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Abstract: The emerging Industrial Internet of Things (IIoT) will not only leverage new and potentially
disruptive business models but will also change the way software applications will be analyzed and
designed. Agility is a need in a systematic service engineering as well as a co-design of requirements
and architectural artefacts. Functional and non-functional requirements of IT users (in smart
manufacturing mostly from the disciplines of mechanical engineering and electrical engineering)
need to be mapped to the capabilities and interaction patterns of emerging IIoT service platforms,
not to forget the corresponding information models. The capabilities of such platforms are usually
described, structured, and formalized by software architects and software engineers. However, their
technical descriptions are far away from the thinking and the thematic terms of end-users. This
complicates the transition from requirements analysis to system design, and hence the re-use of
existing and the design of future platform capabilities. Current software engineering methodologies
do not systematically cover these interlinked and two-sided aspects. The article describes in a
comprehensive manner how to close this gap with the help of a service-oriented analysis and
design methodology entitled SERVUS (also mentioned in ISO 19119 Annex D) and a corresponding
Web-based Platform Engineering Information System (PEIS).

Keywords: Service-oriented analysis and design; Industrial Internet of Things; Service Engineering

1. Introduction

The Industrial Internet of Things (IIoT) enables innovative smart applications by interconnecting
assets within and between factories using Internet technologies [1]. Furthermore, the IIoT is connoted
with the risk of disruptive business models as well as privacy and security concerns. The IIoT
endangers the classical value chains as the interconnection and data acquisition of huge amounts of
“things” enables new ways of (big) data analytics and solution spaces. However, there is less discussion
regarding the ways in which the IIoT will also dramatically change the way software will be developed
in the future in the light of emerging powerful IIoT software and service platforms. The analysis and
design of industrial software applications cannot be isolated any more from the existing and future
capabilities of these IIoT platforms. This concerns the requirements of the users who request remote
accessibility of data and services via the Internet to support new business models (as well as the
architecture) which need to be compliant to the current and future standards and products of the IIoT.
Analysis and design methodologies for software applications shall take IIoT platforms into account.

The Industrial Internet Reference Architecture (IIRA) [2] describes the Industrial Internet as an
“Internet of things, machines, computers and people, enabling intelligent industrial operations using
advanced data analytics for transformational business outcomes”. Industrial Internet systems cover
multiple application domains, e.g., energy, healthcare, manufacturing, public sector, transportation,
and related industrial systems. The IIRA asserts that they “must be easily understandable and
supported by widely applicable, standard-based, open and horizontal architecture frameworks and
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reference architectures that can be implemented with interoperable and interchangeable building
blocks”. The German initiative Industrie 4.0 basically complies with these objectives but focuses on
industrial production. As a starting point, a Reference Architecture Model Industrie 4.0 (RAMI4.0)
was published [3].

Today, software and service engineering is performed in an agile manner in order to increase
flexibility during the software design and development and to have milestones to re-focus the process.
However, agility needs to encompass the requirements analysis phase too. The reason is that only
in rare cases are the requirements fully available and fixed when software design and developments
starts. To the contrary, especially in the domain of factory automation systems, requirements analysis
is an agile process including a multi-step dialogue between the user(s), the stakeholders, and the
software architects who know about the technological capabilities and constraints, and the project and
development managers who may also estimate the effort to realize the expectations of the user [4].
Such an iterative analysis and design process leads to multiple reconsiderations and/or refinements of
the user requirements as all parties involved learn from each other. If multiple users of one or even
multiple organizations are involved, such dialogues are usually led during requirements analysis
workshops facilitated by experienced system analysts or architects, and carried out occasionally by
means of Web-based collaborative video conferencing systems.

This article describes a novel comprehensive methodology called SERVUS that, on the one hand,
underpins this process, and on the other hand, accompanies and supports this process by a flexible
documentation tool for all analysis and design artefacts in form of a Platform Engineering Information
System (PEIS). SERVUS and PEIS explicitly take into account capabilities of IIoT service platforms
as well as constraints of underlying production and manufacturing IT architectures, not to forget
concerns about privacy and security.

1.1. Related Work

Software engineering methodologies that analyze and document user requirements in the form of
use cases are state-of-the-art. Use case models describe the behavior of a system whereby, according
to Jacobson and Ng [5], “a use case is a sequence of actions performed by the system to yield an
observable result that is typically of value for one or more actors or other stakeholders of the system”.
Usually, use cases are modelled in graphical modeling languages such as the ISO/IEC 19505 Unified
Modeling Language (UML) standard. Although quite illustrative, these UML models are often not
precise enough if not associated with additional textual descriptions attached to the graphical symbols.
However, if no further structure for the textual addition is prescribed, an interpretation of the use case
idea is cumbersome. The idea to use semi-structured descriptions of use cases was first published by
Cockburn in his book “Writing Effective Use Cases” [6].

With the trend towards service-oriented architectures (SOA) in the last two decades, various
software engineering methodologies were developed that take SOA design principles into account.
They are classified as service-oriented analysis and design (SOAD) methodologies which are basically
service-oriented variants of model-driven architectures [4]. An overview and critical assessment is
provided in Reference [7]. Typically, SOAD methodologies support the break-down from use cases to
the specification of service requirements according to the constraints of service ecosystems. More recent
comparison studies of software engineering methodologies were carried out, such as in Reference [8].
However, on the one hand, they all stayed on the conceptual level, and on the other hand, they all just
focused on the top-down approach and ignored or at least neglected the fact that there may be already
existing capabilities which may match the requirements.

Today, IIoT platforms exploit the potential that was prepared by the SOA approach. In addition
to the provision of powerful and scalable storage systems and processing frameworks to handle
big data challenges [1], IIoT platforms also offer pre-defined generic and domain-specific support
services. For requirements analysis activities, this means that service requirements have to be mapped
to service capabilities of IIoT platforms. Finally, this trend led to the fundamental question of how
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service descriptions may be matched on a semantic level. Several approaches in the research domain
of semantic web services tried to solve this problem (e.g., Reference [9]), however, they could only
provide partial solutions and none of them achieved practical relevance due to the inherent complexity
of service matchmaking on a semantic level.

In the last years, comprehensive modeling frameworks such as Arrowhead [10] were specified
and implemented that stressed the importance of rigid and comprehensive formal modeling of use
cases, business activities, and system configurations, e.g., using UML, BPMN (Business Process
Model and Notation) or SysML (Systems Modeling Language). The framework also considers
emerging system-of-systems environments and finally IIoT environments [11]. In contrast to the
service engineering methodology presented in this article, the Arrowhead frameworks focuses on the
support of service discovery, authorization, and orchestration in operational SOA-based systems with
the pre-requisite that the service requirements and capabilities are provided according to the modeling
templates of the Arrowhead framework.

1.2. Structure of the Article

For the quick reader, the research results are summarized in Section 2. Section 3 describes the
SERVUS methodology in more detail. Section 4 introduces the information system that supports the
IIoT platform engineering, i.e., the Platform Engineering Information System (PEIS). Section 5 provides
a discussion of the SERVUS methodology and the PEIS with respect to the best practices of Agile
Modelling. The article concludes in Section 6 with a summary of the main concepts and a discussion
about the next steps and the limitations of the methodology.

2. Results

The article highlights the importance of systematic agile service engineering for the Industrial
Internet of Things and Industrie 4.0 software applications. Up to now, there is no software engineering
methodology that covers systematically and concurrently both sides of a software development process
necessary in an IIoT context: (1) a user-driven approach analyzing use cases and requirements, and
(2) a platform-driven approach analyzing existing and missing capabilities and technologies of IIoT
platforms. Complementary to Reference [12], which describes a former status of this research and only
highlights a portion of the methodology, this article summarizes the whole methodology including a
tool support.

For such applications, the functional and non-functional requirements of IT users (in Industrie 4.0
mostly from the disciplines of mechanical engineering and electrical engineering) need to be mapped
to the capabilities and architecture patterns of emerging IIoT service platforms [13]. The capabilities
of service platforms are usually described, structured, and formalized by software architects. An
example is the three-tier architecture pattern of the IIRA and its functions structured into five functional
domains (Control, Operations, Information, Application, and Business). Another example of such a
platform comprises the services of the series of IEC 62541 OPC UA standards [14]. However, very
often, such technical descriptions are far away from the expectations of the end-users and do not fit
to their language and thematic terms. This complicates the transition from requirements analysis to
system design, and hence the re-use of existing platform capabilities.

The article describes how to close this gap with the help of a novel service-oriented development
methodology entitled SERVUS and a corresponding Web-based collaborative tool that supports
its documentation. SERVUS denotes a Design Methodology for Information Systems based upon
Service-oriented Architectures and the Modelling of Use Cases and Capabilities as Resources [4].
SERVUS considers use case models as being core artefacts of requirement analysis.

When designing industrial Internet applications, a use case expresses the functional, informational,
and qualitative (i.e., non-functional) requirements of a user (i.e., an actor or a stakeholder) with respect
to the system. Usually, use cases do not describe the user interactions themselves. It is essential for
the use case description that the level of abstraction, the type of formalism as well as the language
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should be such that it is adequate to the domain of expertise of the users. In order to serve as a kind
of contract with the user, a use case shall be both understandable to the user but also precise enough.
Very often this means that use cases shall be specified in a non-technical way, normally achieved using
plain text in natural language. However, in order to reduce the ambiguities and impreciseness of
descriptions in natural language, structured textual descriptions are preferred. Use case descriptions
are then structured according to a given template, e.g., an application form comprising identifier and
description fields or thematic domain references associated with code lists.

The SERVUS design methodology recommends such a semi-formal description of use cases,
basically following templates defined in Reference [6]. As an extension, this idea of a semi-structured
description of analysis and design artefacts is also used when mapping the use cases to other design
artefacts such as requirements and capabilities.

The SERVUS methodology was successfully used in numerous cooperative and inter-disciplinary
software projects related to various application domains of the IIoT such as environmental information
systems [4], environmental risk management, and early warning systems [15] as well as industrial
production/Industrie 4.0 [12]. As a result of the domain-independent character of the IIoT and its
emerging IIoT platforms, it may also be applied to interrelated application domains such as smart
cities or smart regions. The SERVUS methodology is referred to by ISO 19119 as an example of a use
case based-methodology for Geographic information Services [16].

3. SERVUS Methodology

The architectural style of service-oriented computing has already been present in practice in
industrial software engineering for several years. However, although numerous methodologies for
service-oriented analysis and design were described in the literature [4], there is not yet a standard
methodology usable for the analysis and design of software applications based upon service-oriented
IIoT platforms. The deficiency today is that there is no well-established methodology that explicitly
supports a co-design of requirements and architectural design artefacts [17], i.e., a methodology that:

1. provides a two-sided integrated and parallel view of the requirements and the expert knowledge
of thematic users with the services and information offerings of emerging IIoT platforms, and,
in addition,

2. obeys explicitly the guidelines and constraints of architectural frameworks such as RAMI4.0 or
IIRA as side-conditions.

Van den Heuvel et al. [18] call these aspects the open-world assumption that must be met by
service networks. The “open-world” is characterized by “unforeseen clients, execution contexts
and usage” of services operating in “highly complex, distributed, unpredictable, and heterogeneous
execution environments”. The SERVUS methodology tries to overcome these deficiencies. Its artefacts
are organized according to the following three dimensions (Figure 1).
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• D1: Analysis and design artefacts (i.e., the SERVUS meta-model, see Section 3.1)
• D2: Analysis and design activities (see Section 3.2)
• D3: Architectural frameworks, i.e., relationship to reference architecture models (such as RAMI4.0

and IIRA, see Section 3.3)

3.1. D1: Analysis and Design Artefacts

3.1.1. SERVUS Meta-Model

The SERVUS meta-model comprises the following analysis and design artefacts (see Figure 2):

• User story (US): description consisting of one or more sentences in the everyday or business
language of an actor that captures what a user does or needs to do as part of his or her job function
(cf. Wikipedia). A user story captures the ‘who’, ‘what’, and ‘why’ of a requirement in a simple,
concise way.

• Use case (UC): description of core artefact of requirement analysis. Use case models describe the
behavior of a system whereby “a use case is a sequence of actions performed by the system to
yield an observable result that is typically of value for one or more actors or other stakeholders of
the system”. They describe the functional aspects, actors (user roles), and workflows.

• Requirement (REQ): description of functional and non-functional requirements of the system
under design that may support the execution of a use case.

• Capability (CAP): description of existing and future capabilities of the system under design that
realizes requirements. Capabilities are described independently of the technologies that may be
used to implement the capability.

• Technology (TECH): description of the existing or emerging technologies and products that are
available or expected to appear on the market. Technologies and products are distinguished by
an attribute.
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In addition, the relationships between these artefacts are specified, e.g., user stories motivate use
cases, use cases are mapped to requirements, requirements may be fulfilled by capabilities, capabilities
are realizing requirements. This guarantees a full bijective traceability of the artefacts, which helps
setting development priorities and deriving implementation roadmaps out of the capabilities.

An important aspect for the common understanding of all the artefacts is the agreement upon
the terms that are used by both the end users and the software architects. Very often, these terms are
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captured during the analysis phase in a glossary. The SERVUS methodology foresees linking the terms
used in the SERVUS elements to concepts described in a glossary or formally defined in an ontology
(semantic annotation).

3.1.2. Relations between the SERVUS Meta-Model Elements

There are the relations between the SERVUS meta-model element types: user stories (US), use
cases (UC) are linked to actors, to other use cases, to test cases (TC), to requirements (REQ), and
information resources (IR). These relations are illustrated in Figure 3 and are explained below.

• US to Actor

# tells (inverse relation: is told by): a US is told from the viewpoint of an actor.

• US to UC

# motivates (inverse relation: is motivated by): a US motivates the description of functional
requirements in the form of use cases (UC).

• UC to Actor

# performs (inverse relation: is performed by): a UC is initiated and performed by an actor.

• UC to UC

# includes (inverse relation: is included in): one UC is included in another UC, i.e., one
UC is included as a whole in the main success scenario, extension, or alternate path of
another UC.

# refines (inverse relation: abstracted from): one UC is a refinement of another UC, e.g., it
provides more details in its main success scenario, adds an extension or interprets a more
abstract UC in the context of a thematic domain.

• UC to TC

# is tested by (inverse relation: tests): one UC may be tested by one or more test cases. One
test case may also be linked to several use cases (which are then included in each other).

• UC to REQ

# maps to (inverse relation: is derived from): a UC is mapped to one or more requirements.
This means that the system under design should provide function (may be in terms of a
Web service) that fulfills each requirement.

• REQ to REQ

# related to (bijective relation): one REQ is related to another REQ, i.e., there is some
relationship between the requirements. This relation has to be qualified in the comments.
It could be a unilateral or bilateral dependency but also some similarity in terms of concepts,
design pattern or technology.

• REQ to CAP

# implemented by (inverse relation: implements): one REQ is implemented by one or
more CAPs. This relation has to be better qualified in the future. It could be a unilateral
or bilateral dependency but also some similarity in terms of concepts, design pattern,
or technology.
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• UC to IR

# requests (inverse relation: is requested by): a UC requests an information resource in a
defined access mode (create, read, update, delete).

• CAP to TECH

# realized by (inverse relation: realizes): a capability is realized by a combination of
technologies whereby the combination may be specified by simple Boolean expression.

• TECH to TECH

# belongs to (inverse relation: comprises): a technology/product may belong to
another technology/products. This relationship allows the user to express structured
technologies/products.

• IR to IR

# refines (inverse relation: abstracted from): an information resource is a refinement of
another information resource (in the sense of inheriting all properties of the more abstract
information resource).

# related to (bijective relation): an information resource is related to another information
resource. The meaning of the relation may be defined during the information modelling
design step.
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An important aspect of the requirements and system analysis phase is the agreement upon the
terms that are being used by both the end users and the software architects. Very often, these terms are
being captured during the analysis phase in a glossary. The SERVUS methodology foresees linking the
terms being used in the SERVUS elements to concepts described in a glossary, or formally defined in
an ontology. The linkage is also called semantic annotation.

3.2. D2: Analysis and Design Activities

The following SERVUS analysis and design activities are required in order to specify the
artefacts [4]:

• Domain modelling: defines the basic concepts of the thematic domain to which the problem
belongs, and their interrelationships. Usually, this activity is carried out by experts of professional
organizations representing a thematic community or outstanding institutions such as universities
or research institutes.

• Problem analysis: derives the set of functional, informational, and qualitative requirement from
the problem to be solved and documents them in natural language in electronic format (marked
as “req’s” in Figure 4).

• Feedback generation (optional): re-formulates the formal specification of the capability into the
original language of the user and explains how the original user requirements have been satisfied.

• Rephrasing: translates and relates the artefacts of the requirements to the concepts of a
design model.

• Publishing: represents the step in which the capabilities of the selected platform are entered into
the capability model as part of the design model.

• Grounding: maps the (new or extended) capabilities to the specification style and language of the
IIoT service platform and adds it to the set of platform capabilities (marked as “cap’s” in Figure 4).
The grounding activity is usually supported by engineering tools.

• Discovery: searches for capabilities that are candidates to fulfill the requirements.
• Matchmaking: maps requirements with capabilities. It comprises the evaluation of the adequacy

of the candidate capabilities (i.e. types or instances) proposed by the discovery activity, the
selection of one or more candidate capabilities, and finally the documentation of the mapping in
the design model for traceability (marked as “req2cap” model in Figure 4).

Each element type has its own structure and template, i.e., its own set of text elements.
If requirements analysis and system analysis have been performed according to this meta-model, i.e.,
the artefacts of each level are entered in the Platform Engineering Information System as described in
Section 5, it is possible to exploit the system

• to find conceptual gaps on CAP level, and therefore, by variation and addition of further user
stories and use cases, to work towards a specification of an “ideal” platform,

• to identify technology gaps, i.e., capabilities that may not (yet) be realized, and
• to identify technology options, i.e., capabilities that may be realized by a multitude of technologies

and their combinations.

For completeness, please note that SERVUS methodology comprises two further element types
that are, however, not (yet) used in the PEIS:

• Test cases: describes a possible instantiation of a use case that is decisive for the system test with
respect to this use case.

• Information resources: describes the information elements including its basic operations (create,
read, update, delete) that are required to carry out the use case (following the resource-oriented
approach of SERVUS).
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3.3. D3: Relationship to Reference Architecture Models

The third dimension is related to the positioning of the analysis and design artefacts and activities
with respect to (standardized) architecture reference models. In the case of the IIoT and Industrie
4.0, this is related to the Industrial Internet Reference Architecture specified by the Industrial Internet
Consortium (IIC) [2] and the Reference Architecture Model Industrie 4.0 (Figure 5) [3]. Referring to the
three dimensions of the SERVUS methodology (see Figure 1), these architectural aspects belong to the
dimension D3 “architectural frameworks”.
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Reference [3]).

The SERVUS requirements analysis approach refers to all architectural aspects of RAMI4.0
(referred to as “layers”). The artefacts “user story” and “use case” may be positioned in the RAMI4.0
business layer whereas they contain references to all other layers too. It encompasses all assets
encapsulated in I4.0 components focusing on the functional interface of its administration shell and
the meta-data (“manifest”) of the I4.0 component.
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The SERVUS requirements contain references to the asset types in the RAMI4.0 hierarchy
level dimension (e.g., cloud-based data storage, controller device, production cell) upon which the
requirement is set.

The IIRA defines five so-called functional domains, which provide the major building blocks for
Industrial Internet Systems (see Figure 6):

• Control domain
• Operations domain
• Information domain
• Application domain
• Business domain
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These functional domains may be refined according to the needs of a project and an application
domain, and mapped to architectural patterns, e.g., the three-tier architecture pattern as illustrated in
Figure 7.

The SERVUS methodology supports this refinement. It foresees defining lists of project-specific
“topics” and assigning them to IIRA functional domains. Requirement and capabilities artefacts may
also refer to these topics.

Figure 8 shows an example of a landscape for the capability development in relation to the
Architecture Elements (adopted from and positioned according to the three-tier IIS Architecture
in IIRA). The colored circles (“dots”) indicate how many capabilities have been identified for the
respective Architecture Element at the given time horizon up to 2025. Note that a capability may relate
to several Architecture Elements. In fact, there are 114 relations of a capability to an Architecture
Element in Figure 8, but only 57 distinct capabilities. The area of each dot is proportional to the number
of respective capabilities. The green dots for 2015 refer to existing capabilities, the others to planned
capabilities. Such reports help to the project manager to plan the activities for the upcoming years and
assign corresponding personal resources.
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4. Platform Engineering Information System (PEIS)

4.1. Tool Description

Non-trivial projects and related system analysis and design activities require a tool that supports
the edition and documentation of the use cases. The SERVUS design methodology is supported by a
dedicated Web-based Platform Engineering Information Systems (PEIS), which allows the users to
work in a collaborative, distributed and agile manner.

The PEIS starts in any desired Web-Browser with a dashboard-like home screen (Figure 9).
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The home screen includes a main menu in black and an address link that can also be used for
navigation through the server content, as well as an area with diagrams and graphs below, which
offers the server content graphically. The following diagrams are located on the home screen:

• Total number of objects per category e. g., use cases, capabilities, etc.
• Number of user stories per user story group e.g., Flexible Manufacturing (FM), Human centered

manufacturing (HCM), etc.
• Number of use cases per use case group e.g., Plant construction and operation (PCO), Process and

production line development (PR), etc.
• Number of use cases per market priority as a pie chart with the segments representing high,

medium, and low market priority.
• On the right hand side a graph representing the meta-model of the server content. With the

concepts e.g., user story, use case, actor, etc., as nodes and the relations between the concepts as
edges e.g., “use case has actor”.

These diagrams may be used as entry points to query the PEIS and get detailed information
about the SERVUS meta-model elements such as user stores, use cases, requirements, capabilities,
and technologies. Each instance has a unique identifier so that it may be referenced in reports and
discussions. The relationships between these elements are realized by hyperlinks. At each point in
time a report may be generated from the PEIS contents and delivered as document in PDF format.

The PEIS architecture relies upon a Web-based collaborative content, community, and knowledge
management framework called WebGenesis®. Based upon an ontology-based workflow engine and
graphical user interface [17], it allows a software engineer to quickly adapt form-based content
acquisition, editing workflows, and layout according to the needs of the software engineering
projects supported and accompanied. Using Web-based technology, it enables collaborative work in a
distributed manner, taking into account locations of software engineering teams dispersed around the
world. A direct link to UML tools and frameworks is possible such that UML models (use case models,
activity diagrams, etc.) may be attached to the analysis and design artefacts.



Future Internet 2018, 10, 100 13 of 18

The current work focuses on the integration of data analysis capabilities such as machine
learning and reporting capabilities to support decision making in systems and service engineering
for IIoT applications following the latest architectural frameworks and technologies in Industrie 4.0
and beyond.

4.2. Content Generation

Following the SERVUS methodology and the usage of the PEIS the content generation process
shall follow two perspectives and activities, also personalized by two independently working teams:

• a top-down approach that comprises the requirements analysis driven by the market demands.
It encompasses the contents generation of the meta-model elements user story (US), use case (UC),
and requirement (REQ). The requirement analysis shall be performed by those people that know
the market and/or have a good understanding of the user demands. For the application domain
of industrial production, the requirements analysis team may comprise industrial engineers,
production planners, or factory automation experts of the higher levels of the automation pyramid.

• a bottom-up approach that comprises the technology analysis driven by the ongoing and
rapid evolution of the automation technology (also called operational technology – OT) and
the information technology (IT). It encompasses the contents generation of the meta-model
elements technologies/products (TECH) and the capabilities (CAP). For the application domain
of industrial production, the technology analysis team may comprise computer scientists, data
scientists, factory automation experts of the lower levels of the automation pyramid, e.g., for
(real-time) control of automation processes.

These two activities may work largely independently and parallel to each other. Their analysis
results (artefacts) shall be entered into the PEIS and finally result in a set of documented prioritized
requirements (REQs) and documented capabilities (CAPs) including their availability time, both with
their relationships to the other meta-model elements. Hence, traceability of both activities is given.
Then, in a further step, the REQ2CAP mapping may take place. This mapping activity is crucial as:

• it leads to the identification of the conceptual gaps between the REQs and the CAPs, and therefore
• is an essential indication of the developments to be undertaken in order to close the gaps.

The strategic mapping activity needs facilitation by an experienced senior manager who is
experienced in both requirements analysis and OT/IT technologies. However, this activity needs
guidance. This guidance is given by priorities to be set by the product managers and the software
engineers who both have to take responsibility for the software platform development process and the
delivery of its result in time and good quality.

Experience shows that the overall process cannot be concluded in a single step activity because of
its inherent complexity and the changing conditions and influencing factors over time. The solution to
this problem is an agile approach, i.e.,

• the requirements analysis activity needs an adjustment, re-structuring, re-phrasing, and re-linking
during and after the strategic mapping in order to clarify issues and include new insights from a
changing market development and analysis,

• the technology analysis activity needs an adjustment, re-structuring, re-phrasing, and re-linking
during and after the strategic mapping in order to clarify issues and include new insights from a
changing technology (OT and IT) market development and analysis.

As a result of such activities, the REQ2CAP mapping may also need a re-adjustment, leading
to an iterative REQ2CAP mapping. However, it is important to fix the content from time to time for
milestones to be achieved in the development. This is similar to sprints in the scrum methodology
for software development. Figure 10 illustrates the agile content generation process based upon the
SERVUS methodology when being applied to IIoT platform engineering.
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5. Discussion

All these activities are interconnected by a common modelling environment, which is structured
according to the SERVUS meta-model and supported by a Platform Engineering Information System
(PEIS). These activities enable and support a co-design of these design artefacts [19] in an iterative and
agile manner such that the design solution may be elaborated and traced back step-by-step.

5.1. Agile Modelling Best Practices

These activities follow the 14 best-practice principles of Agile Model Driven Development
(AMDD) (Table 1) [20].
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Table 1. Application of Agile Modelling Best Practices in SERVUS.

No. Agile Modelling Best Practices Application in SERVUS

1
Active stakeholder participation. Stakeholders should provide information in a timely manner,
make decisions in a timely manner, and be as actively involved in the development process
through the use of inclusive tools and techniques.

Actors represent the stakeholders in the use case modelling.

2 Architecture envisioning. At the beginning of an agile project you will need to do some initial,
high-level architectural modeling to identify a viable technical strategy for your solution.

The models shall be drafted according to reference models and architectural frameworks (see SERVUS
dimension D3). A co-design of requirements and architectural artefacts is possible.

3 Document Continuously. Write deliverable documentation throughout the lifecycle in parallel to
the creation of the rest of the solution.

The continuous documentation is enabled and enforced by the Web-based Platform Engineering
Information System (PEIS) 1.

4 Document Late. Write deliverable documentation as late as possible, avoiding speculative ideas
that are likely to change in favor of stable information.

A deliverable may be generated automatically from the PEIS all the time, i.e., also at given milestones
in the project when a certain level of stability is assumed. No further and extra effort is necessary for
documentation purposes.

5 Executable Specifications. Specify requirements in the form of executable “customer tests”, and
your design as executable developer tests, instead of non-executable “static” documentation.

Each entry in the PEIS may be linked to Unified Modeling Language (UML) model elements that may
be used as starting points to code generation.

6 Iteration modelling. At the beginning of each iteration, a bit of modelling is done as part of the
iteration planning activities. The design model may be adapted whenever required.

7 Just barely good enough (JBGE) artefacts. A model or document needs to be sufficient for the
situation at hand and no more.

The “design model” can evolve according to the needs. This allows analysts, architects, and designers
to tailor and minimize the effort to be put into the documentation of the artefacts according to the
needs and the resources available.

8
Look-ahead modelling. Sometimes requirements that are nearing the top of your priority stack
are fairly complex, motivating you to invest some effort to explore them before they’re popped off
the top of the work item stack so as to reduce overall risk.

The “design model” can evolve according to the needs. Each requirement and each capability can be
given a priority.

9
Model storming. Throughout an iteration a brainstorming session can be held, called “model
storm” on a just-in-time basis for a few minutes to explore the details behind a requirement or to
think through a design issue.

The PEIS is Web-based such that brainstorming sessions may even be carried out in distributed or
virtual organizations spread over several locations.

10
Multiple models. Each type of model has its strengths and weaknesses. An effective developer
will need a range of models in their intellectual toolkit enabling them to apply the right model in
the most appropriate manner for the situation at hand.

The design model can be documented in several forms: semi-structured table, UML model or a figure.

11 Prioritized requirements. Agile teams implement requirements in priority order, as defined by
their stakeholders, so as to provide the greatest return on investment possible.

Requirements have a priority field, hence the work may be structured and planned according to the
priorities.

12 Requirements envisioning. At the beginning of an agile project, you will need to invest some
time to identify the scope of the project and to create the initial prioritized stack of requirements.

The scope and granularity of use cases and requirements may be tailored according to the knowledge
that is existing at a certain point in time. Both use cases and requirements may be related to each other
and refined as required.

13 Single source information. Strive to capture information in one place and one place only. The PEIS is a Web-based collaborative tool, i.e., all users are working on a single project instance of
server and have the same visibility according to their roles.

14
Test-driven design (TDD). Write a single test, either at the requirements or design level, and then
just enough code to fulfill that test. TDD is a just-in-time approach to detailed requirements
specification and a confirmatory approach to testing.

Test cases may be added as an optional further artefact to SERVUS.

1 See Section 4 describing the Platform Engineering Information System (PEIS).
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5.2. Evaluation

Originally, the SERVUS methodology and the accompanying PEIS were designed for
environmental and risk management projects where the IIoT platform comprises the set of available
standards and technologies of the geospatial communities [4,15]. With the ongoing digitization of the
industrial production due to initiatives such as Industrie 4.0, SERVUS was applied in IIoT platform
development projects with industrial partners. Here, future-oriented hypothetical use cases had to
be drafted, broken down to platform requirements, prioritized, and matched with already existing
platform capabilities such that the resulting commercial platform is competitive for the upcoming
years and future use cases of customers.

Experience in these projects shows that the SERVUS methodology basically satisfies the needs
and the expectations of the project and development managers and supports their planning and
decision-making. Criticism is expressed with respect to the required effort. On the one hand,
considerable effort has to be spent to keep the contents of the PEIS consistent and up-to-date. On
the other hand, as the PEIS provides information retrieval and dashboard functionalities, it plays the
role of an active tool and utility instead of huge amounts of passive formal or textual documents. As
SERVUS and PEIS only provide a modelling framework with a multitude of optional elements, the
effort may be adjusted according to the project constraints.

It may be desirable to try to evaluate the advantages and disadvantages of software engineering
methodologies as well as to quantify the efficiency gains in real-world settings. In experimental
environments with a manageable complexity, a setting may be defined with different project teams
working in parallel but following different software methodologies. Here, an objective comparison
may be possible. However, in a world of agile engineering approaches, where incremental solutions
are provided step-by-step in close collaboration with the users, and in our context, the platform
providers, such a setting is not possible. This is also the reason why, although such empirical research
is demanded in recent literature [8], no results are reported. Furthermore, the question is raised as to
whether there is a need at all for a single method for the Internet of Things [21].

Personal experience with the SERVUS methodology shows that, at the beginning of a software
engineering project in an IIoT context, members of projects teams are, at first glance, reluctant to
use the methodology because of its apparent complexity. Project members think they do not need
such a methodology and start with classical methodologies such as the UML-based Rational Unified
Process (RUP). However, after some analysis steps, it turns out that commonalities among use cases
and requirements are detected leading to resource-expensive and time-consuming reorganizations
of the analysis and design artefacts. Furthermore, it becomes clear that some of the requirements are
already fulfilled by capabilities in IIoT platforms. Very quickly, requests with regard to describing
such artefacts in a way that information retrieval is possible appear, which then lead to the decision
that a better fitting approach, such as SERVUS and its associated PEIS tool, is required that allows the
interlinking of artifacts. Despite the wish for an engineering information system, the possibility to
always be able to generate a (theoretically) printable document (in a PDF format) is highly appreciated.

6. Conclusions

The SERVUS methodology presented in this article tackles the problem of service engineering
in an IIoT context. Its basic characteristic is the interlinked and agile co-design of requirements and
capabilities artefacts resulting from:

1. a user point of view in a top-down approach from user stories, use cases to requirements, and
2. a platform point of view in a bottom-up approach encompassing existing and emerging

technologies and products that are used to provide specified capabilities of an IIoT platform.

On the basis of these analysis and design activities it is the task of the system architect and designer
to map the requirements artefacts to the capabilities artefacts and derive from this the development
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roadmap. Hence, the originality of the SERVUS methodology lies in the integrated comprehensive
offering of the following features:

1. SERVUS combines a top-down with a bottom-up approach in a systematic manner.
2. SERVUS relies upon a common language (semi-formal textual descriptions with optional formal

models as attachments) for all analysis and design artefacts such that the cultural and language
gap between thematic experts and IT experts may be overcome.

3. SERVUS is accompanied by a Web-based collaborative Platform Engineering Information Systems
(PEIS) that supports the online documentation of all analysis and design activities.

4. SERVUS allows an agile engineering process with refinements and extensions that follow the
priorities and the progress of the project in short development cycles.

5. SERVUS supports the 14 best-practice principles of Agile Model Driven Development.
6. SERVUS distinguishes between a conceptual, technology-independent level, and

technology-specific descriptions.

Future work will focus on data analysis tools to validate and visualize the contents of the
PEIS in order to automatically detect inconsistencies. Special attention will be dedicated to
describing requirements and capabilities compliant to the emerging detailed specifications of an
Asset Administration Shell of the Industrie 4.0 initiative [3]. This would lead to turn the matchmaking
of requirements with capabilities into a matchmaking between I4.0 component specifications following
the idea of interacting I4.0 Components in an Interaction-based Architecture of Industrie 4.0 [22].
Furthermore, we are working with the objective to provide distinct project spaces for customer projects,
especially for the user requirements artefacts, such that the contents of the IIoT capabilities and
technology artefacts reflect the characteristics of existing IIoT platforms and may be reused across
customer project spaces.
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