyme EO showed the strongest cytotoxicity [38].

Studies have reported that thymol, a monoterpene phenol, has a cytotoxic effect on the
viability of PC3 and DU145 PCa cells. Thymol-treated cells, after 24, 48 and 72 h, showed
time- and dose-dependent decreases in cancer cell growth, exhibiting IC50 values of 711,
601 and 552 µM for PC3 and 799, 721 and 448 µM for DU145, respectively. Thymol has also
induced apoptosis in both cell lines in a dose-dependent manner, but the mechanism of
this action has not been elucidated yet. [100].

Carvacrol, a monoterpene phenol, was found to have antiproliferative and apoptotic
action against human PCa DU145 cells in a time- and dose-dependent manner, showing IC50
values of 84.39 µM and 42.06 µM after 24 and 48 h of treatment, respectively. Carvacrol has
also induced apoptosis via caspase-3 activation, an increase in ROS generation and cell cycle
arrest at the G0/G1 phase [82]. In PC3 cells, carvacrol revealed similar effects, inhibiting
proliferation, migration and invasion. Apoptosis acted in reducing cell viability with
the induced activation of caspase-3, -8 and -9, induced high levels of ROS, disrupted the
mitochondrial membrane potential, arrested the cell cycle at the G0/G1 phase, upregulated
Bax and downregulated Bcl-2 expression. In addition, carvacrol decreased the expression
of Notch1, Jagged-1, cyclin D1 and CDK4 and the increased expression of p21 [83].

Carvacrol also inhibits cell growth, migration and invasion in both PC3 and DU145
cell lines by decreasing the TRPM7-like current and reducing Matrix metalloproteinase-
2 (MMP-2) protein expression and F-actin dynamics. In addition, both the PI3K/Akt
and MEK/MAPK signaling pathways seems to be involved in the anticancer effects of
carvacrol [84,85]. Trindade et al. successfully complexed carvacrol with β-cyclodextrin
in order to enhance its solubility and anticancer activity. The resulting inclusion complex
reduced the cell viability and migration of PC3 PCa cells in a dose-dependent manner [136].

3.12. Other Species

Jasmine (Jasminum grandiflorum)- and rose (Rosa centifolia)-EO-treated PC3 cells re-
vealed a dose-dependent decrease in the survival of cells with IC50 values of 0.022% and
0.04% (v/v), respectively [38]. Oregano (Origanum vulgare) EO, which has a high content
of carvacrol, cymene and linalool, was successfully encapsulated in a nanoemulsion and
significantly inhibited the growth of PC3 PCa cells in a dose-dependent manner, with an
IC50 value of 13.82 µg/mL. A treatment with an oregano-based nanoemulsion also induced
apoptosis by causing cellular damage, DNA fragmentation, enhanced Bax expression,
cytochrome c release, caspase-3 activation and decrease in Bcl2 expression [51]. Myrtle
(Myrtus communis) EO induced a time- and dose-dependent decrease in the viability of PC3
and DU145 cells, while no effect was observed in normal PNT1A cells. In addition, myrtle
EO showed antimigratory and proapoptotic properties [49].

Bayala et al. evaluated the cytotoxicity of several EOs towards PC3 and LNCaP cell
lines. In addition to ginger, which has already been mentioned here, Ocimum basilicum,
Lippia multiflora and Ageratum conyzoides EO treatments showed strong antiproliferative
activity against both PCa cell lines. In PC3 cells, their IC50 values were 0.45, 0.30 and
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0.49 mg/mL, respectively, and in LNCaP cells they were 0.46, 0.58 and 0.35 mg/mL,
respectively. However, Ocimum americanum, Hyptis spicigera and Eucalyptus camaldulensis
EOs have shown no antiproliferative effects [37]. Hyptis suaveolens-EO-treated LNCaP cells
have showed a dose-dependent decrease in cell viability with an IC50 value of 163.01 µg/mL
and cell cycle arrest at the G0/G1 phase [56].

Zataria Multiflora EO, which is mainly composed of carvacrol, terpinene, cymene and
thymol, has inhibited the cell viability of PC3 PCa cells with an IC50 value of 26.3 µg/mL
after 48 h of treatment. It also has induced apoptosis by increasing ROS generation, DNA
fragmentation, cell cycle arrest at the G0/G1 phase, caspase activation, the upregulation of
Bax and the downregulation of Bcl-2 expression. A combined treatment with this EO and
doxorubicin improved the effects on PC3 cells in comparison to the pure drug [75].

Hedychium spicatum EO, mainly composed of β-pinene and eucalyptol, has inhibited
the viability of PC3 cells in dose-dependent manner with an IC50 value of 21.88 µg/mL. It
also induced apoptotic cell death, cell cycle arrest at the G2/M and S phases, intracellular
ROS accumulation, mitochondria depolarization and increased caspase-3, -8, and -9 levels.
In addition, an H. spicatum EO decreased Bcl-2 and Bcl-xL and increased Bax and Bak
protein levels [66]. Other species, Hedychium genus, H. coccineum, H. gardnerianum, H. greenii
and H. griffithianum, also showed antiproliferative activity against PC3 cells [67].

EOs obtained from the flowers and leaves of Artemisia arborescens have shown in-
hibitory growth activity against LNCaP and DU145 with IC50 values of 5.6–6.1 and
5.1–5.7 µg/mL, respectively. They have also induced DNA fragmentation and increased
ROS levels [62].

An EO from Xylopia frutescens leaves, which is rich in E-caryophyllene and commonly
known as embira, showed cytotoxic activity against PC-3M-metastatic PCa cells, with an
IC50 value of 40 µg/mL [40]. An EO from the leaves of Guatteria pogonopus, which is mainly
composed of γ-patchoulene, (E)-caryophyllene and β-pinene, showed similar results, with
an IC50 value of 17.0 µg/mL [72].

Pinus mugo EO, which has a high content of β-caryophyllene, bornyl acetate and
α-pinene, inhibited the viability of DU145 cells in time- and dose-dependent manner with
an IC50 value less than 50 µg/mL. Their constitutive STAT3 activation signaling cascade
was down-modulated, which decreased the expression of anti-proliferative as well as anti-
apoptotic genes and proteins such as cyclin D1, Bcl-2, survivin, XIAP, Cox2 and IL-6. It also
induced a quick decrease in GSH levels and an increase in ROS generation. In addition,
apoptotic cell death was induced by caspase-3, and PARP cleavage induction and cell
migration were inhibited in a dose-dependent manner [74].

Abies balsamea [36], Symphyopappus itatiayensis, Myrciaria floribundus, Talauma ovata, Psid-
ium cattleyanum, Nectandra megapotamica [71], Amomum tsao-ko [59], Solanum erianthum, Solanum
macranthum [48], Achillea wilhelmsii [57], Annona sylvatica [61], Hypericum hircinum [68], Anaxagorea
brevipes [60], Guatteria elliptica [65], Bursera glabrifolia [63], Iryanthera polyneura [69], Aloysia
polystachya [58], Euodia ruticarpa [64], Perralderia coronopifolia [73] and Liquidambar orientalis [70]
EOs demonstrated antiproliferative activity in PC3 PCa cells. In contrast, Emani et al. evaluated
a Nepeta cataria EO (15–500 µg/mL) treatment in PC3 and DU145 PCa cells and no significant
effect was observed [137]. Clove (Syzygium aromaticum) EO, which has a high content of eugenol
and β-caryophyllene, also showed no significant effect on the DU145 cell line in the range of
100–300 µL/mL [138]. The same was found for an Anemopsis californica EO treatment for PC3
cells [139].

4. Conclusions

PCa is the second most prevalent cancer in men worldwide and its treatment options
remain limited. EOs are natural products that have been used in medicine since ancient
times. Due to their wide chemical diversity, they possess several therapeutic properties,
including anticancer activity.

Several EOs have been tested for their anti-prostate cancer property, such as chamomile,
cinnamon, Citrus species, turmeric, Cymbopogon species, ginger, lavender, Mentha species,
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rosemary, Salvia species, thyme and other species, and shown to inhibit cell growth and
migration, induce apoptosis, modulate the expression of apoptotic and anti-apoptotic genes
and suppress angiogenesis. The major therapeutic compounds of these EOs have also been
tested for anti-prostate cancer properties and showed similar results.

EOs and their constituents may be promising candidates for cancer treatments since
they have potent therapeutic effects and are biocompatible, abundant and cheaper than cur-
rent chemotherapeutics. In addition, novel anticancer compounds should be investigated
in EOs’ molecular structures to contribute to the search for novel bioactives for innovative
pharmaceutical preparations for anti-prostate cancer therapies.

5. Perspectives

There are many works that provide relevant results regarding EOs effects as a can-
didate treatment for several diseases, but clinical tests are still scarce. As observed, for
PCa, there are very few in vivo tests and no clinical trials. The most challenging aspects
of EOs, which limit their clinical use, are their highly lipophilic nature, physicochemical
instability, photosensitivity and high volatility. The processing of EO-based products in the
pharmaceutical field may be a good alternative to circumvent EOs limitations, resulting in
the benefit of their therapeutic properties. New technologies for EO-based drug delivery
system, such as nanoencapsulation, should be considered to ensure its high bioavailability
and, consequently, its therapeutic effects. Different nanosystems could be developed, such
as nanoemulsions, liposomes, lipid nanoparticles (SLN/NLC), polymer nanocapsulesand
cyclodextrin. Although they are different nanocarriers, all of them have the ability to
upload hydrophobic molecules with success. Therefore, they can offer physical protection
to EO together with their nanometric particle sizes, which improve EOs solubility and
prevent their degradation, hydrolysis and evaporation, allowing their safe and efficient
administration via different routes.

However, more efforts are still necessary in order to develop stable, scaled-up, bio-
compatible and efficient EO-based nanosystems. Another challenge in the use of EOs in
disease treatments is their composition variability, due to the difficulty of standardizing
the composition of bioactive compounds whichcurrently limits their use to only as adju-
vant therapy. Identifying the bioactive compound, its therapeutic effect and its chemical
structure could open perspectives for novel research in this field. Chemical synthesis or
biotechnological drug production strategies can provide accurate, safe and sustainable
sources of these bioactive, allowing for their use in gold-standard therapies.

We hope that this review can stimulate further research in this field in order to provide
promised PCa treatments in the close future.
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