
pharmaceutics

Article

Lobular Distribution and Variability in Hepatic ATP
Binding Cassette Protein B1 (ABCB1, P-gp):
Ontogenetic Differences and Potential for Toxicity

Ngu Njei Abanda 1,2,†, Zoe Riches 3,† and Abby C. Collier 1,3,*
1 Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii,

Honolulu, HI 96813, USA; abandann@hawaii.edu
2 Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
3 Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall,

Vancouver, BC V6T1Z3, Canada; zoe.riches@ubc.ca
* Correspondence: abby.collier@ubc.ca; Tel.: +1-604-827-2380
† These authors contributed equally to this manuscript and are co-first author.

Academic Editor: Yvonne Perrie
Received: 12 January 2017; Accepted: 9 February 2017; Published: 17 February 2017

Abstract: The ATP Binding Cassette B1 (ABCB1) transporter has critical roles in endo- and xenobiotic
efficacy and toxicity. To understand population variability in hepatic transport we determined ABCB1
mRNA and protein levels in total liver lysates sampled from 8 pre-defined sites (n = 24, 18–69 years),
and in S9 from randomly acquired samples (n = 87, 7 days–87 years). ABCB1 levels did not differ
significantly throughout individual livers and showed 4.4-fold protein variation between subjects.
Neither mRNA nor protein levels varied with sex, ethnicity, obesity or triglycerides in lysates or
S9 (that showed the same relationships), but protein levels were lower in pediatric S9 (p < 0.0001),
with 76% of adult ABCB1 present at birth and predicted to mature in 5 years. Pediatric total liver
lysates were not available. In summary, opportunistic collection for studying human hepatic ABCB1
is acceptable. Additionally, ABCB1 may be lower in children, indicating differential potential for
toxicity and response to therapy in this special population.
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1. Introduction

Interest in active transporters, such as the ATP Binding Cassette (ABC) proteins, has peaked in
recent years because they play crucial roles in drug, chemical, hormone, and nutrient disposition [1].
Clinical and environmental studies increasingly consider the effects of transporters on therapeutic
failure, drug resistance, and chemical toxicity. Despite this, very few published studies have determined
transporter protein dynamics in human liver tissue samples—a critical site of transport action and
critical mediator of systemic endo- and xenobiotic levels. Primarily, this is due to: (i) difficulties in
obtaining human liver tissue samples; and (ii) technical challenges working with ABC proteins in the
laboratory [2–7].

One of the important ABC transporters is ABCB1 (EC 3.6.3.44, P-glycoprotein, P-gp). The ABCB1
protein is present on the plasma membrane of almost all tissues of the human body (reviewed [8–12]).
In the liver, it is expressed on the apical surface of hepatocytes. First characterized in the 1970s,
ABCB1 is a 170 kDa protein composed of two sub-units, each containing six transmembrane domains,
a large cytoplasmic domain, and a nucleotide binding domain [12]. Although ABCB1 actions in the
liver are necessary for elimination of substances from the body to maintain homeostasis, excessive
expression (such as by induction) can also reduce the therapeutic effects of drugs and upset homeostatic
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balance of e.g., hormones and bile acids. An example of this is the drug-drug interaction between
Rifampicin (an ABCB1 inducer) and Apixaban, where the therapeutic effect of Apixaban is decreased
through greater elimination, increasing risk of stroke [13]. Conversely low expression or activity
of ABCB1 may increase the risk of toxicity by compromising elimination. This is observed in the
Apixaban/Ketoconazole interaction (ABCB1 inhibition by the latter), where there is an increase in total
Apixaban exposure and risk of haemorrhage [13].

We hypothesized that hepatic expression of ABCB1 would be greater in areas near the portal
and bile circulation due to its physiological role as an efflux transporter. Currently, there are
no published studies of differential regional expression of ABCB1 in the human liver. Regional
differences in ABCB1 expression would have implications for sample collection and for differentiating
between localized and systemic effects on drug and chemical disposition due to ABCB1 expression.
In addition to understanding regional variability in hepatic ABCB1, we were interested in determining
whether ABCB1 expression is associated with demographic parameters. Although studies associating
expression with age, sex, and ethnicity have been common with metabolic enzymes [14–22] and have
revealed critical insight into chemical action and toxicity, they largely do not exist for transport proteins.
Based on similar roles as metabolic enzymes, we hypothesized that ABCB1 in the human liver would
vary with age, sex, ethnicity, or obesity, and tested this in both the lysates as well as a larger cohort of
87 liver S9 fractions (7 days–87 years).

A greater knowledge of the spatial and demographic ABCB1 expression can help with
understanding liver function and disease etiology, as well as systemic drug, chemical, and hormone
effects mediated by liver transport.

2. Materials and Methods

All chemicals and reagents were from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise stated.

2.1. Tissue Samples

Liver S9 and lysate samples were released from the Hawaii Biorepository, with approval from
the Institutional Review Board for Human Ethics at the University of Hawaii CHS15844 and the
Review Ethics Board at the University of British Columbia H14-00092. The cohort was supplemented
with samples purchased commercially from Cellzdirect (Durham, NC, USA), Puracyp (Carlsbad,
CA, USA), and Xenotech (Lenexa, KS, USA). Table 1 summarizes donor demographics for the
total liver lysates (n = 24). Table 2 summarizes the demographics of the S9 liver samples (n = 87).
Lysates were prepared from approximately 5 g of frozen tissue. Tissues were thawed and weighed and
homogenized 1:3 weight:volume in 0.1 M Tris-HCl containing 5 mM MgCl2 and 2 mM freshly prepared
Phenylmethylsulfonyl fluoride. Tissues were homogenized to total lysate in 50 mL falcon tubes using
a Tissue Tearor electrical homogenizer (Daigger Scientific, Vernon Hills, IL, USA). Total lysates were
aliquoted and frozen at −80 until use.

2.2. Extraction of mRNA and cDNA Preparation

Total RNA (up to 5 µg) was extracted from human liver S9 (100 µL at 10–30 mg protein/mL).
RNA (up to 6 µg) was also extracted from human liver lysates (50 µL at 4–50 mg protein/mL) using the
RNeasy Mini kit according to the manufacturer’s instruction (Qiagen, Valencia, CA, USA). The RNA
purity and concentration were determined by Nanodrop (ThermoFisher Scientific, Wilmington, DE,
USA), then RNA was aliquoted stored at −80 ◦C until use. Only samples with 90% pure RNA or
higher (OD260/280 > 0.8) were used for reverse-transcription with an ABI High Capacity Reverse
Transcription Kit (Life Technologies, Burlington, ON, Canada).
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Table 1. Demographic information of the donors used to investigate regional ATP Binding Cassette B1 (ABCB1) expression in the liver.

ID Number of Liver Samples Taken for Regional Study Age (Years) BMI (Kg/m2) Sex Ethnicity

A 8 44 38.8 Male Hawaiian or other pacific Islander
B 7 20 43.7 Male Hawaiian or other pacific Islander
C 7 37 38.0 Male Caucasian
D 8 48 31.6 Female Asian
E 8 46 31.7 Female Caucasian
F 2 57 22.7 Male Asian
G 2 69 27.8 Male Caucasian
H 2 62 35.5 Male Caucasian
I 4 18 29.9 Male Hawaiian or other pacific Islander
J 8 52 24.5 Male Caucasian
K 1 61 21.1 Female Japanese
L 1 51 29.3 Male Asian
M 1 47 20.3 Male Asian
N 1 32 25.5 Male Caucasian
O 1 57 33.4 Male Asian
P 1 58 24.7 Male Asian
Q 1 40 15.7 Female Caucasian
R 1 43 29.9 Male Caucasian
S 1 59 28.3 Male Asian
T 1 53 20.9 Female Asian
U 1 52 22.3 Male Caucasian
V 1 56 34.4 Female Caucasian
W 1 39 52.4 Female Asian
X 1 64 34.7 Male Hispanic
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Table 2. Demographic information of the liver cohort.

Group
Age Range

Age
Mean ± SD (Years)
n

Ethnicity Sex Body Mass Index (BMI)

Population
0.018–87 years

44.8
±22.5
n = 87

Caucasian
Asian
Pacific Islander
African American
Hispanic
Other/unknown

68%
14%
7%
5%
3%
3%

Female
Male
Unknown

33%
66%
1%

Underweight (BMI ≤ 18.9)
Ideal weight (19–24.9)
Overweight (25–29.9)
Obese (30–39.9)
Morbidly obese (≥40.1)
Unknown/not included

3%
31%
16%
26%
9%
14 %

Pediatrics
7 days—18 years

4.6
±5.4
n = 12

African-American
Caucasian
Pacific Islander
Hispanic
Other/unknown

n = 2
n = 6
n = 1
n = 1
n = 2

Female
Male
Unknown

n = 2
n = 9
n = 1

Underweight (<5th percent)
Ideal weight (6–85th percent)
Overweight (86–94th percent)
Obese (>95th percent)
Unknown/not included

n = 1
n = 3
n = 2
n = 2
n = 4

Adult
19—64 years

45.3
±12.9
n = 60

Caucasian
Asian
Pacific Islander
African American
Hispanic
Other/unknown

n = 39
n = 12
n = 4
n = 2
n = 2
n = 1

Female
Male

n = 20
n = 40

Underweight (BMI ≤ 18.9)
Ideal weight (19–24.9)
Overweight (25–29.9)
Obese (30–39.9)
Morbidly obese (≥40.1)
Unknown/not included

n = 2
n = 19
n = 10
n = 19
n = 5
n = 5

Geriatrics
65–87 years

74.6
±6.7
n = 15

Caucasian
Pacific Islander

n = 14
n = 1

Female
Male

n = 7
n = 8

Underweight (BMI ≤ 18.9)
Ideal weight (19–24.9)
Overweight (25–29.9)
Obese (30–39.9)
Morbidly obese (≥40.1)
Unknown/not included

n = 0
n = 5
n = 2
n = 2
n = 3
n = 3
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2.3. SYBR Green q-RT-PCR and Primer Selection

Primer sequences for ABCB1 were (F): 5′-CAC CCG ACT TAC AGA TGA TG-3′ and (R) 5′-GTT
GCC ATT GAC TGA AAG AA-3′ with predicted amplicon length of 81 and can be retrieved from
NM_000927 [23]. The primers for 18S rRNA were (F): 5′-CAC GGC CGG TAC AGT GAA A-3′ and (R):
5′-AGA GGA GCG AGC GAC CAA-3′, with a predicted amplicon length of 71 and can be retrieved
from NR_003286.2 [24].

Real-time PCR was performed on an ABI Step-one-plus real time PCR system (Life Technologies)
using cDNA template (2.5 ng RNA equivalent from S9 samples or 5 ng RNA equivalent from total
liver lysates). First, the forward and reverse primers concentrations were optimized to give best
signal-to-noise amplification and were 300 nM for both forward and reverse primers for 18S and
300 nM forward and 500 nM reverse for ABCB1. Detection was with PerfeCTa SYBR Green SuperMix
for IQ (Quanta BioSciences, Gaithersburg, MD, USA). Cycling conditions were: 1 cycle 30 s at 95 ◦C,
40 cycles of 5 s at 95 ◦C, 15 s at 60 ◦C, and 10 s at 70 ◦C then melt curve of 15 s at 95 ◦C, 60 s at 60 ◦C,
and 15 s at 95 ◦C. The threshold value detection (CT) was set in the exponential phase of amplification
and quantified by normalization to 18S rRNA. Analysis was performed on StepOne™ software version
2.3 (Applied Biosystems, Foster City, CA, USA), with CT values converted to fold change differences
using the 2−∆∆CT method for relative quantitation [25].

2.4. Immunoblotting for Relative Expression of Protein

For western blotting of ABCB1, SDS-page gels (7%) were used to resolve 20 µg of liver lysate or S9
and each sample was analyzed on at least 3 separate gels as previously described [19]. Primary antibody
was rabbit polyclonal anti-ABCB1 (ab129450, Abcam, Toronto, ON, Canada) incubated for 2 h at room
temperature. Horseradish peroxidase conjugated donkey-anti-rabbit at 1:3000 was then incubated for
1 h at room temperature (Jackson Immunolabs, Westgrove, PA, USA). The membrane was developed
for 1 min in enhanced chemiluminescence solution and detected on X-ray film for 60 min. Confirmation
of even protein loading was by staining acrylamide gels with ponceau red and determining even
loading. Additionally, a second variability control between blots run on different days was included.
This second control was 20 µg of commercial human S9 from a pool of 200 individual livers, that was
added to the left lane of every blot, and used to determine variability and to normalize expression.
The inter-blot coefficient of variation (CV) of the XT200 was 14.6%, n = 9. Samples were semi-quantified
with Image J 1.48v (http://imagej.nih.gov/ij) with background subtraction.

2.5. Total Triglyceride Liver Concentrations

The triglyceride colorimetric assay kit (Cayman Chemical Company, Ann Arbor, MI, USA) was
used to determine the levels of triglycerides (mg/g of liver) as per manufacturer’s instructions.

2.6. Statistical Analyses

All data sets were analyzed for normality with D’Agostino-Pearson tests. For sex or ethnicity
(binary tests), student’s t-tests (two-tailed) were performed between groups. For binned continuous
data (age, BMI), one way ANOVA with Tukey’s post hoc analysis was performed. Pediatric samples
(<18 years) were not included in the BMI analysis, as BMI is not an appropriate measure for
obesity in children. Where body weight was known, appropriate categories were assigned using
the National Center for Health Statistics weight-for-age growth charts for children: underweight,
<5th percentile; ideal weight, 5–85th; overweight, 86–94th; obese, >95th percentile (http://www.cdc.
gov/growthcharts [26], Table 2). Correlations between mRNA and protein were performed using
Pearson’s or Spearman’s correlation according to the normality distribution. A one-phase association
(not forced through zero), straight line, and sigmoidal fits were compared to predict development of
ABCB1 protein expression from birth. The best fit was determined using Aikake’s informative criteria
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(AIC), F-tests, sum of squares and residual analysis. All statistical analyses were performed using
Prism 5.0 for Mac OsX (Graph Pad Prism, San Diego, CA, USA).

3. Results

3.1. Expression ABCB1 mRNA and Protein in Hepatic Lysates: Regional and Demographic Associations

Transporter mRNA expression was determined in a cohort of 24 individual livers using multiple
pieces from each liver obtained from 8 distinct regions (not all samples were available from all
individuals, Figure 1a). There were no significant differences in ABCB1 mRNA regional expression
(Figure 1b). The mean CT values (±SD) for 18S and ABCB1 were 13.3 ± 2.2 and 32.6 ± 2.8, respectively.
The ABCB1 mRNA levels had an average 30-fold variability in mRNA levels. Similarly, there were no
significant differences in protein expression of ABCB1 throughout the liver (Figure 1c). The highest
level of protein and greatest range of ABCB1 expression was detected in the samples taken adjacent
to bile ducts. The levels of ABCB1 mRNA and protein did not correlate (Figure 1d), indicating that
ABCB1 expression is not purely transcriptional.

Hepatic ABCB1 protein levels within the regional expression lysate cohort ranged from
3.4 ± 0.7 to 6.7 ± 3.0 area:density units (mean± SD, Figure 1f). Lysates average five times more ABCB1
protein than S9 fractions. Intra-individual variability in hepatic ABCB1 protein expression, taken from
eight different sites in the same liver, ranged from 1.2- to 4-fold with a mean value of 2.5 ± 0.9-fold
(Figure 1f). In these total liver lysates, there was no significant correlation of ABCB1 protein with
age, BMI, sex, or ethnicity (Figure 2a–d). However, for ethnicity it should be noted that statistical
comparisons essentially compare Caucasians and Asians due to the small sample size for Hispanics
and Hawaiians.
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expression showing intra-individual variability of protein expression (8 regions for A, D, E, J; 7 regions 
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Figure 2: The protein expression of ABCB1 in a cohort of 24 liver lysates. The ABCB1 protein was 
detected by Western blotting and normalized to the ABCB1 levels detected in a pooled S9 liver 
sample (Xenotech, n = 200 individuals); (a) correlation between age and ABCB1 protein expression with 
dotted lines 95% confidence intervals; (b) Expression of ABCB1 protein compared with BMI; (c) The 
expression of ABCB1 proteins compared to sex; (d) Differences between ethnicity and ABCB1 protein 
expression. 

Similarly, for triglycerides mean levels were 15.4 ± 1.2 mg/g of liver (mean ± SD). There were no 
regional differences in triglyceride levels (Figure 3a), but triglycerides varied significantly between 
individuals (Tukey p < 0.0001, Figure 3b). There was no correlation between hepatic triglyceride 

Figure 1. Expression of ABCB1 within different human liver regions. (a) Diagram of the different
regions where samples taken within the same liver; (b) The mRNA expression of ABCB1 was
determined within different regions of 14 different livers; (c) Protein expression of ABCB1 within
different human liver regions: (distal large lobe n = 8; distal small lobe n = 6), medial large lobe n = 7;
medial small lobe n = 6, central large lobe n = 10, central small lobe n = 5, APC = adjacent to portal
circulation n = 6 and ABD = adjacent to bile duct N = 11); (d) Correlation between mRNA expression
and protein expression for ABCB1, with 95 % confidence intervals (dotted line), and data analyzed by
Spearman’s correlation; (e) ABCB1 mRNA expression (line = means) within the livers of 10 individuals;
(f) The ABCB1 protein expression showing intra-individual variability of protein expression (8 regions
for A, D, E, J; 7 regions for B and C; 4 regions for I and 2 regions for F, G and H).
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Figure 2. The protein expression of ABCB1 in a cohort of 24 liver lysates. The ABCB1 protein was
detected by Western blotting and normalized to the ABCB1 levels detected in a pooled S9 liver sample
(Xenotech, n = 200 individuals); (a) correlation between age and ABCB1 protein expression with dotted
lines 95% confidence intervals; (b) Expression of ABCB1 protein compared with BMI; (c) The expression
of ABCB1 proteins compared to sex; (d) Differences between ethnicity and ABCB1 protein expression.
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Similarly, for triglycerides mean levels were 15.4 ± 1.2 mg/g of liver (mean ± SD). There were no
regional differences in triglyceride levels (Figure 3a), but triglycerides varied significantly between
individuals (Tukey p < 0.0001, Figure 3b). There was no correlation between hepatic triglyceride levels
and age, BMI, sex, or ethnicity (Figure 3c–f). Triglyceride levels did not correlate with ABCB1 mRNA
(r = −0.004, p = 0.98) or protein (r = −0.23, p = 0.30).
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levels: 1 & 4 distal, 2 & 5 medial, 3 & 6 central, APC = adjacent to portal circulation and ABD = adjacent
to bile duct, see Figure 1a for detailed liver regions; (b) The inter- and intra-individual expression of
triglycerides levels. The correlation of triglyceride levels with (c) age and (d) BMI. The relationship
between triglyceride levels and (e) sex and (f) ethnicity.

3.2. Expression of ABCB1 in Hepatic S9: Demographic and Ontogenetic Associations

Because we only had adult total liver lysates, to provide further insight into the ontogeny of
ABCB1 we analyzed a cohort of liver S9 where pediatric, adult, and elderly samples were available
(Table 2). The ABCB1 mRNA (n = 79) was detectable from birth, and a significant negative correlation
with age was observed (Pearson r = −0.3, p = 0.02), although the correlation coefficient suggested that
this was only a moderate association, with 8% of the change in mRNA expression being attributed to
age as a covariate (Figure 4a). When grouped into categories, the elderly (>65 years, mean ∆CT ± SEM
of 22.7 ± 0.4) had lower ABCB1 mRNA levels than adults (mean ∆CT ± SEM of 21.6 ± 0.2, Figure 4b).
Although not statistically significant, this 2-fold difference in gene expression is driving the negative
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association. Exactly the same as in the case of the total lysates, there were no significant differences
observed for BMI, ethnicity, or sex in ABCB1 mRNA expression levels in S9 (Figure 4c–e). Pediatric
samples (<18 years) were not included in the BMI analysis, as BMI is not an appropriate measure for
obesity in children; rather, percentile-weight-for-age (National Center for Health Statistics) was used.Pharmaceutics 2017, 9, 8  9 of 13 
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Figure 4. The mRNA expression of ABCB1 in a cohort of 80 liver samples. Gene expression was
measured using SYBRGreen detection and ABCB1 gene expression was normalized to 18S to give
∆CT value. (a) Line graph shows linear regression with 95% confidence intervals, (dotted line), of age
compared to gene expression. Data analyzed by Pearson’s correlation (* p < 0.05); (b) Dot blot compare
gene expression levels with age grouped into pediatric (≤18 years), adult (19–64 years), and geriatric
(≥65 years) and data showing mean (horizontal line). The mRNA expression was also compared to
(c) obesity, measured by BMI, (d) Ethnicity, and (e) Sex.

Subsequently, we performed the same analysis for ABCB1 protein levels (n = 87). A representative
Western blot image for ABCB1 detection is presented in Figure 5a. There was a 2.9 ± 0.32 -fold
variability for ABCB1 protein levels in the population sampled ranging from 0.44 to 1.26 area:density
units. Again, the same relationships were observed in S9 as total liver lysates, with no significant
differences in ABCB1 protein expression observed for obesity (BMI, range 15.8–57.6) ethnicity,
or sex (Figure 5d–f). However, different to total lysates where no pediatric samples were available,
children have lower ABCB1 than adults. The ABCB1 protein was detected from birth and increased
with age following a mono-exponential rise-to-plateau relationship with best fit (F-test; and fit
parameters of AICc, 15.56, Sum of Squares 0.77, Figure 5b). This model predicts protein levels are
at 76% of adult levels at birth and reach adult levels (±10%) by 5 years of age. Using categorical
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data, children had a significantly lower ABCB1 protein levels than adults (p < 0.001, Figure 5c).
Although the elderly population had a trend towards lower ABCB1 expression than adults, this was
not significantly different.
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Figure 5. Protein expression of ABCB1 in a liver cohort. The ABCB1 protein was detected by
Western blotting and normalized to the ABCB1 levels detected in a pooled S9 liver sample
(Xenotech, n = 200 individuals). (a) Example of Western blot of 6 individuals with 20 µg liver S9
loaded compared with pooled S9 sample, ABCB1 = recombinant ABCB1 expressed in baculosome
(5 µg), and blank = baculosome with no expression (5 µg); (b) Relationship between age and ABCB1
protein expression with a one-phase association, with 95% confidence intervals (dotted line); (c) Protein
expression compared to individuals grouped by age and analyzed by ANOVA (p < 0.0001) and ABCB1
expression in pediatrics was significantly lower compared to adults and geriatrics (Tukey’s multiple
comparison test, *** p < 0.0001, * p < 0.05); (d) Expression of ABCB1 protein in obese individuals,
measured by BMI; (e) Differences between ethnicity and ABCB1 protein expression; (f) The expression
of ABCB1 proteins compared to sex.

4. Discussion

One of the key findings in this study was that ABCB1 protein expression does not differ
significantly in different liver regions; this indicates that random collection of liver tissue is appropriate
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for studying ABCB1 ex vivo. The caveat to this finding is that in standardizing our assays on a per
milligram of protein basis, we have assumed that there are equal numbers of hepatocytes per milligram
of tissue in each of the 8 liver regions sampled. Although tissues did not differ visually in any way, but
we did not confirm cell types histologically. No significant differences were associated with ethnicity,
sex, or obesity (measured by both BMI and liver fat levels).

The BMI parameter is frequently used as a measure for obesity; however, this can be flawed [27,28],
and many healthy individuals have high BMI but would have low internal fats (for example certain
athletes) [29]. We therefore additionally evaluated liver triglyceride levels to understand if the
pathological manifestation of obesity (liver fat) could alter ABCB1 expression. Although the ABCB1
transporter is known to be involved in endogenous movement of cholesterol, phospholipids, and
sphingolipids, and therefore plays a role in lipid homeostasis [30], neither triglyceride levels nor BMI
were related to differences in ABCB1, a novel finding.

Finally, because we did not have pediatric or significant numbers of elderly liver lysates, we used
S9 to determine ontogenetic differences in ABCB1. Children (≤18) have significantly lower and more
variable expression of hepatic ABCB1 protein than adults, with ~76% of adult ABCB1 protein levels
present at birth, reaching full maturity by five years of age. The strength of the data presented is that in
every other category tested, S9 results were reflective of liver lysates, albeit with lower absolute levels of
mRNA and protein present. In addition, all of the S9 samples were treated the same way i.e., similarly
depleted of membranes, so the relative variability of the ABCB1 proteins should be preserved, even
though absolute levels are not.

Relatively few studies of pediatric ABCB1 and ontogeny exist. Miki et al., 2005, reported no
differences in hepatic ABCB1 mRNA but significant decreases in mRNA expression in the lungs
of the elderly [4]. Moreover, several studies have investigated the ontogeny of intestinal ABCB1
in humans [5,31–33]. Immunohistochemistry techniques have demonstrated that the transporter is
differentially expressed in children under the age of three: ABCB1 is present on both the apical
and basolateral surfaces of enterocytes, while after three the protein is only detected apically [31].
Recently, lower neonatal intestine mRNA levels have been reported that reach adult levels in early
childhood [5]. However, subsequent tests of hepatic and intestinal proteins by the same authors using
LCMS showed stable expression of ABCB1 from fetus to adult, albeit in fewer samples than presented
here [33]. These studies suggest that organ-specific and ontogenetic regulation of ABCB1 protein is
likely, albeit with some disagreement in the literature.

5. Conclusions

In summary, investigators who collect human liver samples opportunistically, as well as those
who collect uniformly from a single site, likely have a cohort representative of population variability
in ABCB1 that can be accurate for extrapolation. Additionally, children under five express less hepatic
ABCB1 than the general population, which could cause xeno- and endobiotic toxicity including altered
responses to therapy, but this requires confirmation in a larger study, preferably using total liver lysates.
Better understanding of the natural expression patterns of ABCB1 in the human liver can assist in
translating work from human tissues into understanding of the mechanisms of drug and chemical
efficacy, toxicity, and resistance.
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