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Abstract: Background: Drug adverse event (AE) signal detection using the Gamma 

Poisson Shrinker (GPS) is commonly applied in spontaneous reporting. AE signal 

detection using large observational health plan databases can expand medication safety 

surveillance. Methods: Using data from nine health plans, we conducted a pilot study to 

evaluate the implementation and findings of the GPS approach for two antifungal drugs, 

terbinafine and itraconazole, and two diabetes drugs, pioglitazone and rosiglitazone. We 

evaluated 1676 diagnosis codes grouped into 183 different clinical concepts and four levels 

of granularity. Several signaling thresholds were assessed. GPS results were compared to 

findings from a companion study using the identical analytic dataset but an alternative 

statistical method—the tree-based scan statistic (TreeScan). Results: We identified 71 

statistical signals across two signaling thresholds and two methods, including  

closely-related signals of overlapping diagnosis definitions. Initial review found that most 

signals represented known adverse drug reactions or confounding. About 31% of signals 

met the highest signaling threshold. Conclusions: The GPS method was successfully 

applied to observational health plan data in a distributed data environment as a drug safety 

data mining method. There was substantial concordance between the GPS and TreeScan 

approaches. Key method implementation decisions relate to defining exposures and 

outcomes and informed choice of signaling thresholds.  

Keywords: pharmacovigilance; drug safety surveillance; adverse events data mining; 

gamma Poisson shrinkage; tree-based scan statistic 

 

1. Introduction  

Quantitative identification of unspecified medical product-adverse event (AE) relationships—often 

referred to as signal detection—is integral to worldwide medical product safety surveillance. Gamma 

Poisson Shrinkage (GPS) is a disproportionality method commonly applied to spontaneous reporting 

systems for signal detection [1]. Implementation of signal detection methods using routinely collected 

electronic data can expand the scope and scale of pharmacovigilance. In contrast with spontaneous 

reporting systems, however, little experience has been gained in the implementation and interpretation 

of GPS with observational electronic health care claims and administrative data.  

Investigators have proposed a variety of AE signal detection methods for observational data, 

including disproportionality approaches [1–4], the tree-based scan statistic (TreeScan) [5,6] and  

others [7–10]. Disproportionality approaches, including GPS, Information Component (IC) and the 

proportional reporting ratio (PRR) all have been applied to observational data, typically in two 

fundamentally different ways. One approach has been to apply the methods as closely as possible to 

their implementation in spontaneous report datasets by using observational data to mimic spontaneous 
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reports of drug-event combinations [2,11], including the “spontaneous reporting system methods” of 

GPS, Information Component, PRR and reporting odds ratio (ROR) as implemented and evaluated in 

Schuemie et al. (2012). In one example, Curtis et al. (2008) identified exposure using the Medicare 

Current Beneficiary Survey (MCBS) and outcomes from a sample of medical claims linked to the 

MCBS. Monthly reports were created to mimic spontaneous reporting databases and analyzed as if 

they were spontaneous reports. Zorych (2011) used simulated and administrative claims data to 

evaluate disproportionality methods using three different approaches for creating the analytic 2 × 2 

table; none accounted for exposed or unexposed person time. Schuemie (2011) used simulated data to 

conduct a pilot implementation of several modifications of GPS, comparing person-level and 

exposure-day level approaches for calculating observed and expected counts, and specifically adjusting 

for protopathic bias [3].  

A second approach adapts these methods to try to better leverage the richness of longitudinal 

observational datasets. Noren et al. (2008; 2010) applied the Information Component Temporal Pattern 

Discovery (ICTPD) approach by comparing the observed count of a drug-outcome combination to an 

expected count based on general occurrences in the database, coupled with a self-controlled design 

element by comparing the Observed and Expected counts of an event after prescription to the 

Observed and Expected counts before prescription [4,12]. Schuemie et al. (2011) used simulated data 

to evaluate an alternative approach (Longitudinal GPS: LGPS) similar to our implementation here 

where rather than comparing to expected counts based on occurrence of events for patients taking 

other prescribed products he utilizes exposed and non-exposed time at risk to develop a richer 

denominator [13].  

Both implementation approaches have strengths and weaknesses. The LGPS method computes 

expected counts of medical events during drug exposure based on an aggregate of unexposed patient 

time in ever‐exposed and unexposed patients, potentially introducing confounding as unexposed 

patients may be less likely to have events related to the drug indication or underlying disease than the 

exposed population. For ICTPD, one of the two comparisons is of events occurring within a specific 

time after a dispensing of the drug of interest to all observations of that event after exposure to all 

other drugs but within the same at-risk period to give an Expected count. Inclusion of drugs associated 

with the outcome of interest will inflate the Expected count, and could lead to a reduced ICTPD score 

for the drug-event of interest; the inverse could occur with protective effects [14–16]. The GPS and 

ICTPD approaches and others differ in how a score is derived for the drug-outcome pairs, but also in 

terms of the test statistic, the choice of signaling threshold, as well as differences in implementation, 

some of which reflect the differences in the observational databases used (e.g., different terminological 

classifications of outcomes) [17]. 

More recently, Schuemie et al. (2012) and Ryan et al. (2012) published a comparison of multiple 

signal detection methods using longitudinal data across three countries [13,18]. The approaches are 

similar. Schuemie (2012) compared 10 methods using a set of positive and negative controls  

(drug-event pairs) for comparison. They reported positive results for most methods, including LGPS. 

Direct applicability of their results to routine open ended signal detection is hard to assess as they 

limited their assessment to a small set of known associations and their comparisons were based on area 

under the curve estimates on ROC curves where all sensitivity and specificity thresholds are 

considered equally important. In practice the tail ends of ROC curves may not be appropriate to 
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consider in assessing surveillance approach effectiveness; if there is great differential performance 

between methodological approaches in these tails of ROC curves a misleading impression of 

performance and erroneous comparisons between approaches can be made. Schuemie et al. (2012) 

focused on point estimates instead of the lower thresholds of confidence limits that are more 

commonly used in signal detection to protect against spurious findings [1]. Finally, focusing on point 

estimates creates the potential to favor methods that routinely over-estimate risk. 

Given that the GPS approach has shown promising results for use in longitudinal data [2,3,5,11,13], 

we furthered the prior work by applying GPS in a “real-world” environment not limited to specific 

associations but rather including non-prespecified drug-event pairs for evaluation. Such a real-world 

open ended discovery approach has not to our knowledge been taken with a GPS based method, 

although open ended discovery was done in Noren et al. (2010) for the ICTPD approach [12]. Our 

implementation closely mimicked the approach described in the U.S. Food and Drug Administration’s 

(FDA) Mini-Sentinel project for evaluation of non-prespecified AEs [19].  

We present a pilot study evaluating the implementation of GPS for drug-AE signal detection using 

routinely-collected electronic medical encounter data in a multi-site environment. We also compare the 

GPS results to findings from a TreeScan study that used identical input datasets.  

2. Methods  

2.1. Overview 

Signal detection using observational data requires three key specifications: (i) the analytic approach 

related to calculating exposures, identifying cases, defining comparators, and handling censoring; 

(ii) the statistical method used; and (iii) the signaling thresholds. Our implementation compared the 

rate of exposed outcomes with an expected count based on unexposed time. Therefore, the specific 

question was whether there is a statistical signal of excess risk of an outcome during exposed time as 

compared to unexposed time. In this paper we define a “signal” as a statistical association between a 

drug and a diagnosis within an exploratory framework without any requirement for verification of case 

status by medical record review or other confirmatory analysis. These “statistical signals” do not imply 

causality, but rather represent an association that meets pre-specified signaling thresholds that may 

warrant further investigation. Statistical signals identified using signal detection methods often can be 

explained by bias and confounding. We focused on signal detection implementation approaches using 

observational data, not prioritization and investigation of the signals identified. Such signal refinement 

requires additional methods and dedicated resources beyond the scope of this study [20]. 

2.2. Data and Study Population  

The study cohort consisted of approximately 3.4 million privately-insured health plan members 

enrolled between 1999 and 2003 distributed roughly equally across the nine plans in the HMO 

Research Network Center for Education and Research on Therapeutics: Harvard Pilgrim Health Care, 

Kaiser Permanente Georgia, Meyers Primary Care Institute, Group Health Cooperative, Lovelace 

Clinic Foundation, Kaiser Permanente Northern California, HealthPartners Research Foundation, 

Kaiser Permanente Colorado, and Kaiser Permanente Northwest. Each health plan maintains an 
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electronic database of member demographics, enrollment, outpatient pharmacy dispensing, and 

inpatient and outpatient encounters. These data have been used in several drug safety studies [21–27] 

and described in detail elsewhere [21,22,28]. 

Demographic information includes date of birth and sex. Enrollment consists of enrollment start 

and stop dates and a drug coverage indicator. Pharmacy dispensing data includes dispensing date, 

national drug code, units dispensed, and days supplied. Encounter information includes all diagnosis 

codes recorded during ambulatory and inpatient encounters.  

We employed a distributed data model [29–31] that enabled sites to share only summarized count 

information for aggregation and analysis. The study was approved by the Institutional Review Board at 

each site.  

2.3. Study Drugs 

We identified users of two antifungal drugs, terbinafine and itraconazole, and two diabetes drugs, 

pioglitazone and rosiglitazone. These products were selected because they have substantial exposure, 

well-characterized risks, and allow for within-indication comparisons. We noted established associations 

between terbinafine and itraconazole and risk of liver disease [32,33] and allergic reaction [34,35]. 

Itraconazole and both diabetes drugs carry black box warnings for congestive heart failure on the U.S. 

FDA approved product labeling . Each drug was analyzed separately, without consideration of prior or 

concurrent exposures.  

2.4. Diagnosis Definitions 

Starting with all ICD-9-CM diagnosis codes we removed diagnosis codes associated with 

conditions unlikely to be drug-associated acute AEs (e.g., neoplasms, pregnancy and perinatal 

conditions, congenital anomalies, injuries and poisoning, diabetes). The remaining 1676 diagnosis 

codes were grouped using the Multi-level Clinical Classifications Software (MLCCS) [36]. The 

MLCCS is a hierarchical system with four levels of clinical concepts denoted by four 2-digit 

identifiers. The top level MLCCS identifies 18 body systems, and each can have up to three sublevels, 

as represented by the 2nd, 3rd, and 4th 2-digit codes. Each diagnosis code belongs to one classification 

group at each level of the MLCCS system, creating a hierarchical tree structure, where related 

diagnoses are close to each other on the tree. The exclusion process resulted in 183 overlapping 

groupings of related clinical concepts that were evaluated as potential AEs. Table 1 illustrates the 

hierarchical tree structure. Analyses were done at all four levels of granularity separately. Since we 

created a single set of diagnoses across products, we expected to identify some “signals” that represent 

bias and confounding common to uncontrolled observational studies (e.g., pioglitazone patients will 

have a higher rate of diabetes related complications such as eye disorders). 

2.5. Contributed Person Time  

All individuals with a membership period with medical and drug coverage over 180 days 

contributed person time. Membership gaps of 60 days or less were bridged to create continuous 

membership periods. Contributed days began after a 180 day baseline period, and ended for that 

member at the first incident diagnosis of any clinical concept, the last day of enrollment, or the end of 
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the study period (December 31, 2003), whichever came first. Figure 1 illustrates how contributed time 

was parsed. The baseline period was used as to identify prior diagnoses; no exclusions were applied 

during baseline.  

Table 1. A small subset of the Multi-Level Clinical Classification Tree with International 

Classification of Diseases, Ninth Revision (ICD-9) codes associated with a specific level. 

07 Diseases of the Circulatory System  
07.01 Hypertension 
07.01.02 Hypertension with Complications and Secondary Hypertension  
07.01.02.01 Hypertensive Heart and/or Renal Disease (402.00–404.93) 
07.01.02.02 Other Hypertensive Complications (405.01–405.99,437.2) 
07.02 Diseases of The Heart 
07.02.01 Heart Valve Disorders 
07.02.01.02 Nonrheumatic Mitral Valve Disorders (424.0) 
07.02.01.03 Nonrheumatic Aortic Valve Disorders (424.1) 
07.02.01.04 Other Heart Valve Disorders (424.2, 424.3, 785.2, 785.3) 
07.02.02 Peri; Endo; and Myocarditis; Cardiomyopathy (Except that Caused by TB or STD) 
07.02.02.01 Cardiomyopathy (425.0–425.9) 
07.02.03 Acute Myocardial Infarction (410.0–410.92) 
07.02.04 Coronary Atherosclerosis and Other Heart Disease 
07.02.04.01 Angina Pectoris (413.0–413.9) 
07.02.04.02 Unstable Angina (Intermediate Coronary Syndrome) (411.1) 
07.02.04.03 Other Acute and Subacute Forms of Ischemic Heart Disease (411.0, 411.8–411.89) 
07.02.04.04 Coronary Atherosclerosis (414.05) 
07.02.04.05 Other Forms of Chronic Heart Disease (414.8, 414.9) 
07.02.04.00 Other (414.06) 

Figure 1. Contributed person time: member timelines. 
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2.6. Drug Exposure 

Contributed days were either exposed or unexposed person time. Treatment episodes (i.e., exposed 

person time) began the day after a drug dispensing and continued until the end of exposure based on 

days supplied. Consecutive dispensings were combined, and exposure gaps of six days or less were 

bridged to create continuous episodes. Unexposed person time was defined as all contributed days 

without exposure. For each product we calculated total exposed and unexposed person time. 

2.7. Outcomes 

We defined an incident outcome as the first observed diagnosis during contributed time that was not 

observed during baseline. Only the first incident outcome observed was counted and designated as 

exposed or unexposed; this restriction is necessary for the TreeScan analysis that adjusts for multiple 

testing and was applied here to enable comparison across methods.  

2.8. Calculation of Observed and Expected Counts 

Exposed outcomes are the number of incident outcomes observed during exposed days. The 

unadjusted expected count is the number of exposed days times the rate of incident outcomes during 

unexposed days, calculated as the number of unexposed outcomes divided by the number of unexposed 

days. Using indirect standardization, we adjusted expected counts for age, sex, and health plan.  

Following the distributed data model approach [29–31], each site executed analytic code provided 

by the study coordinating center. Analytic program output contained counts of exposed and unexposed 

days and outcomes by age (5-year strata) and sex; counts were transferred to the coordinating center 

for aggregation and analysis.  

2.9. Gamma Poisson Shrinker  

The GPS was proposed by DuMouchel [37,38] as a signal detection tool for large frequency tables 

with both observed (O) and expected (E) counts for each drug-outcome pair. It assumes the observed 

count of any drug-outcome pair follows the Poisson distribution. For spontaneous reports, there are no 

drug exposure denominator data, so the expected counts are calculated under the null assumption that 

each drug has the same proportion of diagnosis codes. That is, the expected counts are internally 

derived assuming the independence of drug and event reporting, and calculated as the product of two 

marginal frequencies of the drug-outcome pair and the total count of all observed events. For example, 

if seizures comprise 1% of all the diagnosis codes, over all drugs, and itraconazole has a total of  

800 diagnoses, then the expected number of seizures is eight for itraconazole.  

Unlike spontaneous reporting databases, population-based event monitoring using health plan data 

can calculate observed and expected counts based on observed exposure information and diagnoses 

observed during exposed and unexposed time. GPS can be directly adapted to such settings with the 

internally derived expected counts replaced by the expected counts constructed using the denominators.  

Details of the GPS algorithm have been extensively described [37–40]. Briefly, for each drug-outcome 

pair, the primary parameter of interest was the risk ratio. Rather than using the observed over expected 

(O/E), GPS uses the empirical Bayesian geometric mean (EBGM) posterior distribution of the risk 
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ratio and the surrounding confidence interval for each drug-outcome pair to identify statistical signals 

of excess risk. To prevent spurious false positives due to implausibly high risk ratios, GPS implements 

a Bayesian framework that “shrinks” O/E estimates towards a value which is close to the average O/E 

values for all drug-event pairs at each level of granularity. For these data, that average is about 1.5. 

GPS accomplishes this by use of an empirical Bayesian framework where the values of all O/E 

estimates are modeled as a mixture distribution. This so-called “prior distribution” is then combined 

with data on a specific drug–outcome pair to give a score: the EBGM. Further work would be needed 

to determine whether shrinkage towards an average value far from one is justified or represents an 

artificial attribute that might adversely impact performance of the GPS approach. We evaluated each 

level of the diagnosis tree separately.  

We used two signaling thresholds for GPS. The first is the lower bound of the 95% posterior 

probability interval of 1.5 or more (medium threshold). Since the average O/E for our population was 

close to 1.5, this threshold mimics an excess risk but is not adjusted for multiple testing. To informally 

adjust for multiple testing when applying data mining approaches to spontaneous reporting, the U.S. 

FDA uses the lower bound of the 90% posterior probability interval of EBGM of greater or equal to 

two as the signal threshold for their spontaneous reporting system [41]. We used this threshold as our 

most stringent signaling criteria.  

2.10. Comparison to Tree-Based Scan Statistic 

TreeScan is a signal detection method that simultaneously looks for excess risk in any of a large 

number of individual cells in a database and in groups of closely related cells, formally adjusting the  

p-values for the multiple testing inherent in the large number of overlapping diagnosis groups 

evaluated [6,42,43]. The paper by Kulldorff et al. (2012) details the TreeScan approach for drug safety 

surveillance [42]. In brief, a hierarchical classification tree is first constructed for the outcomes where 

related diagnoses are close to each other on the tree. Different cuts on the tree are then made, and it is 

evaluated whether the group of diagnoses on that branch of the tree has an excess risk of occurring 

among the drug users. In this way, the method evaluates both very specific outcome definitions such as 

Paralytic Ileus (a single leaf on the tree) as well as large groups of related outcomes such as Diseases 

of the Digestive System (one of the largest branches on the tree). The method formally adjusts for the 

multiple testing inherent in the hundreds or thousands of different cuts evaluated.  

For the comparison between GPS and TreeScan we used identical input datasets of age and sex 

stratified O and E counts for each MLCCS node separately for each drug. We conducted a post-hoc 

comparison of the GPS and TreeScan results focusing on differences in the number of signals 

identified overall and by signaling threshold. For this comparison we define two signaling thresholds 

for TreeScan: multiple testing adjusted p-values of <0.001 and 0.001 < p < 0.05. This comparison was 

made to help put the GPS results in context using a different statistical signaling method with the same 

input datasets. We used the product label, medical literature, and clinician input to informally 

categorize the signals as known, likely confounded, or previously unknown. Formal signal evaluation 

was beyond the scope of the project. 
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3. Results  

3.1. Terbinafine and Itraconazole 

Across all thresholds and nodes on the classification tree we identified 10 GPS terbinafine signals 

and four itraconazole signals (Table 2). One of the 10 terbinafine signals met the highest GPS 

threshold and five met the highest TreeScan threshold. Of the four itraconazole signals, one met the 

highest GPS threshold and two met the highest TreeScan threshold. The antifungal signals represent 

known AEs (e.g., liver conditions, allergic reactions, nausea) or likely confounding by indication (e.g., 

skin and subcutaneous tissue diagnoses) [32,44,45], Over 46,000 exposed days for terbinafine, 415,000 

exposed days for itraconazole, and 1.1 billion unexposed days were assessed. 

3.2. Pioglitazone and Rosiglitazone 

Of the 35 pioglitazone signals identified by either method, 15 met the highest GPS signaling 

threshold and 27 met the highest TreeScan threshold. For the 22 rosiglitazone signals, six met the 

highest GPS threshold and 15 met the highest TreeScan threshold (Table 3). Most of pioglitazone 

signals were in four body systems, including signals for Coronary Atherosclerosis and Other Heart 

Disease (MLCCS node 07.02.04), Congestive Heart Failure (07.02.11 and 07.02.11.01), and Peripheral 

and Visceral Atherosclerosis (07.04.01). Pioglitazone also had high threshold GPS signals for Nephritis, 

Nephrosis and Renal Sclerosis (10.01.01) and Chronic Renal Failure (10.01.03). Over 1.3 million 

exposed days for pioglitazone, 637,000 exposed days for rosiglitazone, and 1.1 billion unexposed days 

were assessed. 

The cardiovascular and renal signals are known AEs or likely due to confounding. For example, 

diabetes patients have a higher risk for renal impairment and, since diabetes medications such as 

metformin and glyburide are contraindicated for those with renal dysfunction, diabetes patients with 

renal impairment may have been channeled to pioglitazone and rosiglitazone. Both drugs also signaled 

strongly for chronic ulcer of the skin, and pioglitazone signaled for eye disorders, another likely 

example of confounding.  
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Table 2. Results for terbinafine and itraconazole. 

MLCCS Diagnosis 

Terbinafine Itraconazole 

Obs Exp O/E EBGM GPS Signal 

TreeScan 

p-value Obs Exp O/E EBGM GPS Signal 

TreeScan  

p-value 

05 Mental Disorders 0 0.6 0.0 1.3   . 0 0.1 0.0 1.4   . 

06 Diseases Of The Nervous System And Sense Organs 37 22.7 1.6 1.6   0.28 11 5.2 2.1 1.7   0.54 

07 Diseases Of The Circulatory System 51 44.4 1.1 1.2   . 21 10.2 2.1 1.7   0.13 

07.01 Hypertension 1 2.0 0.5 1.3 . 1 0.6 1.8 1.5 . 

07.02 Diseases Of The Heart 24 21.4 1.1 1.2 . 9 5.0 1.8 1.6 . 

07.02.01 Heart Valve Disorders 1 2.8 0.4 1.2 . 0 0.7 0.0 1.3 . 

07.02.03 Acute Myocardial Infarction 0 0.8 0.0 1.3 . 1 0.2 4.7 1.7 . 

07.02.04 Coronary Atherosclerosis And Other Heart Disease 3 3.4 0.9 1.3 . 1 0.9 1.1 1.5 . 

07.02.07 Other And Ill-Defined Heart Disease 3 1.0 3.1 1.7 . 3 0.2 12.3 3.9 0.09 

07.02.08 Conduction Disorders 1 0.5 1.9 1.5 . 1 0.1 7.9 1.8 . 

07.02.09 Cardiac Dysrhythmias 16 10.1 1.6 1.5 . 3 2.2 1.4 1.5 . 

07.03 Cerebrovascular Disease 4 2.9 1.4 1.5 . 2 0.7 2.9 1.6 . 

07.04 Diseases Of Arteries; Arterioles; And Capillaries 17 13.8 1.2 1.3 . 5 3.0 1.7 1.5 . 

07.05 Diseases Of Veins And Lymphatics 5 4.3 1.2 1.4   . 4 0.9 4.4 1.9   0.47 

09 Diseases Of The Digestive System 63 37.2 1.7 1.6   0.007 15 8.2 1.8 1.6   0.63 

09.03 Diseases Of Mouth; Excluding Dental 5 3.3 1.5 1.5 . 0 0.7 0.0 1.3 . 

09.04 Upper Gastrointestinal Disorders 8 7.2 1.1 1.3 . 5 1.5 3.3 1.8 0.53 

09.06 Lower Gastrointestinal Disorders 1 0.8 1.3 1.5 . 1 0.2 5.8 1.7 . 

09.07 Biliary Tract Disease 2 1.6 1.3 1.4 . 1 0.3 3.1 1.6 . 

09.08 Liver Disease 14 3.1 4.5 3.5 ** 0.00005 1 0.7 1.4 1.5 . 

09.08.02 Other Liver Diseases 14 3.1 4.5 3.37 ** 0.00005 1 0.7 1.4 1.5 . 

09.08.02.04 Other And Unspecified Liver Disorders 14 2.8 5.1 4.1 *** 0.00002 1 0.6 1.6 1.5 . 

09.09 Pancreatic Disorders (Not Diabetes) 2 0.3 5.9 1.9 . 1 0.1 15.0 2.0 . 

09.09.03 Other Pancreatic Disorders 2 0.1 36.9 4.2 0.06 1 0.0 69.3 2.2 . 

09.10 Gastrointestinal Hemorrhage 12 6.4 1.9 1.6 . 2 1.5 1.4 1.5 . 

09.12 Other Gastrointestinal Disorders 19 14.4 1.3 1.4   . 4 3.3 1.2 1.4   . 
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Table 2. Cont. 

MLCCS Diagnosis 

Terbinafine Itraconazole 

Obs Exp O/E EBGM GPS Signal 

TreeScan 

p-value Obs Exp O/E EBGM GPS Signal 

TreeScan  

p-value 

10 Diseases Of The Genitourinary System 29 23.5 1.2 1.3   . 1 5.5 0.2 0.4   . 

11 Complications Of Pregnancy; Childbirth; And The Puerperium 0 0.6 0.0 1.2   . 1 0.1 8.1 1.7   . 

12 Diseases Of The Skin And Subcutaneous Tissue 125 51.6 2.4 2.2 ** 0.00001 31 11.2 2.8 2.1 ** 0.00001 

12.01 Skin And Subcutaneous Tissue Infections 4 3.7 1.1 1.4 . 3 0.9 3.5 1.7 0.84 

12.02 Other Inflammatory Condition Of Skin 25 10.6 2.4 1.9 0.010 9 2.1 4.2 2.4 0.02 

12.03 Chronic Ulcer Of Skin 1 0.3 3.6 1.6 . 0 0.1 0.0 1.5 . 

12.04 Other Skin Disorders 95 37.0 2.6 2.3 ** 0.00001 19 8.1 2.3 1.8   0.05 

13 

Diseases Of The Musculoskeletal System And Connective 

Tissue 60 43.3 1.4 1.4   0.59 15 9.1 1.7 1.6   0.84 

13.01 

Infective Arthritis And Osteomyelitis (Except That Caused By 

TB Or STD 1 0.3 3.6 1.6 . 4 0.1 56.8 19.5 *** 0.00001 

13.08 Other Connective Tissue Disease 59 42.7 1.4 1.4   0.63 11 8.9 1.2 1.4   . 

16 Injury And Poisoning 2 0.8 2.6 1.6   . 0 0.2 0.0 1.4   . 

17 

Symptoms; Signs; And Ill-Defined Conditions And Factors 

Influencing Health 62 38.1 1.6 1.6   0.02 15 8.5 1.8 1.6   0.75 

17.01 Symptoms; Signs; And Ill-Defined Conditions 62 38.1 1.6 1.6 0.02 15 8.5 1.8 1.6 0.75 

17.01.01 Syncope 3 2.3 1.3 1.4 . 1 0.5 1.9 1.5 . 

17.01.06 Nausea And Vomiting 10 3.9 2.6 1.9 0.42 6 0.9 6.4 3.5 0.03 

17.01.07 Abdominal Pain 21 18.1 1.2 1.3 . 2 4.1 0.5 1.1 . 

17.01.08 Malaise And Fatigue 3 2.9 1.0 1.4 . 1 0.7 1.5 1.5 . 

17.01.09 Allergic Reactions 25 10.8 2.3 2.0   0.01 5 2.2 2.3 1.7   . 

MLCCS = Multi-level Clinical Classifications System; Obs = Observed; Exp = Expected; O/E = Observed/Expected; TreeScan p = multiple testing adjusted p-values, p > 0.90 is indicated 

with ‘.’; EBGM: empirical Bayesian geometric mean; *** GPS Signal at lower 90% CI bound ≥2; ** Signal at lower 95% CI bound >1.5; Table includes (1) all major disease category 

headings; (2) any disease categories that signaled for GPS or with a p-value ≤ 0.10; (3) any parents/grandparent of categories that signaled, and (4) any sibling of a disease category that 

signaled as long as there were observed events. We excluded any categories that were exactly the same as the parent. 
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Table 3. Results for pioglitazone and rosiglitazone. 

MLCCS Diagnosis 

Pioglitazone Rosiglitazone 

Obs Exp O/E EBGM 

GPS 

Signal 

TreeScan 

p-value Obs Exp O/E EBGM 

GPS 

Signal 

TreeScan  

p-value 

05 Mental Disorders 4 1.7 2.4 1.6   . 1 0.9 1.1 1.5   . 

06 Diseases Of The Nervous System And Sense Organs 197 90.7 2.2 2.1 ** 0.00001 75 45.1 1.7 1.6   0.003 

06.03 Paralysis 2 1.1 1.9 1.5 . 0 0.7 0.0 1.3 . 

06.04 Epilepsy; Convulsions 3 4.0 0.8 1.3 . 2 2.3 0.9 1.4 . 

06.05 Headache; Including Migraine 4 11.6 0.3 0.6 . 5 5.6 0.9 1.3 . 

06.06 Coma; Stupor; And Brain Damage 3 1.3 2.4 1.6 . 1 0.6 1.7 1.5 . 

06.07 Eye Disorders 185 72.9 2.5 2.4 *** 0.00001 67 35.9 1.9 1.8 0.00004 

06.07.01 Cataract 123 51.4 2.4 2.3 ** 0.00001 47 24.2 1.9 1.8 0.002 

06.07.03 Glaucoma 62 21.4 2.9 2.6 *** 0.00001 20 11.7 1.7 1.6   0.80 

07 Diseases Of The Circulatory System 378 177.7 2.1 2.1 ** 0.00001 186 94.8 2.0 1.9 ** 0.00001 

07.01 Hypertension 34 16.3 2.1 1.8 0.009 4 3.1 1.3 1.4 . 

07.01.02 Hypertension With Complications And Secondary Hypertension 34 16.3 2.1 1.9 0.009 4 3.1 1.3 1.4 . 

07.01.02.01 Hypertensive Heart And/Or Renal Disease 34 16.1 2.1 1.9 0.007 4 2.9 1.4 1.5 . 

07.02 Diseases Of The Heart 190 86.6 2.2 2.1 ** 0.00001 116 51.9 2.2 2.1 ** 0.00001 

07.02.01 Heart Valve Disorders 15 10.1 1.5 1.5 . 14 6.7 2.1 1.8 0.54 

07.02.02 

Peri-; Endo-; And Myocarditis; Cardiomyopathy (Except That 

Caused 6 2.2 2.7 1.8 0.89 4 1.1 3.8 1.9 0.80 

07.02.03 Acute Myocardial Infarction 12 4.0 3.0 2.0 0.08 5 1.8 2.8 1.8 . 

07.02.04 Coronary Atherosclerosis And Other Heart Disease 51 18.2 2.8 2.4 ** 0.00001 24 10.0 2.4 2.0 0.01 

07.02.04.00 Coronary Atherosclerosis And Other Heart Disease 11 3.6 3.1 2.1 0.10 3 1.6 1.8 1.6 . 

07.02.04.01 Angina Pectoris 16 6.3 2.5 2.0 0.08 8 3.1 2.6 1.8 0.66 

07.02.04.02 Unstable Angina (Intermediate Coronary Syndrome) 5 2.0 2.5 1.7 . 6 1.5 4.1 2.2 0.26 

07.02.04.03 Other Acute And Subacute Forms Of Ischemic Heart Disease 4 1.0 4.2 2.0 0.70 1 0.3 2.9 1.6 . 

07.02.04.05 Other Forms Of Chronic Heart Disease 15 5.2 2.9 2.1 0.03 6 3.4 1.8 1.6 . 

07.02.05 Nonspecific Chest Pain 2 1.8 1.1 1.4 . 2 1.6 1.3 1.5 . 

07.02.06 Pulmonary Heart Disease 1 1.2 0.8 1.4 . 4 0.8 5.0 2.2 0.48 

07.02.07 Other And Ill-Defined Heart Disease 5 5.2 1.0 1.3 . 11 3.1 3.5 2.2 0.03 

07.02.08 Conduction Disorders 2 2.2 0.9 1.4 . 4 1.4 2.8 1.7 . 
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Table 3. Cont. 

MLCCS Diagnosis 

Pioglitazone Rosiglitazone 

Obs Exp O/E EBGM GPS Signal

TreeScan 

p-value Obs Exp O/E EBGM GPS Signal 

TreeScan  

p-value 

07.02.09 Cardiac Dysrhythmias 48 33.3 1.4 1.5 0.63 28 21.9 1.3 1.3 . 

07.02.10 Cardiac Arrest And Ventricular Fibrillation 4 0.9 4.4 2.0 0.62 0 0.4 0.0 1.4 . 

07.02.11 Congestive Heart Failure; Nonhypertensive 44 7.3 6.0 5.9 *** 0.00001 20 3.2 6.3 6.0 *** 0.00001 

07.02.11.00 Congestive Heart Failure; Nonhypertensive 4 0.1 54.6 14.1 *** 0.00002 1 0.0 26.4 2.1 . 

07.02.11.01 Congestive Heart Failure 35 6.3 5.5 5.4 *** 0.00001 16 2.7 5.8 5.3 *** 0.00002 

07.02.11.02 Heart Failure 5 0.9 5.4 2.5 0.19 3 0.4 7.3 2.5 0.43 

07.03 Cerebrovascular Disease 40 15.1 2.6 2.2 ** 0.00001 13 7.1 1.8 1.6 . 

07.03.01 Acute Cerebrovascular Disease 14 5.9 2.4 1.9 0.27 1 2.3 0.4 1.2 . 

07.03.02 Occlusion Or Stenosis Of Precerebral Arteries 7 2.8 2.5 1.8 0.86 8 1.3 6.1 4.1 ** 0.00472 

07.03.03 Other And Ill-Defined Cerebrovascular Disease 3 1.6 1.9 1.6 . 1 1.2 0.8 1.4 . 

07.03.04 Transient Cerebral Ischemia 14 3.9 3.6 2.4 0.006 2 1.6 1.3 1.5 . 

07.03.05 Late Effects Of Cerebrovascular Disease 2 0.9 2.2 1.6 . 1 0.7 1.5 1.5 . 

07.04 Diseases Of Arteries; Arterioles; And Capillaries 81 44.8 1.8 1.7 0.00002 41 25.7 1.6 1.6 0.28149 

07.04.01 Peripheral And Visceral Atherosclerosis 33 7.6 4.4 4.1 *** 0.00001 18 3.8 4.7 4.0 *** 0.00002 

07.04.01.01 Atherosclerosis Of Arteries Of Extremities 9 1.6 5.5 3.6 ** 0.005 3 0.7 4.2 1.9 . 

07.04.01.02 Peripheral Vascular Disease Unspecified 21 4.9 4.3 3.5 *** 0.00001 11 2.4 4.7 3.1 ** 0.0023 

07.04.01.03 Other Peripheral And Visceral Atherosclerosis 3 1.0 3.0 1.7 . 4 0.8 5.2 2.2 0.43304 

07.04.02 Aortic; Peripheral; And Visceral Artery Aneurysms 1 1.9 0.5 1.3 . 3 1.1 2.7 1.7 . 

07.04.03 Aortic And Peripheral Arterial Embolism Or Thrombosis 5 0.9 5.3 2.5 0.20 2 0.4 4.6 1.8 . 

07.04.04 Other Circulatory Disease 42 34.4 1.2 1.3 . 18 20.4 0.9 1.1 . 

07.04.04.01 Hypotension 8 1.8 4.6 2.6 0.04 0 0.7 0.0 1.4 . 

07.04.04.02 Other And Unspecified Circulatory Disease 34 32.7 1.0 1.1 . 18 19.6 0.9 1.1 . 

07.05 Diseases Of Veins And Lymphatics 33 14.9 2.2 1.9 0.004 12 6.9 1.7 1.6 . 

07.05.01 Phlebitis; Thrombophlebitis And Thromboembolism 9 4.2 2.1 1.7 . 8 2.5 3.2 2.0 0.27 

07.05.02 Varicose Veins Of Lower Extremity 5 5.8 0.9 1.2 . 1 2.7 0.4 1.2 . 

07.05.04 Other Diseases Of Veins And Lymphatics 19 5.0 3.8 2.9 ** 0.00002 3 1.7 1.7 1.5   . 

09 Diseases Of The Digestive System 131 116.4 1.1 1.2   . 80 62.0 1.3 1.3   0.79 

10 Diseases Of The Genitourinary System 186 75.0 2.5 2.3 *** 0.00001 96 45.4 2.1 2.0 ** 0.00001 

10.01 Diseases Of The Urinary System 167 63.7 2.6 2.5 *** 0.00001 86 35.5 2.4 2.2 ** 0.00001 
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Table 3. Cont. 

MLCCS Diagnosis 

Pioglitazone Rosiglitazone 

Obs Exp O/E EBGM

GPS 

Signal 

TreeScan 

p-value Obs Exp O/E EBGM 

GPS 

Signal 

TreeScan  

p-value 

10.01.01 Nephritis; Nephrosis; Renal Sclerosis 28 1.2 24.3 21.0 *** 0.00001 6 0.7 8.7 5.7 ** 0.005 

10.01.02 Acute And Unspecified Renal Failure 3 1.2 2.6 1.7 . 1 0.6 1.6 1.5 . 

10.01.03 Chronic Renal Failure 14 1.6 9.0 8.3 *** 0.00001 7 0.7 10.1 7.8 *** 0.0001 

10.01.04 Urinary Tract Infections 6 1.3 4.7 2.4 0.15 2 0.6 3.4 1.7 . 

10.01.05 Calculus Of Urinary Tract 6 8.6 0.7 1.1 . 3 4.2 0.7 1.2 . 

10.01.06 Other Diseases Of Kidney And Ureters 30 6.2 4.8 4.7 *** 0.00001 14 3.4 4.1 2.9 ** 0.0004 

10.01.06.02 Other And Unspecified Diseases Of Kidney And Ureters 30 5.5 5.5 5.3 *** 0.00001 14 3.0 4.7 3.6 ** 0.00004 

10.01.07 Other Diseases Of Bladder And Urethra 0 1.0 0.0 1.3 . 1 0.6 1.8 1.5 . 

10.01.08 Genitourinary Symptoms And Ill-Defined Conditions 80 42.8 1.9 1.8 0.00002 52 24.7 2.1 1.9 ** 0.00002 

10.01.08.01 Hematuria 13 11.9 1.1 1.3 . 14 7.5 1.9 1.7 0.86 

10.01.08.02 Retention Of Urine 3 2.8 1.1 1.4 . 1 1.3 0.7 1.4 . 

10.01.08.03 Other And Unspecified Genitourinary Symptoms 64 28.1 2.3 2.1 ** 0.00001 37 15.9 2.3 2.1 ** 0.00007 

10.03 Diseases Of Female Genital Organs 19 11.2 1.7 1.6   0.88 10 9.9 1.0 1.3   . 

11 Complications Of Pregnancy; Childbirth; And The Puerperium 0 0.5 0.0 1.3   . 0 0.3 0.0 1.3   . 

12 Diseases Of The Skin And Subcutaneous Tissue 205 166.6 1.2 1.3   0.23 78 70.5 1.1 1.2   . 

12.01 Skin And Subcutaneous Tissue Infections 17 7.9 2.2 1.7 0.26 9 4.2 2.1 1.6 . 

12.02 Other Inflammatory Condition Of Skin 41 33.8 1.2 1.3 . 15 13.1 1.1 1.3 . 

12.03 Chronic Ulcer Of Skin 13 1.1 11.8 10.7 *** 0.00001 9 0.4 21.2 16.4 *** 0.00001 

12.03.02 Chronic Ulcer Of Leg Or Foot 13 1.1 11.8 10.4 *** 0.00001 9 0.4 21.2 15.1 *** 0.00001 

12.04 Other Skin Disorders 134 123.8 1.1 1.1   . 45 52.7 0.9 1.0   . 

13 Diseases Of The Musculoskeletal System And Connective Tissue 187 131.8 1.4 1.4   0.00008 84 57.7 1.5 1.5   0.07 

13.01 Infective Arthritis And Osteomyelitis (Except That Caused By TB Or STD 2 1.0 2.0 1.5 . 1 0.6 1.6 1.5 . 

13.07 Systemic Lupus Erythematosus And Connective Tissue Disorders 1 1.1 0.9 1.4 . 2 0.7 2.9 1.6 . 

13.08 Other Connective Tissue Disease 184 129.6 1.4 1.4   0.0001 81 56.4 1.4 1.4   0.13 

16 Injury And Poisoning 2 1.8 1.1 1.4   . 1 0.9 1.1 1.4   . 

17 Symptoms; Signs; And Ill-Defined Conditions And Factors Influencing Health 128 106.8 1.2 1.2   . 57 50.4 1.1 1.2   . 

MLCCS = Multi-level Clinical Classifications System; Obs = Observed; Exp = Expected; O/E = Observed/Expected; TreeScan p = multiple testing adjusted p-values, p > 0.90 is indicated 
with ‘.’; EBGM: empirical Bayesian geometric mean; *** GPS Signal at lower 90% CI bound ≥2; **Signal at lower 95% CI bound >1.5; Table includes (1) all major disease category 
headings; (2) any disease categories that signaled for GPS or with a p-value ≤ 0.10; (3) any parents/grandparent of categories that signaled, and (4) any sibling of a disease category that 
signaled as long as there were observed events. We excluded any categories that were exactly the same as the parent. 
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3.3. Overall Signaling Comparison  

Table 4 presents all 71 signals. TreeScan identified 71 signals, 49 at the highest threshold  

(p ≤ 0.001) and 22 at medium threshold (0.001< p < 0.05). GPS identified 48 signals; all high 

threshold GPS signals were also high threshold TreeScan signals, and 84% (21/25) of the moderate 

threshold GPS signals were high TreeScan signals. There were five high threshold TreeScan signals 

that did not signal for GPS, all had low O/E ratios (1.4 to 1.9) and large observed counts (67 to 187).  

Table 4. Comparison of all GPS and TreeScan signals across the four drugs studied by threshold. 

Tree-Based Scan Statistic (TreeScan) Signal Thresholds 

GPS Signal Thresholds p ≤ 0.001 0.001< p ≤ 0.05 Total (%) 

High 23 0 23 (32) 

Medium 21 4 25 (35) 

No signal 5 18 23 (32) 

TOTAL 49 22 71 

GPS Thresholds  

Medium: lower 95% CI bound ≥1.5 

High: lower 90% CI bound >2.0 

Thresholds are mutually exclusive 

Note: Data are no. (% of all signals). GPS: Gamma Poisson Shrinker. 

4. Discussion 

Electronic healthcare databases hold promise for pharmacovigilance because they address common 

shortcomings inherent to spontaneous reporting systems, offer large sample sizes and the potential to 

study subgroups, and include longitudinal medical information for a defined population. This is the 

first study to apply the GPS to population-based observational data in a multi-site environment for 

assessment of non-prespecified outcomes. Prior studies have implemented GPS in similar environments 

but have focused on pre-specified drug-event pairs.  

We identified 71 signals across four drug products. Of the 48 GPS signals identified, 23 (48%) 

signaled at the highest threshold. We did not formally evaluate each signal for clinical plausibility or 

prior knowledge of association, or prioritize them for refinement. All GPS signals were either known 

associations or could be reasonably attributed to confounding. We counted as unique every signal at 

each level of the hierarchical tree, an approach that overestimates the number of signals that would 

require refinement under a real-world implementation. For example, we counted signals for Diseases 

of the Nervous System and Sense Organs (06), Eye Disorders (06.07), Cataracts (06.07.01), and 

Glaucoma (06.07.03) as four distinct signals, although the higher-level signals (06 and 06.07) were 

almost entirely made up of the two lower-level signals and would not require four distinct signal 

refinement activities.  

The GPS and TreeScan results were similar with respect to the clinical areas that signaled, although 

findings varied by signaling threshold. In the few cases that GPS did not signal and TreeScan signaled 

at highest threshold, observed counts were high and O/E was low. This is expected behavior based on 

the nature of the two methods. 
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We note that using observational data for signal detection requires complex and often subjective 

analytic specifications, often unstated, that can directly affect the interpretation of the findings. Our 

implementation applied common epidemiologic approaches such as allowing individuals to contribute 

exposed and unexposed person time, and most importantly, involved identification of non-specified 

incident outcomes. The pilot was conducted using a fully distributed approach that did not require 

sharing of person-level protected health data but allowed identical definitions and analyses to be 

performed at each data partner.  

Implementation required specifications such as the baseline period, the allowable enrollment gap, 

the definition of contributed, exposed, and unexposed time, the creation of treatment episodes, 

allowable treatment gaps, right censoring decisions, and incident outcome definitions. A longer 

baseline period could reduce confounding by indication by identifying more patients with prevalent 

comorbid conditions, but would reduce overall cohort size due to lack of complete baseline. The 

incident outcome also can be defined several ways taking into account baseline period, care setting 

(inpatient versus outpatient), and diagnosis coding hierarchy. By excluding diagnoses unlikely to be 

associated with an acute outcome we eliminated the possibility of identifying the excluded diagnoses 

as outcomes. Our exclusion of injury and poisoning codes is debatable; those codes could be valuable 

in identifying those risks, but there is some uncertainty about how well those codes reflect adverse 

events versus misuse of safe medications (e.g., overdose). Regardless, they could be added in future 

implementations, especially in combination with loosening our simplifying restriction that allowed 

only one incident event per person. Finally, we compared exposed to unexposed time, controlling for 

age group, sex, and health plan. Others options for confounding adjustment include using an exposed 

comparison cohort, narrower age stratifications, and matching or disease severity stratification.  

Further, we note that we did not identify a set of expected signals that we hoped to find (e.g., 

expected adverse drug events) or avoid (e.g., confounded signals). Rather, since others have identified 

GPS as a potentially valuable tool for signal detection, our goal was to investigate the feasibility of 

implementing GPS and TreeScan in a real-world large-scale data mining application using longitudinal 

electronic health data without limiting the analysis to pre-specified relationships. We reviewed the 

product label, medical literature, and consulted clinical experts (co-authors and others) to informally 

assess whether identified signals were known or reasonably expected due to confounding. In our view 

there is no clear and well defined list of all known adverse drug events. Most drug labels have 

extensive adverse event list, but there is no conclusive evidence that all these “adverse events” are 

caused by the drug. For black box warnings there is usually strong evidence, but most known adverse 

events do not generate a black box warning. Developing a comprehensive list of all possible adverse 

events was beyond the scope of the paper and inconsistent with our primary aim to assess 

implementation in a real world setting.  

There is no “correct” decision regarding signaling thresholds, only generally understood trade-offs 

between identifying more or fewer signals and the resulting changes in numbers of signals needing 

refinement. The ability to interpret the signal detection findings within the larger pharmacovigilance 

framework, the ability of the findings to inform decision-making, and effort needed to evaluate them 

are important factors in whether or not a surveillance approach is viable. For instance, a viable 

approach will generate signals with enough informational value that they can be quickly adjudicated as 
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likely due to confounding, known, expected, or otherwise uninteresting versus those that require 

further evaluation and refinement.  

We have shown that the GPS method can be successfully applied to population-based health plan 

data and that it performs adequately, with the ability to detect known adverse events. Although the 

GPS always shrinks the O/E estimate to some value to reduce variability, it is not always the case that 

the O/E shrinks towards 1.0 [38]. We observed shrinkage towards approximately 1.5. This property 

could be seen as less than desirable. It reflects that across all the outcome events under study, there is 

an excess number of events compared to the expected. Thus, the O/E is shrunk towards some average 

O/E taken over all outcomes. The fact that this is more than 1.0 could be because the drug causes a 

whole range of adverse events, or more likely, that the drug is taken by a generally sicker or more frail 

population that experiences a whole range of comorbidities. Prior implementations of GPS in 

longitudinal data did not report this finding or any metrics regarding the prior distributions. This 

finding emphasizes the need for research with empirical Bayesian approaches to report details of the 

prior distribution so that it is clear to which value shrinkage occurs, and in general the importance of 

transparency of reported findings, around for example, signaling thresholds and the need to consider 

alternative implementation approaches such as the use of zero-inflated Poisson to account for the many 

empty cells and underlying variability. More research regarding the appropriate implementation 

strategy for GPS using longitudinal data and signaling thresholds and strategies for multi-level testing 

are also needed, including the potential to adjust thresholds and approaches based on the specific 

surveillance target(s) and perhaps observed prior distributions. 

Compared with TreeScan, there are both strengths and weaknesses to GPS, and it may be ideal to 

employ both methods simultaneously, using the combined results to better strengthen, refute, and 

understand signals. A strength of the GPS method is the Bayesian probability intervals; shrinkage of 

the point estimates towards the population average of O/E is a possible strength, although care must be 

taken to insure “shrinkage” towards values over unity does not introduce signals. We suggest future 

implementations carefully assess the GPS parameter sets to understand the distribution of O/E in the 

underlying population. A major strength of the TreeScan is the formal adjustment for multiple testing 

and the ability to analyze different levels of disease granularity in a single combined analysis.  

Signal detection is one step in the continuum of medical product safety surveillance. Approaches 

that generate statistical signals difficult to refine are of little practical use [46]—potentially creating an 

unfortunate situation in which new signal detection methods generate more heat than light. Therefore, 

it is critical that a robust medical product safety surveillance system have efficient mechanisms—such 

as those proposed by diverse stakeholders including the governmental agencies, academia and the 

pharmaceutical industry to quickly prioritize, refine and evaluate and act on signals. Examples of novel 

approaches to surveillance and signal management include the work of the US FDA Sentinel  

System [31,47,48] the WHO Collaborating Centre for International Drug Monitoring [49], the Asian 

Pharmacoepidemiology Network [50], and the European Network of Centres for Pharmacoepidemiology 

and Pharmacovigilance [51], and are being tested in multiple major international initiatives [52–54].  
  



Pharmaceutics 2012, 4 196 
 

Acknowledgments 

This work was funded by Pfizer Inc. (JSB, FZ, ID, TRA) and the Agency for Healthcare Research 

and Quality (JSB, ID, MK, KAC, RLD, SEA, DB, MJG, LH, PP, MAR, DR, DS, RP), through a grant 

to the HMO Research Network Center for Education and Research on Therapeutics (CERT), grant 

number U18 HS 010391. KP, AB, and RR are employees of Pfizer Inc. 

We are indebted to the statistical programmers at each of the sites for their work in extracting the 

study data and testing the programming algorithms, to Kimberly Lane and the HMO Research 

Network CERT Data Coordinating Center for their help in overseeing the study.  

Conflicts of Interest 

The authors declare no conflicts of interest. 

References 

1. Bate, A.; Evans, S.J. Quantitative signal detection using spontaneous ADR reporting. 

Pharmacoepidemiol. Drug Saf. 2009, 18, 427–436. 

2. Curtis, J.R.; Cheng, H.; Delzell, E.; Fram, D.; Kilgore, M.; Saag, K.; Yun, H.; Dumouchel, W. 

Adaptation of Bayesian data mining algorithms to longitudinal claims data: Coxib safety as an 

example. Med. Care 2008, 46, 969–975. 

3. Schuemie, M.J. Methods for drug safety signal detection in longitudinal observational databases: 

LGPS and LEOPARD. Pharmacoepidemiol. Drug Saf. 2011, 20, 292–299. 

4. Norén, G.N.; Bate, A.; Hopstadius, J.; Star, K.; Edwards, I.R. In Temporal Pattern Discovery for 

Treands and Transient Effects: Its Application to Patient Records, Proceedings of The 14th ACM 

SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, 

USA, August 24–27, 2008; pp. 963–971. 

5. Brown, J.S.; Petronis, K.; Bate, A.; Zhang, F.; Dashevsky, I.; Kulldorff, M.; Avery, T.A.;  

Davis, R.L.; Andrade, S.E.; Dublin, S.; et al. Comparing Two Methods for Detecting Adverse 

Event Signals in Observational Data: Empirical Bayes Gamma Poisson Shrinker and Tree-Based 

Scan Statistic, Proceedings of The 27th International Conference on Pharmacoepidemiology and 

Therapeutic Risk Management, The International Society for Pharmacoepidemiology Chicago, 

Chicago, IL, USA, August 14–17, 2011; p. Abstract 575. 

6. Kulldorff, M.; Dashevsky, I.; Avery, T.A.; Chan, K.A.; Davis, R.L.; Graham, D.; Platt, R.; 

Andrade, S.E.; Boudreau, D.; Gunter, M.J.; et al. In Drug Safety Data Mining with a Tree-Based 

Scan Statistic, Proceedings of 26th International Conference on Pharmacoepidemiology and 

Therapeutic Risk Management, Brighton, England, UK, 2010. 

7. Park, M.Y.; Yoon, D.; Lee, K.; Kang, S.Y.; Park, I.; Lee, S.H.; Kim, W.; Kam, H.J.; Lee, Y.H.; 

Kim, J.H.; et al. A novel algorithm for detection of adverse drug reaction signals using a hospital 

electronic medical record database. Pharmacoepidemiol. Drug Saf. 2011, 20, 598–607. 

8. Jin, H.W.; Chen, J.; He, H.; Williams, G.J.; Kelman, C.; O’Keefe, C.M. Mining unexpected 

temporal associations: Applications in detecting adverse drug reactions. IEEE Trans. Inf. Technol. 

Biomed. 2008, 12, 488–500. 



Pharmaceutics 2012, 4 197 
 

9. Walker, A.M. Signal detection for vaccine side effects that have not been specified in advance. 

Pharmacoepidemiol. Drug Saf. 2010, 19, 311–317. 

10. Harpaz, R.; DuMouchel, W.; Shah, N.H.; Madigan, D.; Ryan, P.; Friedman, C. Novel data-mining 

methodologies for adverse drug event discovery and analysis. Clin. Pharmacol. Ther. 2012, 91, 

1010–1021. 

11. Zorych, I.; Madigan, D.; Ryan, P.; Bate, A. Disproportionality methods for pharmacovigilance in 

longitudinal observational databases. Stat. Methods Med. Res. 2011, 22, 39–56. 

12. Norén, G.N.; Hopstadius, J.; Bate, A.; Star, K.; Edwards, I.R. Temporal pattern discovery in 

longitudinal electronic patient records. Data Min. Knowl. Discov. 2010, 20, 361–387. 

13. Schuemie, M.J.; Coloma, P.M.; Straatman, H.; Herings, R.M.; Trifiro, G.; Matthews, J.N.;  

Prieto-Merino, D.; Molokhia, M.; Pedersen, L.; Gini, R.; et al. Using electronic health care 

records for drug safety signal detection: a comparative evaluation of statistical methods. Med. 

Care 2012, 50, 890–897. 

14. Norén, G.N.; Hopstadius, J.; Bate, A.; Edwards, I.R. Safety surveillance of longitudinal databases: 

Results on real-world data. Pharmacoepidemiol. Drug Saf. 2012, 21, 673–675. 

15. Noren, G.N.; Hopstadius, J.; Bate, A.; Edwards, I.R. Safety surveillance of longitudinal databases: 

Methodological considerations. Pharmacoepidemiol. Drug Saf. 2011, 20, 714–717. 

16. Schuemie, M.J. Safety surveillance of longitudinal databases: further methodological 

considerations. Pharmacoepidemiol. Drug Saf. 2012, 21, 670–672. 

17. Bate, A.; Brown, E.G.; Goldman, S.A.; Hauben, M. Terminological challenges in safety 

surveillance. Drug Saf. 2012, 35, 79–84. 

18. Ryan, P.B.; Madigan, D.; Stang, P.E.; Overhage, J.M.; Racoosin, J.A.; Hartzema, A.G. Empirical 

assessment of methods for risk identification in healthcare data: Results from the experiments of 

the Observational Medical Outcomes Partnership. Stat. Med. 2012, 31, 4401–4415. 

19. Vaccine Safety Monitoring—Adverse Events. Available online: http://www.mini-sentinel.org/ 

methods/methods_development/details.aspx?ID=1028 (accessed on 15 August 2012). 

20. Yih, W.K.; Kulldorff, M.; Fireman, B.H.; Shui, I.M.; Lewis, E.M.; Klein, N.P.; Baggs, J.; 

Weintraub, E.S.; Belongia, E.A.; Naleway, A.; et al. Active surveillance for adverse events: The 

experience of the Vaccine Safety Datalink project. Pediatrics 2011, 127, S54–S64. 

21. Platt, R.; Davis, R.; Finkelstein, J.; Go, A.S.; Gurwitz, J.H.; Roblin, D.; Soumerai, S.;  

Ross-Degnan, D.; Andrade, S.; Goodman, M.J.; et al. Multicenter epidemiologic and health 

services research on therapeutics in the HMO Research Network Center for Education and 

Research on Therapeutics. Pharmacoepidemiol. Drug Saf. 2001, 10, 373–377. 

22. Platt, R.; Andrade, S.E.; Davis, R.L.; Destefano, F.; Finkelstein, J.A.; Goodman, M.J.;  

Gurwitz, J.Y.; Go, A.S.; Martinson, B.C.; Raebel, M.A.; et al. Pharmacovigilance in the HMO 

Research Network. In Pharmacovigilance; Mann, R.D., Andrews, E.B., Eds.; Wiley: New York, 

NY, USA, 2002; pp. 392–398. 

23. Raebel, M.A.; Lyons, E.E.; Andrade, S.E.; Chan, K.A.; Chester, E.A.; Davis, R.L.; Ellis, J.L.; 

Feldstein, A.; Gunter, M.J.; Lafata, J.E.; et al. Laboratory monitoring of drugs at initiation of 

therapy in ambulatory care. J. Gen. Intern. Med. 2005, 20, 1120–1126. 



Pharmaceutics 2012, 4 198 
 

24. Raebel, M.A.; McClure, D.L.; Simon, S.R.; Chan, K.A.; Feldstein, A.; Andrade, S.E.; Lafata, J.E.; 

Roblin, D.; Davis, R.L.; Gunter, M.J.; et al. Laboratory monitoring of potassium and creatinine in 

ambulatory patients receiving angiotensin converting enzyme inhibitors and angiotensin receptor 

blockers. Pharmacoepidemiol. Drug Saf. 2007, 16, 55–64. 

25. Simon, S.R.; Andrade, S.E.; Ellis, J.L.; Nelson, W.W.; Gurwitz, J.H.; Lafata, J.E.; Davis, R.L.; 

Feldstein, A.; Raebel, M.A. Baseline laboratory monitoring of cardiovascular medications in 

elderly health maintenance organization enrollees. J. Am. Geriatr. Soc. 2005, 53, 2165–2169. 

26. Simon, S.R.; Chan, K.A.; Soumerai, S.B.; Wagner, A.K.; Andrade, S.E.; Feldstein, A.C.;  

Lafata, J.E.; Davis, R.L.; Gurwitz, J.H. Potentially inappropriate medication use by elderly 

persons in U.S. Health Maintenance Organizations, 2000–2001. J. Am. Geriatr. Soc. 2005, 53, 

227–232. 

27. Wagner, A.K.; Chan, K.A.; Dashevsky, I.; Raebel, M.A.; Andrade, S.E.; Lafata, J.E.; Davis, R.L.; 

Gurwitz, J.H.; Soumerai, S.B.; Platt, R. FDA drug prescribing warnings: is the black box half 

empty or half full? Pharmacoepidemiol. Drug Saf. 2006, 15, 369–386. 

28. Chan, J.; Hui, R.L.; Levin, E. Differential association between statin exposure and elevated levels 

of creatine kinase. Ann. Pharmacother. 2005, 39, 1611–1616. 

29. Velentgas, P.; Bohn, R.L.; Brown, J.S.; Chan, K.A.; Gladowski, P.; Holick, C.N.; Kramer, J.M.; 

Nakasato, C.; Spettell, C.M.; Walker, A.M.; et al. A distributed research network model for  

post-marketing safety studies: The Meningococcal Vaccine Study. Pharmacoepidemiol. Drug Saf. 

2008, 17, 1226–1234. 

30. Brown, J.; Moore, K.; Braun, M.; Ziyadeh, N.; Chan, K.; Lee, G.; Kulldorff, M.; Walker, A.; 

Platt, R. Active influenza vaccine safety surveillance: Potential within a healthcare claims 

environment. Med. Care 2009, 47, 1251–1257. 

31. Behrman, R.E.; Benner, J.S.; Brown, J.S.; McClellan, M.; Woodcock, J.; Platt, R. Developing the 

Sentinel System—A national resource for evidence development. N. Engl. J. Med. 2011, 364, 

498–499. 

32. Perveze, Z.; Johnson, M.W.; Rubin, R.A.; Sellers, M.; Zayas, C.; Jones, J.L.; Cross, R.; Thomas, K.; 

Butler, B.; Shrestha, R. Terbinafine-induced hepatic failure requiring liver transplantation. Liver 

Transpl. 2007, 13, 162–164. 

33. Lou, H.Y.; Fang, C.L.; Fang, S.U.; Tiong, C.; Cheng, Y.C.; Chang, C.C. Hepatic failure related to 

itraconazole use successfully treated by corticosteroids. Hepat. Mon. 2011, 11, 843–846. 

34. Nikkels, A.F.; Nikkels-Tassoudji, N.; Pierard, G.E. Oral antifungal-exacerbated inflammatory 

flare-up reactions of dermatomycosis: Case reports and review of the literature. Am. J. Clin. 

Dermatol. 2006, 7, 327–331. 

35. Cançado, G.G.; Fujiwara, R.T.; Freitas, P.A.; Correa-Oliveira, R.; Bethony, J.M. Acute 

generalized exanthematous pustulosis induced by itraconazole: an immunological approach.  

Clin. Exp. Dermatol. 2009, 34, e709–e711. 

36. Elixhauser, A.; Steiner, C.; Palmer, L. Clinical Classifications Software (CCS), 2009. Agency for 

Healthcare Research and Quality. Available online: http://www.hcup-us.ahrq.gov/toolssoftware/ 

ccs/ccs.jsp (accessed on 15 August 2012). 

37. DuMouchel, W. Bayesian data mining in large frequency tables, with an application to the FDA 

spontaneous reporting system. Am. Stat. 1999, 53, 177–190. 



Pharmaceutics 2012, 4 199 
 

38. Fram, D.; Almenoff, J.S.; Dumouchel, W. Empirical Bayesian Data Mining for Discovering 

Patterns in Post-Marketing Drug Safety. In Proceedings of the Ninth ACM SIGKDD International 

Conference on Knowledge Discovery and Data Mining, Washington DC, USA, August 24−27, 

2003; pp. 359–368. 

39. Banks, D.; Woo, E.J.; Burwen, D.R.; Perucci, P.; Braun, M.M.; Ball, R. Comparing data mining 

methods on the VAERS database. Pharmacoepidemiol. Drug Saf. 2005, 14, 601–609. 

40. Almenoff, J.S.; DuMouchel, W.; Kindman, L.A.; Yang, X.; Fram, D. Disproportionality analysis 

using empirical Bayes data mining: A tool for the evaluation of drug interactions in the  

post-marketing setting. Pharmacoepidemiol. Drug Saf. 2003, 12, 517–521. 

41. Szarfman, A.; Machado, S.G.; O’Neill, R.T. Use of screening algorithms and computer systems to 

efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s 

spontaneous reports database. Drug Saf. 2002, 25, 381–392. 

42. Kulldorff, M.; Dashevsky, I.; Avery, T.; Chan, A.; Davis, R.; Graham, D.; Platt, R.; Andrade, S.; 

Boudreau, D.; Dublin, S.; et al. Drug Safety Data Mining with a Tree-Based Scan Statistic. 

Pharmacoepidemiol. Drug Saf. 2013, in press. 

43. Kulldorff, M.; Fang, Z.; Walsh, S.J. A tree-based scan statistic for database disease surveillance. 

Biometrics 2003, 59, 323–331. 

44. Tuccori, M.; Bresci, F.; Guidi, B.; Blandizzi, C.; Del Tacca, M.; Di Paolo, M. Fatal hepatitis after 

long-term pulse itraconazole treatment for onychomycosis. Ann. Pharmacother. 2008, 42,  

1112–1117. 

45. Kohli, R.; Hadley, S. Fungal arthritis and osteomyelitis. Infect. Dis. Clin. North Am. 2005, 19, 

831–851. 

46. Avorn, J.; Schneeweiss, S. Managing drug-risk information—What to do with all those new 

numbers. N. Engl. J. Med. 2009, 361, 647–649. 

47. Robb, M.A.; Racoosin, J.A.; Sherman, R.E.; Gross, T.P.; Ball, R.; Reichman, M.E.; Midthun, K.; 

Woodcock, J. The US Food and Drug Administration’s Sentinel Initiative: Expanding the 

horizons of medical product safety. Pharmacoepidemiol. Drug Saf. 2012, 21, 9–11. 

48. Platt, R.; Carnahan, R.M.; Brown, J.S.; Chrischilles, E.; Curtis, L.H.; Hennessy, S.; Nelson, J.C.; 

Racoosin, J.A.; Robb, M.; Schneeweiss, S.; et al. The U.S. Food and Drug Administration’s  

Mini-Sentinel program: Status and direction. Pharmacoepidemiol. Drug Saf. 2012, 21, 1–8. 

49. Olsson, S. The role of the WHO programme on International Drug Monitoring in coordinating 

worldwide drug safety efforts. Drug Saf. 1998, 19, 1–10. 

50. Asian Pharmacoepidemiology Network. Available online: http://aspennet.asia/index.html 

(accessed on 21 November 2012). 

51. Blake, K.V.; Devries, C.S.; Arlett, P.; Kurz, X.; Fitt, H. Increasing scientific standards, 

independence and transparency in post-authorisation studies: The role of the European Network 

of Centres for Pharmacoepidemiology and Pharmacovigilance. Pharmacoepidemiol. Drug Saf. 

2012, 21, 690–696. 

52. Stang, P.E.; Ryan, P.B.; Racoosin, J.A.; Overhage, J.M.; Hartzema, A.G.; Reich, C.; Welebob, E.; 

Scarnecchia, T.; Woodcock, J. Advancing the science for active surveillance: Rationale and 

design for the Observational Medical Outcomes Partnership. Ann. Intern. Med. 2010, 153, 600–606. 



Pharmaceutics 2012, 4 200 
 

53. Coloma, P.M.; Schuemie, M.J.; Trifiro, G.; Gini, R.; Herings, R.; Hippisley-Cox, J.; Mazzaglia, 

G.; Giaquinto, C.; Corrao, G.; Pedersen, L.; et al. Combining electronic healthcare databases in 

Europe to allow for large-scale drug safety monitoring: the EU-ADR Project. 

Pharmacoepidemiol. Drug Saf. 2011, 20, 1–11. 

54. Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium 

IMI-PROTECT. Available online: http://www.imi-protect.eu/ (accessed on 21 November 2012). 

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


