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Abstract: The rapamycin analog, ridaforolimus, has demonstrated potent anti-proliferative 

effects in cancer treatment, and it currently is being evaluated in a range of clinical cancer 

studies. Ridaforolimus is an extremely lipophilic compound with limited aqueous 

solubility, which may benefit from formulation with polymeric micelles. Herein, we report 

the encapsulation of ridaforolimus in 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

methoxy-poly(ethylene glycol 2000) (DSPE-PEG2000) via a solvent extraction technique. 

Micelle loading greatly improved the solubility of ridaforolimus by approximately 40 times 

from 200 μg/mL to 8.9 mg/mL. The diameters of the drug-loaded micelles were  

33 ± 15 nm indicating they are of appropriate size to accumulate within the tumor site via 

the enhanced permeability and retention (EPR) effect. The DSPE-PEG2000 micelle 

formulation was dosed intravenously to rats at 10 mg/kg and compared to a control of 

ridaforolimus in ethanol/PEG 400. The micelle significantly increased the half-life of 

ridaforolimus by 170% and decreased the clearance by 58%, which is consistent with 

improved retention of the drug in the plasma by the micelle formulation. 

OPEN ACCESS 



Pharmaceutics 2013, 5 82 

 

 

Keywords: ridaforolimus; preclinical pharmacokinetics; polymeric micelle; DSPE-PEG2000 

 

1. Introduction 

Ridaforolimus, also known as deforolimus, AP-23573, and MK8669, is a non-prodrug rapamycin 

analog (Figure 1A). It is a large lipophilic (MW: 990 g/mol; XlogP: 5.9) carboxylic lactone-lactam 

macrolide antibiotic with potent anti-proliferative and immunosuppressive effects. Ridaforolimus 

inhibits the mammalian target of rapamycin (mTOR), a serine/threonine kinase that is expressed 

throughout most mammalian cells and that is involved in a variety of cell signaling cascades [1]. 

Inappropriate activation of mTOR has been implicated in the pathogenesis of a range of cancers and 

can account for tumor proliferation and growth [1]. Ridaforolimus has been shown to inhibit mTOR 

and has demonstrated anti-proliferative activity against several cancer types in vitro and in vivo [2]. 

Figure 1. Chemical structure of (A) ridaforolimus and (B) DSPE-PEG2000. 

 

Ridaforolimus is currently undergoing numerous clinical trials for a range of cancers both as a 

monotherapy and in combination with other chemotherapeutics including a Phase III clinical trial for 

metastatic soft-tissue and bone sarcoma. Formulations being evaluated in these clinical trials include 

an intravenous formulation given as an infusion and an oral formulation. The pharmacokinetic results 

from these studies suggest ridaforolimus follows non-linear kinetics following oral and intravenous 

administration as indicated by non-linear increases in area under the curve (AUC) and concentration 

maximum (Cmax) with increases in dose [3]. Changes in clearance (CL) and volume of distribution at 

steady state (Vss) are also reported to change with dose [3]. It has been suggested that this nonlinearity 

is consistent with saturation of the red blood cell compartment which contains a substantial amount of 

FKBP-12, the binding protein of ridaforolimus and other rapamycin analogs [4]. This strong 
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partitioning of ridaforolimus to the red blood cell compartment may hinder the accessibility of 

ridaforolimus into solid tumor sites [5]. 

Ridaforolimus and other derivatives of rapamycin including temsirolimus and everolimus differ from 

rapamycin at the C-42 position. In the case of ridaforolimus, the C-42 position consists of a 

dimethylphosphinate substitution, which increases the aqueous solubility of ridaforolimus (ca. 200 μg/mL) 

in comparison to rapamycin (ca. 2.6 μg/mL) [6]. Although improved in relation to rapamycin, the 

solubility of ridaforolimus is still poor and has likely hindered development of clinical intravenous 

formulations. This cannot be verified, however, as the only formulation information published to our 

knowledge includes that of animal studies where ridaforolimus was solubilized in a complicated 

vehicle of dimethyl acetamide/polysorbate 80/polyethylene glycol-400/water (10/10/40/40, v/v/v/v) [7]. 

Further increasing the solubility of ridaforolimus through the use of nanocarrier technology may 

decrease the amount of ridaforolimus that partitions to the erythrocyte compartment and thereby allow 

for easier prediction of pharmacokinetic parameters. A specific class of nanocarriers that has a large 

solubilization capacity for poorly water soluble molecules are the pegylated phospholipid (PPL) 

micelles [8]. These self-assembled micelles are capable of solubilizing a wide range of hydrophobic 

molecules, and they are a potential tool for the safe formulation and delivery of antitumor agents to 

tumors without the inclusion of potentially harmful surfactants and excipients [5,8,9]. Due to their 

nanoscopic dimensions (typically <70 nm), PPL micelles can leave leaky vasculature, accumulating in 

tumors via the enhanced permeability and retention effect (EPR), where they remain due to poor 

lymphatic clearance [8]. An outer coat of poly(ethylene glycol) (PEG) imparts “stealth” characteristics 

to micelles, allowing them to circulate for long periods of time and avoid the mononuclear phagocyte 

system (MPS). These effects potentially reduce non-specific toxicities of the chemotherapeutic. 

Therefore, encapsulation of ridaforolimus in a micelle nanocarrier may limit its systemic toxicities 

specifically its dose-limiting toxicity of mucositis [3]. 

Previous investigations have confirmed that micelle formulations of poly(ethylene glycol)-block-

poly(caprolactone) (PEG-b-PCL) can substantially increase the solubility and circulation time of 

rapamycin, while also greatly reducing the non-specific toxicity [5]. We hypothesize that encapsulation 

of ridaforolimus in the PPL micelle polymer 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

methoxy-poly(ethylene glycol 2000) (DSPE-PEG2000) may allow for improved solubility while 

limiting the partition to erythrocytes. DSPE-PEG2000 (Figure 1B), was chosen due to its promising 

kinetic and thermodynamic stability and biocompatibility DSPE-PEG2000 has received regulatory 

approval in the US and/or Europe in three formulations of doxorubicin (Doxil, LipoDox and 

Thermodox). Herein, we report the pharmacokinetics of a DSPE-PEG2000 formulation of ridaforolimus 

in rats. To our knowledge, this is the first report of the pharmacokinetics of ridaforolimus in rats and 

the first attempt to solubilize ridaforolimus in any type of nanocarrier. 

2. Results and Discussion 

2.1. Formulation of Ridaforolimus in DSPE-PEG2000 Micelles 

The formation of drug loaded DSPE-PEG2000 was confirmed by gel permeation chromatography 

(GPC) study (Figure 2A). Loading of ridaforolimus into DSPE-PEG2000 micelles greatly improved the 
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aqueous solubility of ridaforolimus by approximately 40 times from 200 μg/mL to 8.9 mg/mL [6]. The 

diameters of the drug-loaded micelles as determined by DLS were 33 ± 15 nm (Figure 2B). This size 

range has been shown appropriate for extended circulation time in vivo and accumulation within the 

tumor through the EPR effect [10]. 

Figure 2. (A) Gel permeation chromatography (GPC) of ridaforolimus loaded  

DSPE-PEG2000 micelles in water mobile phase at 0.8 mL/min with evaporative light 

scattering detector (ELSD) detection; (B) Size distribution of ridaforolimus loaded  

DSPE-PEG2000 micelles indicating an average diameter of 33 nm. 

 

 

2.2. Micelle Characterization 

Micelles appeared as a distinct peak on SEC, with a retention time of 6.966 min for the  

DSPE-PEG2000 micelles (873,000 Da using PEG standards) (Figure 2A). The micelle fractions were 

collected and assayed for drug content by HPLC with UV detection. Ridaforolimus was found in the 

micelle GPC peak, and the HPLC retention time was identical to the standard with no additional peaks. 

The drug loading efficiency (DL%) for 10% (w/w) drug loaded micelles was 7.194% ± 0.143% and the 

encapsulation efficiency (EE%) was 77.519% ± 1.658%. 
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The in vitro release profiles of free drug and micelle formulation of ridaforolimus were investigated 

at simulated in vivo conditions using a PBS bath at pH 7.4 and 37 °C (Figure 3). The in vitro t50% was 

improved from less than 20 min to 1.5 days and t90% was increased from 1 h to 6.5 days (Figure 3). 

Figure 3. Release profile of ridaforolimus in PEG-DSPE2000 micelles (●) compared to free 

drug in PBS (○) (mean ± SD) (n = 3). 

 

2.3. Micelle Formulation Effects on Cellular Uptake of the Drug 

The DU145 and MDA-1986 cells were treated with naked ridaforolimus and ridaforolimus loaded 

DSPE-PEG2000 micelles. After a 6-h treatment, the drug uptaken by the cells was quantified by HPLC 

(Figure 4). Micelle formulation significantly improved the cellular uptake at all concentrations in both 

DU145 and MDA-1986 cells. In addition, DMSO was not required to solubilize ridaforolimus in the 

micelle formulation. 

2.4. Pharmacokinetic Evaluation of a DSPE-PEG2000 Formulation of Ridaforolimus 

Tolerability and the pharmacokinetic disposition of two ridaforolimus formulations were assessed. 

No observable differences were seen in the tolerability of the ethanol/PEG 400 formulation and  

DSPE-PEG2000 micelle formulation among blinded observers. No tolerability differences were 

expected as the appearance of the toxicities associated with mTOR inhibitors are most often delayed 

(e.g., mucositis). 

Pharmacokinetic differences between the micellar and ethanol/PEG 400 formulations of 

ridaforolimus following intravenous administration are illustrated in Figure 5. Ridaforolimus in the 

control formulation of ethanol/PEG400 exhibited a rapid distribution and elimination from the body 

where concentrations fell below detectable limits after 4 h post-dose. Solubilization of ridaforolimus in 

DSPE-PEG2000 micelles provided a slightly more sustained release and quantifiable presence of 

ridaforolimus in serum up to 12 h. Non-compartmental analysis of the pharmacokinetic parameters of 

these formulations are reported in Table 1. The micelle nanocarrier formulation increased elimination 

half-life (t1/2) by 1.7-fold and decreased the clearance by 0.6 fold. This may indicate that the micelle 

formulation increases the serum circulation time of ridaforolimus in vivo. The micelle formulation also 
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increased the AUC by 3.7-fold and decreased the Vss by 1.8-fold, but these were not statistically 

significant (p < 0.05). 

Figure 4. The micelle formulation improved ridaforolimus uptake by DU145 cells (A) and 

MDA-1986 cells (B) (mean ± SD) (* p < 0.01 between formulations the same concentration). 

 

Table 1. Pharmacokinetics of ridaforolimus after IV administration of control 

ridaforolimus in ethanol/PEG 400 and ridaforolimus in DSPE-PEG2000 micelles. The 

intravenous dose for all the formulations was 10 mg/kg to rats (mean ± SEM, n = 7 per 

group). * Significantly different from formulation in ethanol/PEG 400 (p < 0.05). 

PK Parameters 
Ridaforolimus in ethanol/PEG 400  

(mean ± SEM) 

Ridaforolimus in DSPE-PEG2000 micelles 

(mean ± SEM) 

AUC0→∞ (h × µg/mL) 1.40 ± 0.23 5.16 ± 2.13 

Vss (l/kg) 10.82 ± 2.10 6.05 ± 2.10 

Cltotal (l/h/kg) 8.31 ± 1.58 3.45 ± 0.79 * 

t1/2 (h) 1.20 ± 0.11 3.18 ± 0.64 * 

MRT (h) 1.34 ± 0.15 1.57 ± 0.51 
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Figure 5. Concentration-time profile in serum of ridaforolimus after intravenous 

administration of control ridaforolimus formulation in ethanol/PEG 400 and ridaforolimus 

in DSPE-PEG2000 micelles. The dose for all the formulations was 10 mg/kg to rats  

(mean ± SEM, n = 7 per group). 

 

Previous attempts to solubilize highly lipophilic compounds with polymeric micelles have showed 

dramatic alteration in the pharmacokinetics and biodistribution of these compounds. For instance, 

encapsulation of paclitaxel prodrugs into PEG-b-PCL micelles increased the AUC0→∞ of the  

prodrug 54-fold in comparison to control while improving tolerability and altering paclitaxel’s  

biodistribution [11]. For unclear reasons, solubilization of ridaforolimus in DSPE-PEG2000 micelles did 

not dramatically increase the residence time or the overall systemic exposure of ridaforolimus. This 

may be indicative of a lack of in vivo stability or an inability to evade the mononuclear phagocyte 

system. DSPE-PEG is well established to have detergent-like properties that may disrupt the balance of 

hydrophobicity and hydrophilicity of the nanocarrier. This is most well known in liposomes where 

DSPE-PEG is a common PEGylate choice yet can also be responsible for disrupting the lipid 

membrane [11]. 

No other reports of solubilization of ridaforolimus in micelles or other forms of nanocarriers are 

available in the biomedical literature. However, there are reports of the encapsulation of rapamycin, 

the parent drug of ridaforolimus, using PEG-b-PCL and DSPE-PEG2000 micelles [5,12,13]. The 

pharmacokinetics of rapamycin in these micelles has only been evaluated with the PEG-b-PCL 

formulation. The PEG-b-PCL greatly improved the tolerability of rapamycin with decreased 

distribution of rapamycin into brain tissue [5]. The formulation, however, had no significant effect of 

the pharmacokinetic disposition of rapamycin with only a longer t1/2 being significant [5]. These 

results appear to be in accordance with the results found in this study. 

To our knowledge, this is the first report of the pharmacokinetics of ridaforolimus in rats. The 

results reported herein vary greatly from those reported in clinical Phase I trials of ridaforolimus in 

humans suggesting species dependent pharmacokinetics. Within these human trials, a much long  

half-life of 45–52 h is reported [3]. Possible differences may stem from limits reached analytically as 

the LC/MS method reported here could detect ridaforolimus only to 50 ng/mL while LC/MS/MS used 

in clinical studies allowed detection to 0.5 ng/mL [3]. This may have prevented accurate estimation of 
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the terminal phase of elimination. Additionally, data reported within were collected from rat serum 

rather than whole blood. The concentrations of ridaforolimus in the serum component may have 

simply been too low for proper analytical quantitation. 

It was hypothesized at the beginning of this study that encapsulation within DSPE-PEG2000 micelles 

would greatly alter the pharmacokinetic parameters of ridaforolimus. A decrease in volume of 

distribution was anticipated due to an expected decrease in partitioning of ridaforolimus to the red 

blood cell compartment. Limiting red blood cell partitioning could have theoretically limited saturation 

of the substantial amount of FKBP-12 binding protein within erythrocytes. This saturation has been 

suggested as a possible reason for the lack of dose proportionality with ridaforolimus and other 

rapamycin analogs. Taken together, it can be speculated that it may have been possible to improve the 

dose proportionality of ridaforolimus by solubilizing in a nanocarrier system. However, no significant 

changes in volume of distribution were seen, but there were trends for a decrease in volume. 

These are the first of results in the literature describing the pharmacokinetics of ridaforolimus in 

rats as well as the first results presenting its formulation via nanocarriers. Other work in our laboratory 

continues to explore solubilizing lipophilic drugs in nanocarriers and the effects these formulations 

have on disposition of these drugs. 

3. Experimental Section  

3.1. Chemical and Reagents 

Ridaforolimus was purchased from LC Labs (Woburn, WA, USA). 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG2000) copolymer was 

purchased from Avanti Polar Lipids (Alabaster, AL, USA). HPLC-grade methanol and water were 

purchased from J.T. Baker (Philipsburg, NJ, USA). Other chemicals were of analytical grade. Healthy 

male Sprague-Dawley rats were obtained from Simonsen Labs (Gilroy, CA, USA). Ethical approval 

for animal experiments was obtained from Institutional Animal Care and Use Committee of 

Washington State University 

3.2. Preparation of Drug Formulations 

Ridaforolimus loaded micelles were prepared by solvent evaporation technique. Specifically, 

ridaforolimus and DSPE-PEG2000 (Avanti Polar Lipids, Inc.) were solubilized in 1:1 acetone and 

methanol. The solution was then added in a drop-wise fashion to vigorously stirred ddH2O using a 

syringe pump. The organic solvent was removed by stirring under an air purge. Solutions were then 

filtered through a 0.22-μm polyestersulfone filter to sterilize and remove unincorporated drug. 

Solutions were protected from light and stored at 4 °C until administered. 

A control formulation for intravenous administration of ridaforolimus was made by dissolving 

ridaforolimus in ethanol followed by addition to PEG400 to form a final formulation of 1:1 

ethanol:PEG. The resulting mixture was vortexed until clear and passed through a 0.22-μm 

polyestersulfone filter. 

Formulation concentrations were determined using a Shimadzu LC-2010A (Kyoto, Japan). A 

Phenomenex
®

 Luna C18 (2) analytical column (250 × 4.6 mm; 5 μm) was used with UV detection  
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at 290 nm (CA, USA). The mobile phase consisted of acetonitrile, water and formic acid  

(30:70:0.04, v/v/v) that was filtered and degassed prior to use with isocratic separation carried out at a 

flow rate of 0.3 mL/min. Hydrodynamic diameters of DSPE-PEG2000 micelles were performed using 

Dynamic Light Scattering (DLS) with a Malvern Nano ZS instrument and DTS software (Malvern 

Instruments Ltd., Malvern, Worcestershire, UK). 

3.3. Micelle Characterization 

The formation of DSPE-PEG2000 micelles was determined by gel permeation chromatography 

(GPC) using a Shimadzu 2010CHT system with 0.8 mL/min ddH2O as the mobile phase on a Shodex 

OHpak-803 HQ column (Showa Denko America, NY, USA) thermostated at 40 °C An evaporative 

light scattering detector (ELSD-LTII, Shimadzu, Lenexa, KS, USA) was used to detect the particles. 

Narrow molecular weight distribution polyethylene glycols (Scientific Polymer Products, Ontario, NY, 

USA) were used as standards for GPC analysis. To confirm the drug was encapsulated in the micelles, 

GPC peak fractions were collected and dried by Speed-Vac. The dried micelle fractions were 

redissolved in methanol and then analyzed by reversed-phase HPLC. 

The drug loading efficiency (DL%) and encapsulation efficiency (EE%) of ridaforolimus in  

DSPE-PEG2000 micelles were calculated according to the following equations: 

 
(1) 

 
(2) 

The in vitro release of the drug from DSPE-PEG2000 micelles into PBS (pH 7.4) was done by a 

dialysis method. Dialysis was carried out at 37 °C under sink condition using a 10-kDa MWCO 

dialysis tubing (SnakeSkin
®

, Thermo Scientific Inc., Rockford, IL, USA). The initial volume of  

drug-loaded micelles in the dialysis tubing was 2 mL and the sink solution was 4 L. The PBS was 

changed several times per day to maintain sink conditions. After pre-determined time intervals, 

samples were withdrawn from the dialysis bag and analyzed by a reversed phase HPLC column  

(TSK-GEL
®

 ODS-100Z, Tosoh Bioscience) at 50 °C with UV detection at 290 nm. 

3.4. Cellular Uptake of DSPE-PEG2000 Micelles 

Prostate cancer cell line, DU145, was maintained in RPMI-1640 medium and head and neck cancer 

cell line, MDA-1986, was kept in Dulbecco Modified Eagle Medium (DMEM). Both medium were 

supplemented with 10% fetal bovine serum (Hyclone Laboratory Inc., Logan, UT, USA). Cells were 

plated in 96-well flat-bottomed plates at a concentration of 10,000 cells per 90 μL of growth medium. 

After the cells attached to the surface, ridaforolimus dissolved in DMSO or encapsulated in  

DSPE-PEG2000 micelles was added at concentrations of 0, 5, 10, 25, 50 µM. After a 6-h treatment, the 

cell culture medium was removed and analyzed for extracellular drug content by HPLC. 
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3.5. LC/MS Analysis of Ridaforolimus 

The LC/MS system was a Shimadzu LCMS-2010 EV liquid chromatograph mass spectrometer 

system (Kyoto, Japan) connected to the LC portion consisting of two LC-10AD pumps, a SIL-10AD 

VP auto injector, a SPD-10A VP UV detector, and a SCL-10A VP system controller was used. Data 

analysis was accomplished using Shimadzu LCMS Solutions Version 3 software. A Phenomenex
®

 

Luna C18 (2) analytical column (250 × 4.6 mm; 5 µm) was used with a mobile phase of methanol, 

water, and formic acid (90:10:0.1, v/v/v) modified with 2 mM ammonium acetate at a flow rate of  

0.5 mL/min. Pterostilbene was used as an internal standard. Positive selective ion monitoring (SIM) 

was used for detection of ridaforolimus at m/z 1012.60 (sodium adduct) and pterostilbene at m/z 257. 

Sodium adduct formation of other immunosuppressants have been reported [14,15]. This LC/MS 

method was linear over 0.05–10 μg/mL concentration range with a lower limit of quantitation (LLOQ) 

of 0.05 μg/mL. Interday precision and accuracy for the method were within the acceptance criteria  

of <15%. 

3.6. Surgical Procedures 

Male Sprague-Dawley rats (~250 g) were obtained from Simonsen Labs (Gilroy, CA, USA) and 

given food (Purina Rat Chow 5001) and water ad libitum in our animal facility for at least 3 days 

before use. Rats were housed in temperature-controlled rooms with a 12 h light/dark cycle. The day 

before the pharmacokinetic experiment, the right jugular veins of the rats were catheterized with sterile 

silastic cannula (Dow Corning, Midland, MI, USA) under isoflurane anesthesia. After cannulation, the 

Intramedic PE-50 polyethylene tubing (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) 

connected to the cannula was exteriorized through the dorsal skin. The cannula was flushed with 0.9% 

saline. The animals were transferred to metabolic cages and fasted overnight. Animal use protocols 

were approved by The Institutional Animal Care and Use Committee at Washington State University. 

3.7. Pharmacokinetic Study 

On the days of the experiment, animals were intravenously administered a single bolus injection of 

either ridaforolimus in ethanol/PEG 400 (10 mg/kg, n = 7) or the ridaforolimus in DSPE-PEG2000  

(10 mg/kg, n = 7). These dosages were based on dose varying studies previously conducted in our 

laboratory with the structurally similar compound, rapamycin, and are in accordance with animal 

studies of ridaforolimus [5,7]. 

After dosing, serial blood samples (~0.30 mL) were collected from the cannula at 0, 1 min, and  

30 min, then 1, 2, 4, 6, 12, 24, and 48 h after intravenous administration, and the cannula flushed with 

0.9% saline. After dosing and after each serial blood sampling, blinded observers were present to 

record any visible behavior, bleeding, or change in overall appearance of the animal as signs of acute 

tolerability. Each blood sample was collected and following centrifugation, the serum was collected 

and stored at −70 C until analyzed.  



Pharmaceutics 2013, 5 91 

 

 

3.8. Sample Preparation 

To extract ridaforolimus from serum samples, an ethyl acetate extraction was used. To 100 µL of 

serum sample, 10 µL of IS (100 µg/mL), 200 µL HPLC-grade water, and 1 mL of ethyl acetate were 

added. Samples were vortexed for 30 s, centrifuged at 5000 rpm for 5 min, and the organic phase 

transferred to a new sample tube and dried under a stream of nitrogen gas. Dried samples were 

reconstituted with 100 µL of mobile phase and 10 µL injected into the LC/MS system. 

3.9. Pharmacokinetic Analysis 

Pharmacokinetic analysis was completed using data from individual rats for which the mean and 

standard error of the mean (SEM) were calculated for each group except for Tmax which was 

represented as median and range. Pharmacokinetic parameters were estimated through 

noncompartmental analysis by the methods of Gibaldi et al. [16]. The apparent terminal elimination 

rate constant (ke) was estimated from the slope of the log–linear phase of declining serum 

concentration vs. time plot. The half-life (t1/2) was calculated using the following equation:  

t1/2 = 0.693/ke. The area under the concentration time curve (AUC0→Clast) was calculated using the 

linear/logarithmic trapezoidal method. Summation of AUC0→Clast and the concentration at the last 

measured point divided by ke yielded AUC0→∞. Mean residence time (MRT) was calculated by 

dividing AUMC0→∞ by AUC0→∞, clearance (CL) by dividing dose by AUC0→∞, and volume of 

distribution (Vss) by multiplying MRT by CL. 

3.10. Statistical Analysis 

Quantification was based on calibration curves constructed using peak area ratio (PAR) of 

ridaforolimus to internal standard, against ridaforolimus concentrations using unweighted least squares 

linear regression. Pharmacokinetic analysis was performed using data from individual rats for which 

the mean and standard error of the mean (SEM) were calculated for each group. The data were analyzed 

for statistical significance in Microsoft Excel
®

 using student’s t-test with a value of p < 0.05 being 

considered statistically significant. 

4. Conclusions  

The DSPE-PEG2000 micellar formulation dramatically improved the solubility of ridaforolimus and 

provided optimum sizing of the micelle particles. Upon intravenous administration of ridaforolimus 

loaded DSPE-PEG2000 micelles to rats, alterations in the pharmacokinetics of ridaforolimus could be 

detected. This included a significant increase in half life and decrease in clearance, and non-significant 

changes in AUC and volume of distribution. These results suggest that the micelle formulation may 

increase the retention of drug, but the micelle formulation may have limited stability in vivo. Since the 

micelle formulation significantly enhances the drug’s aqueous solubility and eliminates harmful 

excipients, the toxicity profile may be improved. The toxicity and efficacy in xenografts will be 

reported in a future study. 
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