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Abstract: Uptake transporters (e.g., members of the SLC superfamily of solute carriers) 

and export proteins (e.g., members of the ABC transporter superfamily) are important 

determinants for the pharmacokinetics of drugs. Alterations of drug transport due to 

concomitantly administered drugs that interfere with drug transport may alter the kinetics 

of drug substrates. In vitro and in vivo studies indicate that many drugs used for the 

treatment of metabolic disorders and cardiovascular diseases (e.g., oral antidiabetic drugs, 

statins) are substrates for uptake transporters and export proteins expressed in the intestine, 

the liver and the kidney. Since most patients with type 2 diabetes receive more than one 

drug, transporter-mediated drug-drug interactions are important molecular mechanisms 

leading to alterations in oral antidiabetic drug pharmacokinetics with the risk of adverse 

drug reactions. This review focuses on uptake transporters of the SLCO/SLC21 (OATP) 

and SLC22 (OCT/OAT) family of solute carriers and export pumps of the ABC  

(ATP-binding cassette) transporter superfamily (especially P-glycoprotein) as well as the 

export proteins of the SLC47 (MATE) family and their role for transporter-mediated  

drug-drug interactions with oral antidiabetic drugs.  
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1. Introduction 

 

Drug effects result from the interplay of multiple processes that influence drug absorption, 

metabolism and excretion as well as drug response. Although, in past decades, most studies have 

focused on the importance of drug metabolizing enzymes (e.g., cytochrome P450 monooxygenases), in 

recent years it became evident that, in addition, transport proteins located in distinct membrane 

domains are important for drug effects. Furthermore, since all metabolizing enzymes are located 

intracellularly, the uptake of drugs from the extracellular space across the plasma membrane into the 

cell is a prerequisite for subsequent metabolism. Generally, transport proteins can be subdivided into 

two major groups: uptake transporters, mediating the transport of substances and drugs from the 

outside into cells and export proteins responsible for the translocation of substances or drugs and drug 

metabolites out of cells. 

Uptake transporters mostly belong to the superfamily of solute carriers (SLCs [1]). Today, the SLC 

superfamily is comprised of 378 different transport proteins grouped into 51 different transporter 

families. For detailed information on the SLC superfamily see [2]. Important transporter families 

within the SLC transporter superfamily are the SLC21/SLCO family, the SLC22 family and the 

SLC10 family. Organic anion transporting polypeptides (OATPs) are members of the SLC21/SLCO 

family [3–7] whereas organic cation transporters (OCTs) and organic anion transporters (OATs) are 

members of the SLC22 family [8]. This review describes oral antidiabetic drugs and transporter-

mediated drug-drug interactions and we especially focus on the uptake transporters OATP1B1 (gene 

symbol: SLCO1B1), OATP1B3 (SLCO1B3) and OATP2B1 (SLCO2B1) of the SLC21/SLCO family, 

the SLC22 family members OCT1 (SLC22A1), OCT2 (SLC22A2) and OCT3 (SLC22A3) and the 

sodium-dependent bile salt transporter NTCP belonging to the SLC10 family. In human hepatocytes 

(Figure 1), the OATP family members OATP1B1 and OATP1B3 are predominantly, if not 

exclusively, expressed [9–11]. OATP2B1, the third highly expressed hepatic OATP, is also expressed 

in enterocytes (Figure 1) of the intestinum [12] and in several other tissues such as the heart [13]. The 

SLC22 family members OCT1 and OCT3 [14–16] as well as the SLC10 family member NTCP are 

also expressed in hepatocytes [17]. In addition, the presence of OCT2 and OCT3 in renal epithelial 

cells has been demonstrated (Figure 1; [18]). 
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Figure 1. Uptake and export transporters involved in the intestinal absorption (enterocyte) 

and the hepatic (hepatocyte) and renal (renal epithelium) excretion of oral antidiabetic 

drugs. Uptake transporters (red): OATP = members of the organic anion transporting 

polypeptide family; OCT = members of the organic cation transporters; export transporters 

(blue): MRP2 = multidrug resistance protein 2; BSEP = bile salt export pump;  

BCRP = breast cancer resistance protein; P-gp = P-glycoprotein; MATE = members of the 

multidrug and toxin extrusion protein family. 

 
 

Substrates for OATP1B1, OATP1B3 and OATP2B1 include several endogenously synthesized 

organic anions such as bile salts and hormone metabolites as well as widely prescribed drugs like 

HMG-CoA-reductase inhibitors (statins, e.g., atorvastatin [19–21]) and antibiotics (e.g., 

benzylpenicillin [22]). Physiological substrates of OCTs include hormones (e.g., corticosterone [23]) 

and neurotransmitters (e.g., epinephrine [23]) whereas OAT3 transports cAMP [24] and cGMP [25]. 

Drugs transported by OCTs include antineoplastic agents (cisplatin [26,27]) as well as the antidiabetic 

drug metformin [28]. Interestingly, the sodium-dependent bile salt transporter NTCP also transports 

drugs as it has been demonstrated for the HMG-CoA-reductase inhibitor rosuvastatin [29]. 

Efflux transporters mainly belong to the ATP-binding cassette (ABC) transporter family [30–33]. 

These export pumps use energy derived from ATP hydrolysis to mediate substrate transport, often 

against a concentration gradient. Today, the human ABC superfamily consists of 49 different ABC 

transporters grouped into 6 different ABC families [ABCA–ABCG (for detailed information see [34]). 

In the focus of the review are the ABCB family member P-glycoprotein (P-gp, ABCB1, [35]), the bile 
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salt export pump BSEP (ABCB11) and the ABCG family member BCRP (ABCG2). P-gp and BCRP 

are expressed in enterocytes, hepatocytes and renal epithelial cells (Figure 1; [36–38]), whereas the 

expression of BSEP is restricted to hepatocytes (Figure 1; [39]).  

P-gp is the best characterized human drug transporter with a very broad substrate spectrum 

transporting a variety of different drugs [40–42]. The ABCG family member BCRP, transports several 

endogenous compounds and is further capable of transporting a variety of different drugs including 

statins, calcium channel blockers and antivirals [43]. 

The MATE transporter family (multidrug and toxin extrusion; gene symbol SLC47) consists of two 

members, MATE1 (SLC47A1) and MATE2 [MATE2-K (SLC47A2)], which are localized to apical 

membrane domains. Whereas human MATE1 is strongly expressed in liver and kidney (Figure 1) and 

to a lesser extent in several other tissues including skeletal muscle and testis [44,45], MATE2 is almost 

exclusively expressed in the kidney and localized in the luminal membrane of proximal tubular 

epithelial cells. In contrast to the ATP-driven ABC transporters, MATE proteins are electroneutral 

transporters using an oppositely directed proton gradient as driving force (Figure 1). MATE1 and 

MATE2 have similar substrate and inhibitor specificities which overlap with those of OCTs. 

Endogenous substrates include organic cations (e.g., creatinine, guanidine) as well as clinically used 

drugs such as the antimalarial drug quinine [45,46], the antineoplastic agent cisplatin [27] and the 

antidiabetic drug metformin [46]. Detailed information on tissue distribution and substrate spectrum of 

the respective uptake and export transporters are summarized in the mentioned reviews [8,14,33,47].  

After administration and passage through the intestine, oral antidiabetic drugs have to be taken up 

from the portal venous blood via the basolateral membrane into hepatocytes before they are 

metabolized, cause drug effects via intrahepatic mechanisms or are transported back into the systemic 

circulation for extrahepatic effects. So far, little is known on the involvement of oral antidiabetic drugs 

into intestinal transporter-mediated drug-drug interactions [48]. The characteristics of some widely 

used oral antidiabetic drugs together with their mode of action, metabolizing enzymes and transport 

proteins relevant for their membrane translocation or drug-drug interactions are summarized in Table 

1. Since patients with type 2 diabetes are commonly treated with more than one drug (in most cases 

one or more oral antidiabetic drug and additionally a statin and an antihypertensive drug), it is essential 

to understand the molecular mechanisms underlying drug-drug interactions, which might cause 

changes in the effect or the pharmacokinetics of these drugs. Aside from metabolizing  

enzymes [49–52] it is now well established that also modification of transport function is involved in 

these drug-drug interactions. Therefore, the role of transport proteins for drug-drug interactions with 

frequently used oral antidiabetic drugs presented in table 1 are in the focus of this review.  
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Table 1. Characteristics of selected oral antidiabetic drugs.  

Oral antidiabetic 
drugs 

Characteristi
cs 

Action Elimination#  Metabolism 
Transporters
+ References 

Glibenclamide 
 
 
 
 
Glimepiride 

Sulfonylurea 
derivatives, 
insulin 
secretagogues 
 

Stimulation of 
insulin secretion 
from pancreatic β-
cells by binding to 
ATP-dependent 
potassium 
channels 
Side effects: 
weight gain, 
hypoglycaemia 

Renal (50%)a

Biliary (50%)a 

 
 
 
Renal (60%)b 

Biliary (40%)b 

CYP2C9 OATP2B1 
P-gp 
BCRP 
 

 
- 

[53,54]  
[55,56] 
[55,57] 
 
 
[58,59] 
 
 [60,61]* 

CYP2C19 
CYP3A4 
 
 
CYP2C9 
 
 

Repaglinide 
 
 
 
Nateglinide 

Meglitinide 
derivatives, 
insulin 
secretagogues 
 

Stimulation of 
insulin secretion 
from pancreatic ß-
cells by binding to 
ATP-dependent 
potassium 
channels 
Side effects: mild 
hypoglycaemiac, d 

Renal (<8%)c

Biliary (90%)c 

 
 
Renal (83%)d 

Biliary (10%)d 

CYP2C8 
CYP3A4 
 
 
CYP2C9 
CYP3A4 
 
 

OATP1B1 
OATP1B3 
 

 
- 

[62,63]  
[62,64] 
 
 
[65,66] 
[65] 
[67]* 

Rosiglitazone 
 
 
 
 
 
Pioglitazone 
 
 
 
 
Troglitazone 

Tiazolidine-
diones, 
insulin 
sensitizers 

Peroxisome 
proliferator-
activated receptor 
γ agonists (PPAR) 
Side effects: fluid 
retention, 
increased 
incidence of heart 
failure and fracture 
risk; 
hepatotoxicity 
(troglitazone) 

Renal (65%) 
Biliary (30%) 
[68] 
 
 
 
Renal (45%)e 

Biliary (55%)e 

 
 
 
Renal (3%) 
Biliary (85%) 
[69] 

CYP2C8 
CYP2C9 
 
 
 
 
CYP2C8 
CYP3A4 
 
 
 
CYP3A4 
CYP2C8 

OATP1B1 
OATP1B3 
BCRP 
P-gp 
 
 
OATP1B1 
OATP1B3 
 
 
 
OATP1B1 
OATP1B3 
BCRP 
P-gp 
BSEP 
 

[64,70]  
[58,64]  
[71] 
[72] 
 
 
[73,74] 
[58,74] 
 
 
 
[58,74] 
[58,75] 
[76] 
[76] 
[77] 
[78–81]*  

Metformin Biguanide Activation of 
AMP-activated 
protein kinase 
(AMPK) and 
suppression of 
glucagon-
stimulated glucose 
production, 
increase in glucose 
uptake in muscle 
and hepatic cells 
Side Effect: lactic 
acidosis 

Biliary 
(100%)f 

       
- 

OCT1-3 
MATE1-2 

[15,82]  
[46,58]  
[83–86]* 
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Table 1. Cont. 

Sitagliptin Dipeptidyl 
peptidase-4 
inhibitor 
(DDP-4) 
 

Prolongation of 
Glucagon-like 
peptide 1 (GLP-1) 
action by 
inhibition of DPP-
4 
Side effects: 
nausea, 
hypoglycaemiag 

Renal (87%)g

Biliary (13%)g 
- OCT1-2 

OAT3 
P-gp 
 

[87] 
[88] 
[88] 
[89]* 

* References refer to general characteristics of the respective oral antidiabetic drug(s); + Oral antidiabetic 

drug is substrate and/or inhibitor of the respective transporter; # according to the Summary of Product 

Characteristics—SPC (Fachinformation) if not stated otherwise; a Glibenclamide (Euglucon) product 

information, Sanofi-Aventis GmbH, Frankfurt a. M., Germany, 2008 b Glimepiride (Amaryl) product 

information, Sanofi-Aventis GmbH, Frankfurt a. M., Germany, 2006 c Repaglinide (NovoNorm)product 

information, Novo Nordisk Pharma AG, Küsnacht, Switzerland, 2010; d Nateglinide (Starlix) product 

information, Novartis Pharma GmbH, Nürnberg, Germany, 2009; e Pioglitazone (Actos) product information, 

Takeda Pharma, Aachen, Germany, 2010; f Metformin (Glucophage) product information, Merck Pharma 

GmbH, Darmstadt, Germany, 2006; g Sitagliptin (Januvia) product information, MSD Shark & Dohme 

GmbH, Haar, Germany, 2010. 

 

2. Oral Antidiabetic Drugs and OATPs 

 

OATP1B1, OATP1B3 and OATP2B1 are localized in the basolateral membrane transporting 

substances and drugs from the portal venous blood into hepatocytes [4,47]. OATP2B1 is further 

expressed in enterocytes and localized there to the luminal membrane mediating the uptake of 

substances and drugs from the intestinal lumen into the body [12]. Several drugs have been identified 

as substrates for these OATPs including antibiotics and HMG-CoA-reductase inhibitors (statins) 

[5,10]. Repaglinide was one of the first oral antidiabetic drugs shown to interact with hepatic OATPs. 

More indirect evidence for the involvement of OATP1B1 in repaglinide pharmacokinetics has been 

published by Niemi and colleagues [52]. In this study they investigated the in vivo effect of 

cyclosporine, a known inhibitor of CYP3A4 and OATP1B1 on the pharmacokinetics and 

pharmacodynamics of repaglinide. They found that cyclosporine raised the plasma concentrations of 

concomitantly administered repaglinide probably by inhibiting its OATP1B1-mediated hepatic uptake 

and the subsequent metabolism by CYP3A4. In the same year the authors published a second in vivo 

study [63] demonstrating that a polymorphic variant of the OATP1B1 protein is a major determinant 

of the interindividual variability in the pharmacokinetics of repaglinide. Interestingly, polymorphic 

variants of the OATP1B1 protein seem not to have a significant effect on nateglinide, the second 

frequently used meglitinide derivative [66] and did not influence the pharmacokinetics of rosiglitazone 

or pioglitazone [90]. Based on these observations, Bachmakov et al. investigated the effect of 

repaglinide and rosiglitazone on OATP1B1-, OATP1B3- and OATP2B1-mediated transport in vitro 

[64]. Using stably transfected HEK cells recombinantly overexpressing these OATP family members 

and BSP as prototypic substrate, they found that both rosiglitazone and repaglinide inhibited the 

uptake mediated by these three transporters (Figure 2). Both oral antidiabetic drugs showed a potent 

uptake inhibition with IC50 values around 10 µM. In the same study they also used pravastatin as 

substrate for OATP1B1 and OATP1B3 and they demonstrated that repaglinide at a concentration of  
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10 µM significantly inhibited OATP1B1-mediated pravastatin uptake, whereas the pravastatin uptake 

by OATP1B3 was only slightly reduced and significantly inhibited only at a repaglinide concentration 

of 100 µM (Figure 3). An interesting observation was made analyzing the effect of rosiglitazone on 

OATP1B1- and OATP1B3-mediated pravastatin uptake. Whereas repaglinide at a concentration of  

10 µM inhibited the uptake, rosiglitazone at the same concentration stimulated pravastatin uptake by 

OATP1B1 and OATP1B3 and at the same time shows inhibition only at the highest tested 

concentration of 100 µM (Figure 3). This demonstrated that not only uptake inhibition but also 

stimulation of drug uptake could be a result of drug-drug interactions. Recently, this stimulatory effect 

has been analyzed in detail using pravastatin as substrate and non-steroidal anti-inflammatory drugs as 

interacting substances [91]. In this study the authors showed that ibuprofen stimulated OATP1B1- and 

OATP1B3-mediated pravastatin uptake likely by an allosteric mechanism without being transported. 

In the case of rosiglitazone one can assume that at low concentrations the uptake of pravastatin can be 

stimulated by acting as allosteric modulator and that only at high substrate concentrations a 

competitive inhibition can be detected. However, the clinical relevance of these findings remains to  

be clarified. 

 

Figure 2. Inhibition of OATP1B1- (top), OATP1B3- (middle) and OATP2B1-mediated 

(bottom) BSP uptake by the oral antidiabetic drugs rosiglitazone (left) and repaglinide 

(right). Data are shown as the percentage of BSP uptake (0.05 µM BSP for OATP1B1- and 

1 µM BSP for OATP1B3- and OATP2B1-mediated transport; modified from [64]) in the 

absence of the respective drug. 
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Figure 3. Inhibition of OATP1B1- (top) and OATP1B3-mediated (bottom) pravastatin 

uptake (50 µM) by the oral antidiabetic drugs repaglinide (Repa) and rosiglitazone (Rosi). 

Data are shown as the percentage of OATP1B1- or OATP1B3-mediated pravastatin uptake 

in the absence of the respective drug (without). *P < 0.05; **P < 0.01 vs. control. 

(modified from [64]). 

 

 

Glibenclamide is a frequently prescribed insulin secretagogue stimulating the insulin secretion from 

pancreatic β-cells. It is extensively metabolized by CYP2C9, CYP2C19 and CYP3A4 [53,55] and 

seems to be a substrate for OATP2B1 [54]. Using HEK cells overexpressing OATP2B1 Satoh et al. 

have shown that grapefruit and citrus juice inhibited OATP2B1-mediated glibenclamide uptake [54]. 

Since OATP2B1 is also localized in the apical membrane of enterocytes this may result in a reduced 



Pharmaceutics 2011, 3    

     

688

intestinal absorption of orally administered glibenclamide and of other drugs that are substrates of 

OATP2B1. Interestingly, this could not be confirmed in an in vivo study analyzing the effect of 

clarithromycin and grapefruit juice on the pharmacokinetics of glibenclamide [92]. In this study  

12 subjects ingested 250 mg clarithromycin or placebo with 200 mL grapefruit juice three times daily. 

On day three, they ingested in addition 0.875 mg glibenclamide with sugar water or grapefruit juice 

and the concentrations of glibenclamide and clarithromycin in plasma, glucose in blood and excretion 

of the metabolite hydroxyglibenclamide in urine were measured. These analyses demonstrated that 

clarithromycin increased plasma concentrations of glibenclamide, maybe by inhibiting  

OATP2B1-mediated uptake and CYP3A4 metabolism in the intestine, but no effect of grapefruit juice 

on glibenclamide pharmacokinetics could be detected. The results of this study were confirmed in a 

study by Niemi et al. demonstrating that clarithromycin also increases the plasma concentrations and 

effects of simultaneously administered repaglinide [49].  

An interaction of atorvastatin with glibenclamide has been demonstrated using MDCK cells stably 

expressing OATP2B1 [13]. In this study the authors investigated the expression of OATP2B1 in 

human heart samples and analyzed OATP2B1-mediated atorvastatin and glibenclamide transport and 

transport inhibition by simultaneously administered drugs. They demonstrated that  

OATP2B1-mediated glibenclamide transport was inhibited not only by atorvastatin but also by 

simvastatin, cerivastatin and estrone-3-sulfate (E3S), whereas OATP2B1-mediated E3S uptake was 

inhibited by gemfibrozil. A potential hazardous interaction between gemfibrozil and repaglinide has 

been described in 2003 by Niemi and coworkers [50]. It was shown that this interaction persists for at 

least 12 h after administration of gemfibrozil [93] suggesting that not only the inhibition of uptake 

transporters but also the inhibition of the drug metabolizing enzyme CYP2C8 might by important for 

this drug-drug interaction. Another study investigated the effects of atorvastatin on repaglinide 

pharmacokinetics in relation to SLCO1B1 polymorphism and it could be demonstrated that atorvastatin 

raises repaglinide plasma concentration, probably by inhibiting OATP1B1 [94]. Other OATP-related 

drug-drug interactions with oral antidiabetic drugs are summarized in Table 2. Taken together, these 

analyses revealed that OATPs are important molecular targets of transporter-mediated drug-drug 

interactions since their substrate spectrum includes a variety of frequently prescribed drugs often 

administered concomitantly with oral antidiabetic drugs. 
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Table 2. Selected human solute carriers (SLC) and ATP-binding cassette (ABC) transporters involved in interactions with oral antidiabetic drugs. 

Oral antidiabetic drug Inhibitor/victim compound In vivo/in vitro Effect CYP Transporters Reference(s) 

Glibenclamide 5-CFDA in vitro Inhibition of 5-CFDA efflux - MRP1-3 [57] 

 8-FcA in vitro Inhibition of 8-FcA uptake (IC50 = 1.1 and 2.7 µM) - OATP1B1, OATP1B3 [95] 

 Atorvastatin in vitro Inhibition of atorvastatin uptake - OATP2B1 [13] 

 Atorvastatin in vitro Inhibition of glibenclamide uptake  - OATP2B1 [13] 

 Calcein in vitro Inhibition of calcein efflux - MRP1 [96] 

 Cerivastatin in vitro Inhibition of glibenclamide uptake  - OATP2B1 [13] 

 Clarithromycin in vivo Cmax and AUC of glibenclamide ↑ CYP3A4 P-gp [92] 

 Colchicine in vitro Increased intracellular accumulation of colchicine - P-gp [56] 

 Estrone-3-sulfate in vitro Inhibition of E3S uptake - OATP2B1 [13] 

 Estrone-3-sulfate in vitro Inhibition of glibenclamide uptake  - OATP2B1 [13] 

 Fumitremorgin C in vitro Increased intracellular accumulation of glibenclamide - BCRP [97] 

 GCDC in vitro Inhibition of GCDC transport (IC50 = 7.6 µM) - BSEP [77] 

 Ginkgo leaf extract in vitro Inhibition of glibenclamide uptake (IC50 = 15.4 µg/mL) - OATP2B1 [98] 

 Glycocholate in vitro Inhibition of glycocholate transport (IC50 = 18.8 µM) - BSEP [77] 

 Grapefruit juice in vitro Inhibition of glibenclamide uptake - OATP2B1 [54] 

 Grapefruit juice in vivo No effect on glibenclamide pharmacokinetics -  - [92] 

 Green tea extract in vitro Inhibition of glibenclamide uptake (IC50 = 24.6 µg/mL) - OATP2B1 [98] 

 Indomethacin in vitro Decreased glibenclamide uptake in IOVs  - MRP1 [72] 

 Indomethacin in vitro Increased intracellular accumulation of glibenclamide - MRP3 [57] 

 KO143 in vitro Decreased glibenclamide uptake in IOVs - BCRP [72] 

 Nicardipine ex vivo a Increase in mean fetal-to-maternal concentration ratio - BCRP [99] 

 Novobiocin in vitro Increased intracellular accumulation of glibenclamide - BCRP [57,100] 

 Orange juice in vitro Inhibition of glibenclamide uptake - OATP2B1 [54] 

 Pitavastatin in vitro Inhibition of pitavastatin uptake - OATP1B1  [101] 

 Rhodamine 123 in vitro Inhibition of rhodamine 123 efflux - P-gp [57] 

 Rifampin in vivo AUC of glibenclamide ↑ 2.3-fold - OATP1B1 [102] 

 Simvastatin in vitro Inhibition of glibenclamide uptake  - OATP2B1 [13] 
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Table 2. Cont. 

 Taurocholate in vitro Inhibition of taurocholate uptake - NTCP [103] 

 Taurocholate in vitro Increased intracellular accumulation of taurocholate - BSEP [103] 

 Taurocholate in vitro Inhibition of taurocholate transport (Ki = 27.5 µM) - BSEP [104] 

 Taurocholate in vitro Inhibition of taurocholate transport (IC50 = 14.7 µM) - BSEP [77] 

 TCDC in vitro Inhibition of TCDC transport (IC50 = 15.8 µM) - BSEP [77] 

 Verapamil in vitro Decreased glibenclamide uptake in IOVs  - P-gp [72] 

Glimepiride Gemfibrozil in vivo AUC of Glimepiride ↑ 23% CYP2C9  - [59] 

Metformin Amprenavir in vitro Inhibition of metformin uptake - OCT2, MATE1 [105] 

 Bisoprolol in vitro Inhibition of metformin uptake (IC50 = 2.4 µM) - OCT2 [106] 

 Carvidolol in vitro Inhibition of metformin uptake (IC50 = 2.3 µM) - OCT2 [106] 

 Chloroquine in vitro Inhibition of metformin uptake (Ki = 2.8 µM) - MATE1 [107] 

 Cimetidine in vivo Reduction of renal clearance - OCT2 [108,109] 

 Cimetidine in vitro Inhibition of metformin uptake (IC50 = 11 µM) - OCT2 [110] 

 Cimetidine in vitro Inhibition of metformin uptake (Ki = 147 µM) - OCT2 [111] 

 Cimetidine in vitro Inhibition of metformin uptake (IC50 = 158 µM) - OCT1 [28] 

 Cimetidine in vitro Inhibition of metformin uptake - OCT2, MATE1 [105] 

 Cimetidine in vitro Inhibition of metformin uptake (Ki = 1.1 µM) - MATE1 [111] 

 Dipyridamole in vitro Inhibition of metformin uptake  - OCT2, MATE1 [105] 

 Erlotinib in vitro Inhibition of metformin uptake    

   IC50 (µM) = 0.4 (OCT1), 5.2 (OCT2), 4.2 (OCT3) - OCT1-3  

   IC50 (µM) = 7.9 (MATE1), 3.5 (MATE2) - MATE1-2 [112] 

 Fenfluramine in vitro Inhibition of metformin uptake - OCT2 [113] 

 Gefitinib in vitro Inhibition of metformin uptake    

   IC50 (µM) = 1.1 (OCT1), 24.4 (OCT2), 5.5 (OCT3) - OCT1-3  

   IC50 (µM) = 1.8 (MATE1), 0.2 (MATE2) - MATE1-2 [112] 

 Imatinib in vitro Inhibition of metformin uptake    

   IC50 (µM) = 1.5 (OCT1), 5.8 (OCT2), 4.4 (OCT3) - OCT1-3  
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Table 2. Cont. 

   IC50 (µM) = 0.05 (MATE1), 0.5 (MATE2) - MATE1-2 [112] 

 Ketoconazole in vitro Inhibition of metformin uptake - OCT2, MATE1 [105] 

 KO143 in vitro Decreased metformin uptake in IOVs  - BCRP [72] 

 Metoprolol in vitro Inhibition of metformin uptake (IC50 = 50.2 µM) - OCT2 [106] 

 Mexiletine in vitro Inhibition of metformin uptake - OCT2 [113] 

 MPP+ in vitro Inhibition of MPP+ uptake (IC50 = 3.4 mM) - OCT1 [15] 

 MPP+ in vitro Inhibiton of MPP+ uptake (IC50 = 397 µM) - OCT2 [110] 

 MPP+ in vitro Inhibition of MPP+ uptake (IC50 = 2.9 mM) - OCT3 [15] 

 Nilotinib in vitro Inhibition of metformin uptake    

   IC50 (µM) = 2.9 (OCT1), >30 (OCT2), 0.3 (OCT3) - OCT1-3  

   IC50 (µM) = 3.4 (MATE1), 1.8 (MATE2) - MATE1-2 [112] 

 Probenicide in vitro Inhibition of metformin uptake - OCT2, MATE1 [105] 

 Propranolol in vitro Inhibition of metformin uptake (IC50 = 8.3 µM) - OCT2 [106] 

 Pyrimethamine in vitro Inhibition of metformin uptake  - OCT2, MATE1 [105] 

 Quinidine in vitro Inhibition of metformin uptake (IC50 = 55 µM) - OCT1 [114] 

 Ranitidine in vitro Inhibition of metformin uptake - OCT2, MATE1 [105] 

 Rapamycin in vitro Inhibition of metformin uptake  - MATE1 [105] 

 Sitagliptin in vitro 

Inhibition of metformin uptake (Ki = 34.9 µM,  

40.8 µM) - OCT1, OCT2 [87] 

 Trimethoprim in vitro Inhibition of metformin uptake - OCT2, MATE1 [105] 

 Verapamil in vitro Decreased metformin uptake in IOVs  - P-gp [72] 

Pioglitazone Estrone-3-sulfate in vitro Inhibition of E3S uptake  - OATP1B1, OATP1B3 [74] 

Repaglinide Atorvastatin in vivo AUC of Repaglinide ↑ 1.2-fold - OATP1B1 [94] 

 Clarithromycin in vivo AUC of Repaglinide ↑ 40% CYP3A4 OATP1B1 [49] 

 Cyclosporin A in vivo AUC of Repaglinide ↑ 2.4-fold CYP3A4 OATP1B1 [52] 

 FMTX In vitro Inhibition of FMTX uptake (IC50 = 1.1 µM, 4.8 µM) - OATP1B1, OATP1B3 [115] 

 Gemfibrozil in vivo AUC of Repaglinide ↑ 8.1-fold CYP2C8 OATP1B1 [50,93] 
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Table 2. Cont. 

 Pravastatin in vitro Inhibition of pravastatin uptake - OATP1B1, OATP1B3 [64] 

 Rifampin in vivo AUC of Repaglinide ↓60% CYP3A4    - [116] 

 Telithromycin in vivo AUC of Repaglinide ↑ 77% CYP3A4 OATP1B1 [51] 

Rosiglitazone Calcein in vitro Inhibition of calcein efflux - P-gp [76] 

 Estrone-3-sulfate in vitro Inhibition of E3S uptake  - OATP1B1 [74] 

 Metformin in vitro 
Inhibition of rosiglitazone uptake in IOVs  

(IC50 = 0.6 µM) 
- P-gp [72] 

 PhA in vitro Inhibition of PhA efflux - BCRP [76] 

 PhA in vitro Inhibition of PhA efflux (IC50 = 25 µM) - BCRP [71] 

 Pravastatin in vitro Stimulationb and inhibition of pravastatin uptake - OATP1B1, OATP1B3 [64] 

 Verapamil in vitro Decreased rosiglitazone uptake in IOVs  - P-gp [72] 

Sitagliptin Cimetidine in vitro Inhibition of cimetidine uptake (IC50 = 160 µM) - OAT3 [88] 

 Cimetidine in vitro Inhibition of sitagliptin uptake (IC50 = 79 µM) - OAT3 [88] 

 Cyclosporin A in vitro Inhibition of sitagliptin uptake (IC50 = 1 µM) - P-gp [88] 

 Fenofibric acid in vitro Inhibition of sitagliptin uptake (IC50 = 2.2 µM) - OAT3 [88] 

 Furosemide in vitro Inhibition of sitagliptin uptake (IC50 = 1.7 µM) - OAT3 [88] 

 Ibuprofen in vitro Inhibition of sitagliptin uptake (IC50 = 3.7 µM) - OAT3 [88] 

 Indapamide in vitro Inhibition of sitagliptin uptake (IC50 = 11.2 µM) - OAT3 [88] 

 MPP+ in vitro Inhibition of MPP+ uptake (Ki = 34.4 µM, 44.7 µM) - OCT1, OCT2 [87] 

 Probenicid in vitro Inhibition of sitagliptin uptake (IC50 = 5.6 µM) - OAT3 [88] 

 Quinapril in vitro Inhibition of sitagliptin uptake (IC50 = 6.2 µM) - OAT3 [88] 

 Salycylate in vitro Inhibition of salycylate uptake - OAT3 [87] 

Troglitazone Calcein in vitro Inhibition of calcein efflux - P-gp [76] 

 Estradiol-17ß-glucoronide in vitro Inhibition of E-17β-G uptake (Ki = 1 µM) - OATP1B1 [117] 

 Estradiol-17ß-glucoronide in vitro Inhibition of E-17β-G uptake (IC50= 1.2 µM, 15.7 µM) - OATP1B1, OATP1B3 [75] 

 Estrone-3-sulfate in vitro Inhibition of E3S uptake  - OATP1B1 [74] 

 GCDC in vitro Inhibition of GCDC transport (IC50 = 24.4 µM) - BSEP [77] 

 Glycocholate in vitro Inhibition of glycocholate transport (IC50 = 16 µM) - BSEP [77] 
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 PhA in vitro Inhibition of PhA efflux - BCRP [76] 

 Taurocholate in vitro Inhibition of taurocholate transport (IC50 = 9.5 µM) - BSEP [77] 

 Taurocholate in vitro Inhibition of taurocholate uptake - NTCP [118] 

 Taurocholate in vitro Decreased biliary excretion of taurocholate - BSEP [118] 

 TCDC in vitro Inhibition of TCDC transport (IC50 = 27.6 µM) - BSEP [77] 

Troglitazone Sulfate Estrone-3-sulfate in vitro Inhibition of E3S uptake  - OATP1B1, OATP1B3 [74] 
a Dual perfusion system of isolated human placental lobules; b Stimulation at low rosiglitazone concentration (10 µM); Abbreviations: 5-CFDA, 5-carboxy 

fluorescein diacetate; 8-FcA, 8-fluorescein-cAMP; AUC, area under the concentration time curve; BCRP, breast cancer resistance protein; BSEP, bile salt export 

pump; cmax, maximum peak concentration in plasma; E3S, estrone-3-sulfate; E17βG, estradiol-17β-glucoronide; FMTX, fluorescein-methotrexate; GC, 

glycocholate; GCDC, glycochenodeoxycholate; IOV, inside-out placental brush border membrane vesicles; KO143, BCRP-selective inhibitor 

(Pyrazino[1',2':1,6]pyrido[3,4-b]indole-3-propanoicacid, 1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxo-,1,1-dimethylethyl ester, 

(3S,6S,12aS)-); MATE, multidrug and toxin extrusion protein; MPP+, 1-methyl-4-phenylpyridinium; MRP, multidrug resistance protein; NTCP, sodium-

taurocholate cotransporting polypeptide; OATP, organic anion transporting polypeptide; OCT, organic cation transporter; PhA, pheophorbide A;  

P-gp, P-glycoprotein; TCDC, taurochenodeoxycholate. 
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3. Oral Antidiabetic Drugs and OCTs 

 

OCTs are members of the SLC22 family expressed in several tissues including intestine, liver and 

kidney (Figure 1; [8]). Since a large number of clinically used drugs are administered orally, of which 

approximately 40% are cations or weak bases at physiological pH [119], transport proteins for cations 

are important determinants of drug pharmacokinetics. Several antidiabetic drugs have been identified 

as substrates or inhibitors of OCT proteins. These include metformin which is a substrate for OCT1 

(Km value = 1 470 µM [82]), OCT2 (Km value = 990 µM [82]) and OCT3 (Km value = 2 260 µM [15]), 

whereas phenformin [120], repaglinide [121] and rosiglitazone [64] all interact with OCT1. 

Furthermore, genetic variations in the SLC22A1 gene encoding OCT1 were associated with altered 

pharmacokinetics and pharmacodynamics of metformin [122,123], which might pose a higher risk for 

side effects of metformin, especially lactic acidosis ([86], for review see [124]). Several OCT-

mediated drug-drug interactions have been described using either metformin as a substrate for OCTs or 

other oral antidiabetic drugs inhibiting OCT-mediated transport. In vivo it has been shown that genetic 

variations in the SLC22A2 gene encoding human OCT2 are associated with alterations in metformin 

pharmacokinetics and that in the presence of simultaneously administered cimetidine the renal 

clearance of metformin was decreased [108,109]. This uptake inhibition could be confirmed in vitro 

using HEK and MDCK cells overexpressing OCT1 [28] and OCT2 [110,111]. For OCT1, the IC50 

value for cimetidine-induced inhibition of metformin uptake was 150 µM [28], for OCT2 a Ki value of  

147 µM could be detected for the same drug combination [111]. Other drugs inhibiting OCT-mediated 

metformin uptake are the BCR-ABL inhibitors imatinib and nilotinib [112]. Imatinib inhibited the 

uptake with IC50 values of 1.5 µM, 5.8 µM and 4.4 µM for OCT1, OCT2 and OCT3, respectively 

whereas nilotinib inhibited the same transporters with IC50 values of 2.9 µM (OCT1), >30 µM (OCT2) 

and 0.3 µM (OCT3). Furthermore, in the same study the inhibition of OCT-mediated metformin 

uptake by the EGFR (epidermal growth factor receptor) inhibitor gefitinib was studied demonstrating 

an inhibition of OCT1, OCT2 and OCT3 with IC50 values of 1.1 µM, 24.4 µM and  

5.5 µM, respectively.  

Since the uptake of drugs from blood into the renal tubular cells is a key determinant for renal 

secretion, inhibition of OCT2-mediated drug transport may influence systemic plasma concentration. 

For beta-blockers this uptake inhibition has been demonstrated in vitro using MDCK cells 

recombinantly overexpressing OCT2. In this study, Bachmakov and coworkers showed that  

OCT2-mediated metformin uptake was significantly inhibited by the beta-blockers bisoprolol, 

carvedilol, metoprolol and propranolol with IC50 values of 2.4 µM, 2.3 µM, 50.2 µM and 8.3 µM,  

respectively [106].  

Interestingly, the uptake and the effect of one oral antidiabetic drug can also be inhibited by a 

second antidiabetic drug. This has been demonstrated in vitro analyzing OCT1- and OCT2-mediated 

metformin uptake and uptake inhibition by the DPP-4 inhibitor sitagliptin [87]. In this study the 

authors showed that sitagliptin inhibited OCT1- and OCT2-mediated metformin uptake with IC50 

values of 34.9 µM and 40.8 µM, respectively. Furthermore, the inhibition of metformin-induced 

activation of AMPK (5' adenosine monophosphate-activated protein kinase) signaling was investigated 

demonstrating that treatment with sitagliptin in MDCK-OCT1 and HepG2 cells resulted in a reduced 

level of phosphorylated AMPK with Ki values of 38.8 µM and 43.4 µM, respectively.  
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Summarizing these data (in combination with data presented in Table 2) one can assume that, in 

addition to OATP-mediated interactions, the inhibition of OCT proteins may be an important 

determinant of oral antidiabetic drug pharmacokinetics. 

 

4. Oral Antidiabetic Drugs and Export Proteins 

 

Most export proteins that mediate the export of drugs and drug metabolites out of cells belong to the 

superfamily of ABC transporters. P-glycoprotein (P-gp) is the best characterized efflux transporter 

localized in the apical membrane of enterocytes, the bile canalicular membrane and proximal tubule 

cells of the renal epithelium (Figure 1) mediating the export of a variety of different drugs belonging to 

various drug classes [35]. In diabetes therapy, several in vivo and in vitro studies have shown that P-gp 

is also involved in drug-drug interactions. It has been demonstrated in vivo that the macrolide 

clarithromycin increased the Cmax and the AUC (area under the plasma concentration time curve) of 

coadministered glibenclamide [92] and thus could lead to hypoglycaemia due to elevated plasma 

concentrations of glibenclamide [60]. Further P-gp-mediated drug-drug interactions could be observed 

in several in vitro studies. Using P-gp overexpressing cells it could be demonstrated that glibenclamide 

inhibited P-gp-mediated efflux of the model substrate rhodamine 123 [57]. Inhibition of glibenclamide 

export resulting in increased intracellular accumulation was also detected in the presence of  

colchicine [56]. Another study conducted by Hemauer and coworkers showed that rosiglitazone and 

metformin were transported by P-gp using placental inside-out oriented brush border membrane 

vesicles. Additionally, it was reported that inhibition of P-gp by verapamil markedly decreased the 

transport of rosiglitazone and metformin [72].  

A second well-studied export pump involved in the transport of oral antidiabetic drugs is the breast 

cancer resistance protein BCRP (gene symbol ABCG2). This transporter is localized in the apical 

membrane of enterocytes and renal epithelial cells as well as in the canalicular membrane of 

hepatocytes (Figure 1). Several in vitro studies have indicated that oral antidiabetic drugs are 

substrates for BCRP and that coadministration of other drugs may inhibit this BCRP-mediated 

transport. Like for P-gp, Hemauer et al. provided evidence that BCRP participates in the transport of 

metformin. They could show that the BCRP inhibitor KO143 lead to a decreased metformin  

transport [72]. In addition, several studies using cells stably expressing BCRP revealed that 

glibenclamide export is inhibited by prototypic inhibitors, such as the antibiotic novobiocin or 

fumitremorgin C [57,97]. Pollex et al. further investigated the functional consequences of a frequent 

genetic variation in the ABCG2 gene encoding human BCRP. They found that the variation 

BCRPp.Q141K (ABCG2c.412C>A) showed a higher Michaelis Menten constant (Km value) and a 

higher maximal transport rate (Vmax value) for BCRP-mediated glibenclamide transport as compared to 

the transport mediated by the wild-type BCRP protein [97].  

Interesting and recently characterized transporters responsible for the export of substances and 

drugs out of cells are members of the MATE family (multidrug and toxin extrusion protein; gene 

symbol SLC47). As known so far, this family consists of the two members MATE1 [125] and MATE2 

(also designated as MATE2-K [45]). MATE1 is expressed in several tissues including liver and 

kidney, whereas expression of MATE2 seems to be restricted to renal epithelial cells (Figure 1; [44]). 

Unlike ABC transporters, these export proteins use an inward-directed proton gradient for exporting 
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substrates out of cells. Several endogenous substances and drugs have been identified as substrates of 

these transport proteins [126] with metformin as the best studied oral antidiabetic drug transported by 

MATE1 and MATE2 [46]. The importance of MATE1 for the pharmacokinetics of metformin has 

been investigated in Mate1 (–/–) knockout mice [127]. After a single intravenous administration of 

metformin (5 mg/kg), a two-fold increase in the AUC of metformin in Mate1 (–/–) mice as compared 

to wild-type mice was detected. Furthermore, the renal clearance of metformin was only 18% of that 

measured in Mate1 (+/+) mice clearly demonstrating the essential role of MATE1 in the systemic 

clearance of metformin.  

Inhibition studies using single-transfected HEK cells recombinantly expressing MATE1 or MATE2 

showed that some tyrosine kinase inhibitors (TKIs) are potent inhibitors of MATE-mediated  

transport [112]. In detail, imatinib, nilotinib, gefitinib and erlotinib inhibited MATE1- and MATE2-

mediated metformin transport with unbound Cmax/IC50 values higher than 0.1, suggesting that this 

transporter-mediated drug-drug interaction with TKIs may also be relevant in vivo and therefore affect 

the disposition, efficacy and toxicity of metformin and possibly of other drugs that are substrates for 

these export proteins. A further analysis of drug interaction studies has been performed by zu 

Schwabedissen and coworkers [105]. They demonstrated a significant inhibition of MATE1-mediated 

metformin transport by using single-transfected HeLa cells expressing human MATE1 and a panel of 

24 different drugs. Most potent inhibitors (all tested at a concentration of 25 µM) were cimetidine with 

21.08 ± 0.81%, trimethoprim with 25.35 ± 0.49% and ritonavir with 25.75 ± 9.91% residual metformin 

transport. Furthermore, the IC50 values of MATE1-mediated metformin transport were determined for 

ritonavir (15.4 ± 2.5 µM), ranitidine (18.9 ± 7.3 µM), rapamycin (3.27 ± 0.46 µM) and mitoxantrone 

(4.4 ± 1.3 µM). All of these IC50 values are below the reported peak plasma concentrations, suggesting 

that these interactions may also play a role in vivo [105]. Another interaction of MATE1-mediated 

metformin uptake has been analyzed in HEK cells stably expressing MATE1 and the frequently 

prescribed antibiotic trimethoprim as well as the antimalarial drug chloroquine. The experiments 

revealed a strong inhibition for both substances with an IC50 value of 6.2 µM calculated for 

trimethoprim and a Ki value of 2.8 µM for chloroquine [107].  

Some studies also investigated the effect of drugs on OCT- and MATE-mediated transport using 

double-transfected cells recombinantly expressing an uptake transporter of the OCT family together 

with MATE1 or MATE2 [128,129]. In order to examine the effect of cimetidine on transcellular 

metformin transport, an OCT2-MATE1 double-transfected MDCK cell line was used [111]. These 

experiments demonstrated that the transcellular metformin transport was moderately inhibited by 1 µM 

cimetidine and almost completely inhibited by 1 mM cimetidine. Interestingly, the intracellular 

accumulation of metformin was inhibited only by 1 mM cimetidine but was increased by the low 

concentration of 1 µM cimetidine under the same experimental conditions. These results suggest that 

low cimetidine concentrations had no inhibitory effect on OCT2-mediated uptake whereas MATE1 

was inhibited by intracellular cimetidine resulting in an increased intracellular metformin 

concentration. Taken together, these studies demonstrated that beside the inhibition of uptake 

transporters also the inhibition of export proteins may be important and clinically relevant for drug-

drug interactions with oral antidiabetic drugs. Furthermore, experimental approaches using double-

transfected cell lines simultaneously expressing an uptake transporter and an export protein indicated a 

crucial interaction of uptake transporters and export pumps. 
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