
future internet

Article

Bidirectional Recurrent Neural Network Approach
for Arabic Named Entity Recognition

Mohammed N. A. Ali 1, Guanzheng Tan 1,* and Aamir Hussain 2

1 School of Information Science and Engineering, Central South University, Changsha 410083, China;
md.alkhatib@csu.edu.cn

2 Department of Computer Science, Muhammad Nawaz Shareef University of Agriculture, Multan 60000,
Pakistan; aamir.hussain@mnsuam.edu.pk

* Correspondence: tgz@csu.edu.cn

Received: 28 October 2018; Accepted: 10 December 2018; Published: 13 December 2018
����������
�������

Abstract: Recurrent neural network (RNN) has achieved remarkable success in sequence labeling
tasks with memory requirement. RNN can remember previous information of a sequence and can
thus be used to solve natural language processing (NLP) tasks. Named entity recognition (NER) is
a common task of NLP and can be considered a classification problem. We propose a bidirectional
long short-term memory (LSTM) model for this entity recognition task of the Arabic text. The LSTM
network can process sequences and relate to each part of it, which makes it useful for the NER task.
Moreover, we use pre-trained word embedding to train the inputs that are fed into the LSTM network.
The proposed model is evaluated on a popular dataset called “ANERcorp.” Experimental results
show that the model with word embedding achieves a high F-score measure of approximately 88.01%.

Keywords: Arabic named entity recognition; bidirectional recurrent neural network; GRU; LSTM;
natural language processing; word embedding

1. Introduction

The Named entity recognition (NER) is important in natural language processing (NLP) tasks
used to detect named entities (NEs) in texts and classify them into predefined categories, such as
location, person, time, date, and organization [1]. NER is a crucial preprocessing phase in various NLP
applications to improve the overall performance. It extracts valuable information from raw data and
simplifies downstream tasks, such as text clustering, information retrieval, translation, and question
answering [2].

In recent years, Arabic NER (ANER) has become a challenging task and is receiving increasing
attention from current researchers due to the limited availability of annotated datasets [3]. Arabic is a
Semitic and the standard language spoken in the Arab world. The language is used in the Middle East,
the Horn of Africa and North Africa, and it is used in the United Nations as one of the five official
languages. In the Arab world, around 360 million people speak Arabic in more than 25 countries [4].

The Arabic NLP has drawn attention in recent years. Several NLP tasks are tricky, such as NER [5],
particularly language important features, such as high morphological uncertainty of meaning, writing
style, doubtfulness to the meaning of common words/proper noun, and absence of capitalization [2].

The ANER systems are based on either one of two methods: one is based on handcrafted
rules, particularly the NERA2.0 system [6], and the other relies on statistical learning such as in [7].
Each method, nonetheless, has its pros and cons. NER systems designed on rule-based primarily
depend on manually crafted grammatical rules learned from linguists. Therefore, the maintenance
of these systems is time-consuming and laborious, especially when the knowledge and background
of the linguists are poor. By contrast, systems based on machine learning (ML) obtain patterns

Future Internet 2018, 10, 123; doi:10.3390/fi10120123 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://www.mdpi.com/1999-5903/10/12/123?type=check_update&version=1
http://dx.doi.org/10.3390/fi10120123
http://www.mdpi.com/journal/futureinternet

Future Internet 2018, 10, 123 2 of 12

related to the NER task from the training set of samples automatically, thereby not requiring in-depth
language-specific knowledge. These ML-based systems are superior to rule-based systems because
they are adjustable and easy to update with minimum cost and time, provided a sufficient corpus.

In recent years, neural networks have drawn much attention with various models being proposed.
Researchers have combined different semi-supervised learning and deep neural networks (DNNs) to
find an optimum solution to the NER task and other chunking tasks [8]. Contrary to ordinary ML
methods, deep learning can concurrently learn representations, categorize patterns, and considerably
reduce the difficulty in NER tasks. Moreover, current deep learning models generally utilize word
embeddings, which allow them to learn similar representations for semantically similar words.
However, out-of-vocabulary (OOV) words, which are words that do not have any corresponding
representation in the word embedding model, are difficult to handle especially for the Arabic language
because of the limitation in resources. These words are also set randomly to a specific value. Therefore,
we fully utilize the character representations of a token to label those OOV words. We also introduce
the embedding attention layer that works as a gating mechanism that allows the model to dynamically
learn what features are important.

ANER is considered a sequence labeling task. Recurrent neural network (RNN) is a natural choice
to tackle problems with sequential structure, such as NER, due to their ability to memorize previous
values and correlate to other parts of a sequence. RNN surpasses other methods in terms of NER
performance and other sequence labeling problems for many languages.

To the best of our knowledge, no work has been done to address the ANER problem using RNN
techniques, and most existing works are based on feature engineering and statistical methods. In this
work, we propose a new method that has not been investigated in much detail for the Arabic language
to date. However, the method has been examined and applied widely in other domains and languages,
such as English, and has shown outstanding results.

The model computes the harmonic mean F-score measure for tokens in the dataset. The proposed
system has improvements that boost the recognition efficiency and accuracy. The main contribution of
our work are listed as follows:

• An ANER system based on bidirectional long short-term memory (Bi-LSTM)/gated recurrent
units (GRUs) is proposed by considering the NER problem as a classification problem and without
using any manual feature engineering.

• Character embedding is used in addition to word embedding to enhance the model prediction.
• An embedding attention layer that combines word and character embeddings enable the model

to create a good word representation.

Our work differs from existing ones for the Arabic language because the proposed model shifts
from traditional ML algorithms to neural network algorithms. Moreover, the Bi-LSTM unit uses
character and word embeddings as input. A well-recognized dataset called “ANERcorp” is used
to evaluate the performance of the proposed system in comparison with other common state of the
art systems.

The rest of the paper is organized as follows. Section 2 reviews the related work briefly. Section 3
presents the proposed approach for NER in detail. Section 4 describes the experimental settings.
Section 5 discusses the results. Section 6 presents the discussion. Finally, Section 7 elaborates
the conclusion.

2. Related Work

As per recent systematic review for NER conducted by [9], NER approaches can be categorized
into three mains categories rule-based, learning-based and hybrid approaches. Furthermore, another
comprehensive survey conducted by W Etaiwi [2], classify the statistical methods of Arabic NER into
six main approaches: CRF, NB, HMM, ME, SVM and Neural network. Going more in-depth into deep
learning, a survey on ANLP using deep learning techniques by [10]. The author reviewed many kinds

Future Internet 2018, 10, 123 3 of 12

of literature on various ANLP tasks and concluded that yet a considerable gap exists in the Arabic
NLP compared to that in English NLP.

Basic ML approaches rely on feature engineering, external gazetteers, and chunks. They can
achieve excellent accuracy and performance but require a dedicated expert in the domain of knowledge
and are time-consuming. Therefore, scholars have begun to consider the artificial neural network
(ANN) and DNN methods. These approaches reduce the dependency on feature engineering and are
thus less laborious and time-consuming. These methods have been adopted to many NLP problems
successfully such as in [11].

The authors in [12] proposed an RNN model for the Chinese Bio-NER that detects two types of
predefined annotations, namely, subject and lesion, which are two main parts of symptom entities.
A real-world Chinese clinical dataset that includes 12,498 records was used. A priori word information
(POS tags) was added for improving the final performance. The final F-scores for the subject and lesion
detection reach 90.36% and 90.48% respectively.

In [13], the authors proposed a hybrid NER system for the Russian language that uses a
Bi-LSTM-CRF system for various kinds of DNN models experimented starting from vanilla (Bi-LSTM).
The models were further supplemented with CRF along with highway networks and added with
word embedding. He evaluated all the proposed systems across three datasets: Gareev’s, Person-1000,
and FactRuEval 2016. He concluded that the quality of predictions is considerably increased with
the extension of Bi-LSTM model with CRF and can be further improved by setting the word input to
preprocessing with exterior word embedding.

The authors in [14] proposed an improved NER system using deep learning module for Chinese
text. Without using any manual feature engineering, the system can detect the word features
automatically. He used word embedding with a Bi-LSTM obtained from the outputs of NER to
model the substance within a sentence. Along with additional features to the model, the experimental
results show that the model achieves an F-score of 0.9247 when trained on a large corpus on Bi-LSTM
with word embedding.

The authors in [15] investigated a deep learning method to recognize NEs from Chinese clinical
text using the minimal feature engineering approach. Two DNN models were developed: one is for
generating the word embedding, and the other is for the main NER task. They evaluated the system
on two Chinese clinical datasets: one is an annotated corpus that contains 400 randomly selected
admission notes, and the other is unlabeled admission notes that include 36,828 notes, both of which
were collected from the EHR database of Peking Union Medical College Hospital in China. The model
results indicate that the proposed approach with DNN outperforms the CRF and achieves a high
F1-score of 0.9280.

In addition to NER for other languages, such as English, Russian, Chinese, and Hindi, The ANER
is an attractive and challenging task and requires a recognition task due to the peculiar and unique
characteristics of the Arabic language.

The authors in [16] adopted a new attempt for ANER using ANNs. They used ANN techniques
and evaluated the performance of their model with decision trees. Their system consists of three main
phases: preprocessing of the data, conversion of Arabic letters to Roman alphabets, and classification
of the collected data using a neural network. The relationship between the accuracy of the system
and the corpus size was also assessed. The results showed that high accuracy on the same dataset
(“ANERCorp”) is achieved when an ANN method is adapted to the NER system than when
complemented with the decision trees. The experimental results also showed that the accuracy
of the system increases proportionally with the enlargement in the size of the corpus.

3. Approach

A prototype of bidirectional RNN (B-RNN) is explicitly built on long short-term memory
(LSTM)/GRUs. For the entire work, we start with a brief overview of RNN, LSTM, and GRU.
Then, we present the bidirectional architecture for the ANER task.

Future Internet 2018, 10, 123 4 of 12

3.1. Recurrent Neural Network (RNN)

RNN is a type of ANN in which the connections between units produce a directed graph along a
sequence. This architecture enables the network to demonstrate dynamic temporal behavior for a time
sequence. Contrary to feedforward neural networks (FFNNs), RNNs can process sequences of inputs
by using their internal state (memory), which makes them appropriate to many NLP tasks [17–19].
LSTM is a type of RNN architecture that is the best among all other existing architectures [20]. RNNs
are deep learning systems that stem from the modifications of FFNN with recurrent connections.
In a typical neural network, the output of a neuron at time t is calculated as

yt
i = σ(Wixt + bi), (1)

where Wi is the weight matrix, and bi is a bias term. In RNN, the calculation of the activation function
is modified because the output of the neuron at the time ‘t − 1’ is fed back into the neuron. Then,
the new activation function can be computed as

yt
i = σ

(
Wixt + Uiyt−1

i + bi

)
. (2)

RNNs can remember previous information of a sequence by using the output of the earlier node as
recurrent connections while presenting output depending on the former states. This characteristic
makes the network useful for the sequence labeling task. The backpropagating error can regularly
“strike up” or blast, which yields infeasible convergence. It can also vanish to render the capability of
the network to learn long-term dependencies, which are difficult to learn through gradient descent.

3.2. Long Short-Term Memory (LSTM)

LSTM networks are a class of RNNs that are designed efficiently to study long-term dependencies
and avert the fading gradient issue. LSTM prevents back-propagating errors from vanishing or
exploding. To realize this task, LSTM holds an inner condition that symbolizes the memory cell of
the LSTM neuron. The inner condition state is usually augmented by recurrent gates that control the
movement of the information over the cell state. These gates are updated and calculated as follows:

it = tanh(Wxixt + Whiht−1), (3)

ft = σ
(

Wx f xt + Wh f ht−1

)
, (4)

ot = σ(Wxoxt + Whoht−1), (5)

where it, ft, and ot represent input, forget, and output gates, respectively. The first two gates decide the
input of the last output and the present input in the new cell condition ct. The last gate takes charge of
the quantity of the cell state ct, which is exposed as the output. The new ct and ht can be computed
as follows:

ct = ft � ct−1 + it � tanh(Wxcxt + Whcht−1 + bc), (6)

ht = ot � tanh(ct). (7)

The cell state keeps relevant information from the last time steps. The cell state can be updated via
the input and forget gates in an additive manner only. This procedure can be regarded as permitting
the error to stream back over the cell state unchecked until it gets propagated back to the time step in
which the related information is added. This mechanism enables LSTM to study long-term reliance.

3.3. Gated Recurrent Units (GRUs)

GRU, which was first presented in 2014, is a mechanism that uses gates in RNNs. Although GRU
is modern, it can be presented as a simplified version of the LSTM. GRU uses different mechanisms

Future Internet 2018, 10, 123 5 of 12

for generating the update and updating the cell state. The activation function of the candidates ht is
calculated on the basis of the present input and the last cell state as follows:

}t = σ(Wxhxt + Whh(rt � ht−1)), (8)

where rt is the reset gate that has the same functional form as that of an update gate, and all of
its weights are the same size. Reset gate is multiplied by the previous hidden state value and
controls the usage of last cell state while computing the activation input. It can reset the hidden
value. The computation of the reset gate is based on the last activation cell ht−1 and the present
candidate activation.

rt = σ(Wxrxt + Whrht−1) (9)

The current cell state or activation is a linear combination of the previous cell and candidate activations.

ht = (1− zt)� ht−1 + zt � ht, (10)

where Zt is the update gate that balances the combined amount of the previous and new candidate
hidden values to obtain the new hidden value.

Zt = (Whzht−1 + Wxzxt) (11)

3.4. Proposed Model

In this section, we discuss our bidirectional model for recognizing NEs. Instead of a
feedforward network, Bi-LSTM/GRU network is adapted to obtain bidirectional word arrangement
for excellent foresight.

Problem Definition: Given a document D containing a sequence of sentences (s1, s2, . . . , sm) for
the input sentence X = (x1, x2, · · ·, xn), Z is identified as the output matrix n × k, where k is the
number of labels that represent entities. Zij refers to the score when the ith token (xi) in the sentence
tagj. Y = (y1, y2, y3, · · ·, yn) is the predicted sequence.

First, the word and character embeddings are obtained for the input sentence. Then, we adopt
an embedding attention layer that combines the two features to obtain the best word representation.
The embedded feature representation is fed into the encoder layer for processing. Finally, the result
is obtained from the output layer. Xi refers to the input word, whereas Yi is the predicted tag for the
i’th token in the sentence, where 1 ≤ i ≤ t. The embedding layer consists of the word vector mapping
from tokens to dense n-dimensional vector representations. The model is explained in detail in the
following sections. Figure 1 shows the B-RNN setup with the LSTM/GRU network, and the main
components are described below.

Future Internet 2018, 10, 123 6 of 12

Future Internet 2018, 10, x FOR PEER REVIEW 5 of 11

	 ⊙ ,	 (8)

where rt is the reset gate that has the same functional form as that of an update gate, and all of its

weights are the same size. Reset gate is multiplied by the previous hidden state value and controls

the usage of last cell state while computing the activation input. It can reset the hidden value. The

computation of the reset gate is based on the last activation cell ht−1 and the present candidate

activation.

r σ W x W h 	 (9)

The current cell state or activation is a linear combination of the previous cell and candidate

activations.

1 ⊙ ⊙ ,	 (10)

where Zt is the update gate that balances the combined amount of the previous and new candidate

hidden values to obtain the new hidden value.

	 (11)

3.4. Proposed Model

In this section, we discuss our bidirectional model for recognizing NEs. Instead of a feedforward

network, Bi‐LSTM/GRU network is adapted to obtain bidirectional word arrangement for excellent

foresight.

Problem Definition: Given a document D containing a sequence of sentences (s1, s2, …, sm) for
the input sentence X = (x1, x2, ∙ ∙ ∙, xn), Z is identified as the output matrix n × k, where k is the number

of labels that represent entities. Zij refers to the score when the ith token (xi) in the sentence tagj. y =

(y1, y2, y3, ∙ ∙ ∙, yn) is the predicted sequence.

First, the word and character embeddings are obtained for the input sentence. Then, we adopt

an embedding attention layer that combines the two features to obtain the best word representation.

The embedded feature representation is fed into the encoder layer for processing. Finally, the result

is obtained from the output layer. Xi refers to the input word, whereas Yi is the predicted tag for the

i’th token in the sentence, where 1 ≤ i ≤ t. The embedding layer consists of the word vector mapping

from tokens to dense n‐dimensional vector representations. The model is explained in detail in the

following sections. Figure 1 shows the B‐RNN setup with the LSTM/GRU network, and the main

components are described below.

Figure 1. Main architecture of the network. Word embedding is provided to a Bi‐LSTM/GRU. The

forward unit represents the word Xt and its left context, whereas the backward unit represents the

Figure 1. Main architecture of the network. Word embedding is provided to a Bi-LSTM/GRU.
The forward unit represents the word Xt and its left context, whereas the backward unit represents the
word Xt and its right context. Concatenating the two vectors yields a representation of the word Xt and
its context, and this embedded representation is fed to the classification layer.

A. Embedding Layer

The work introduced by [21] for word distributed representation has substituted the traditional
bag-of-words encoding technique and accomplishes excellent results on many NLP tasks. In distributed
embeddings, the model is generalizable because each word gets a map to space. As a result,
semantically approximated words can have similar vector representations. However, using word
embedding alone as the smallest feature representation unit can result in losing some accurate
information. For languages with rich morphology, such as Arabic, we need to capture all morphological
and orthographic information. As word embedding encodes semantic and syntactic word relationships,
character embedding carries important morphological and shape information. Inspired by this
integration as in [22], we acquire the sequence representations from character and word levels.

• Character Embedding Layer

Character sequence representations are helpful for morphologically rich languages and for dealing
with the OOV problem for tasks, such as POS tagging and language modeling [23] or dependency
parsing [24]. The authors in [25] proposed CharCNN, which is a character-aware neural language
model that learns character word representations using CNNs. We follow the same technique for
generating the character embedding representation. Details about the implementation can be found
in [25].

• Word Embedding

Word embedding refers to the representation of words as vectors in a continuous space, thereby
capturing many syntactic and semantic relations among them. We treat the embeddings as fixed
constants as this consideration performs better than treating them as learnable model parameters [26].
We adopt pre-trained word embedding, AraVec 2.0 [27], to obtain the fixed word embedding of
each token.

B. Embedding Attention Layer

Word embedding treats words as the smallest unit and disregards any morphological
resemblances between various words, thereby leading to the OOV problem. By contrast, character
embedding can operate over individual characters in each word and can, therefore, be useful for

Future Internet 2018, 10, 123 7 of 12

handling OOV. However, research on character embedding is still in the initial phase, and systems
that work solely on characters are not superior to those based on words on most tasks [28]. Therefore,
character and word embeddings can be integrated to fully utilize their advantages. However, we
adopt an embedding attention layer that works as a gate mechanism, can learn similar representations,
and allows the model to determine how to consolidate the information for each word. After getting
the character feature of each word, we calculate the attention matrix through a two-layer perceptron
and combine the two levels of features by a weighted sum as follows:

z = σ(Uatanh(Vax + Wam)), (12)

x̃ = z·x + (1− z)·m (13)

where Ua, Va, and Wa are the weight matrices for computing the attention matrix z and σ() is the
sigmoid logistic function with values between 0 and 1. x and m are sequence representations of word
and character embeddings, respectively. The dimensions of vector z are the same as those of x or m
and act as the weight between the two vectors. Accordingly, the model can dynamically determine the
amount of information to use from each of the embeddings (character or word).

C. Bidirectional Recurrent Neural Networks (B-RNNs)

Despite its simplicity, B-RNN is a powerful way to improve the neural network ability to learn,
especially for NLP problems. The need for B-RNN helps us consider it in the context of NLP tasks,
especially NER in which we try to extract NEs, such as people, location, organization, date, and time.

We consider the three sentences below:

Future Internet 2018, 10, x FOR PEER REVIEW 7 of 11

C. Bidirectional Recurrent Neural Networks (B-RNNs)

Despite its simplicity, B-RNN is a powerful way to improve the neural network ability to learn,

especially for NLP problems. The need for B-RNN helps us consider it in the context of NLP tasks,

especially NER in which we try to extract NEs, such as people, location, organization, date, and time.

We consider the three sentences below:

مملكة عربية يمنية قديمة سبأ “Saba is an ancient Yemeni kingdom.”

اوية المحدودةالمتحدة للصناعات الكيم سبأ “Saba United Chemical Industries Ltd.”

بنت مبخوت الشهراني زعيم أكبر القبائل العربية سبأ “Saba, the daughter of Mbkhout Shahrani leader of the largest

Arab tribes.”

The word ” - سبأ Saba” in the three sentences will be tagged with something else in each sentence.

This word represents a location in the first sentence, a company name in the second sentence, and a

proper noun in the third sentence. The problem is that the word ” appears at the beginning of” سبأ

each sentence. This condition indicates that the RNN network will not detect any other word in the

sentence before it has the opportunity to make a prediction on the word ”سبأ”, resulting in a possible

incorrect prediction. B-RNN solves this problem by traversing the sequence in both directions. The

backward RNN will calculate ℎ𝑇
 ⃖ in reverse direction, starting from hT and then going backward until

h1 for ease of prediction of the right label for the given NE. The idea of going backward helps

accurately mark the NEs for the word ”سبأ” that appears at the beginning of the sentence.

The bidirectional unit contains two LSTM/GRU series: one is propagating in the forward

direction, and the other is propagating toward the back direction. We concatenate the outcome from

the two series to establish a joint representation of the word and its context.

ℎ𝑡 = [ℎ𝑇
 , ℎ1

 ⃖], (14)

where ℎ𝑇
 is the last word in the forward chain and ℎ1

 ⃖ is the last word in the backward chain.

D. Prediction Layer

The joined vectors from the B-LSTM/GRU network are fed into a classification layer with a

feedforward neuron. Furthermore, a SoftMax function is used to normalize the output, and it is given

by the following equation:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (ℎ𝑡). (15)

For each tag type j, the probability of similar outputs can be calculated as follows:

𝑃(𝑙𝑡 = 𝑗|𝑢𝑡) =
exp (𝑢𝑡𝑊𝑗)

∑ exp (𝑢𝑡𝑊𝑘
𝐾
𝑘=1)

, (16)

where lt and ut are the tags or labels and the concatenated vector for each time step t. The highest

possible tag at each word position is chosen. The entire network is trained via backpropagation. The

embedding vectors are updated on the basis of back-propagating errors as well.

4. Experiment

A series of extensive experimentation was conducted to validate the methodology. The datasets

used and the experimental setup were explained thoroughly.

4.1. Datasets

To train and test our ANER system, we evaluated the system with “ANERCorp,” which is a

dataset created by Benajiba from several online resources [29]. The ANERCorp dataset is a manually

annotated corpus that is freely available for research purposes. Two corpora were used: training and

testing. One person annotated the corpus to guarantee the coherence of the annotation, and it had

4901 sentences with 150,286 tokens. Each line contained a single token for easy parsing. Each word

in this dataset was tagged with one of the following: person, location, company, and others.

ANERcorp was annotated into eight classes: B-PERS, beginning of the person’s name; I-PERS, inside

of the person’s name; B-LOC, beginning of the location’s name; B-ORG, beginning of the

“Saba is an ancient Yemeni kingdom.”

Future Internet 2018, 10, x FOR PEER REVIEW 7 of 11

C. Bidirectional Recurrent Neural Networks (B-RNNs)

Despite its simplicity, B-RNN is a powerful way to improve the neural network ability to learn,

especially for NLP problems. The need for B-RNN helps us consider it in the context of NLP tasks,

especially NER in which we try to extract NEs, such as people, location, organization, date, and time.

We consider the three sentences below:

مملكة عربية يمنية قديمة سبأ “Saba is an ancient Yemeni kingdom.”

اوية المحدودةالمتحدة للصناعات الكيم سبأ “Saba United Chemical Industries Ltd.”

بنت مبخوت الشهراني زعيم أكبر القبائل العربية سبأ “Saba, the daughter of Mbkhout Shahrani leader of the largest

Arab tribes.”

The word ” - سبأ Saba” in the three sentences will be tagged with something else in each sentence.

This word represents a location in the first sentence, a company name in the second sentence, and a

proper noun in the third sentence. The problem is that the word ” appears at the beginning of” سبأ

each sentence. This condition indicates that the RNN network will not detect any other word in the

sentence before it has the opportunity to make a prediction on the word ”سبأ”, resulting in a possible

incorrect prediction. B-RNN solves this problem by traversing the sequence in both directions. The

backward RNN will calculate ℎ𝑇
 ⃖ in reverse direction, starting from hT and then going backward until

h1 for ease of prediction of the right label for the given NE. The idea of going backward helps

accurately mark the NEs for the word ”سبأ” that appears at the beginning of the sentence.

The bidirectional unit contains two LSTM/GRU series: one is propagating in the forward

direction, and the other is propagating toward the back direction. We concatenate the outcome from

the two series to establish a joint representation of the word and its context.

ℎ𝑡 = [ℎ𝑇
 , ℎ1

 ⃖], (14)

where ℎ𝑇
 is the last word in the forward chain and ℎ1

 ⃖ is the last word in the backward chain.

D. Prediction Layer

The joined vectors from the B-LSTM/GRU network are fed into a classification layer with a

feedforward neuron. Furthermore, a SoftMax function is used to normalize the output, and it is given

by the following equation:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (ℎ𝑡). (15)

For each tag type j, the probability of similar outputs can be calculated as follows:

𝑃(𝑙𝑡 = 𝑗|𝑢𝑡) =
exp (𝑢𝑡𝑊𝑗)

∑ exp (𝑢𝑡𝑊𝑘
𝐾
𝑘=1)

, (16)

where lt and ut are the tags or labels and the concatenated vector for each time step t. The highest

possible tag at each word position is chosen. The entire network is trained via backpropagation. The

embedding vectors are updated on the basis of back-propagating errors as well.

4. Experiment

A series of extensive experimentation was conducted to validate the methodology. The datasets

used and the experimental setup were explained thoroughly.

4.1. Datasets

To train and test our ANER system, we evaluated the system with “ANERCorp,” which is a

dataset created by Benajiba from several online resources [29]. The ANERCorp dataset is a manually

annotated corpus that is freely available for research purposes. Two corpora were used: training and

testing. One person annotated the corpus to guarantee the coherence of the annotation, and it had

4901 sentences with 150,286 tokens. Each line contained a single token for easy parsing. Each word

in this dataset was tagged with one of the following: person, location, company, and others.

ANERcorp was annotated into eight classes: B-PERS, beginning of the person’s name; I-PERS, inside

of the person’s name; B-LOC, beginning of the location’s name; B-ORG, beginning of the

“Saba United Chemical Industries Ltd.”

Future Internet 2018, 10, x FOR PEER REVIEW 7 of 11

C. Bidirectional Recurrent Neural Networks (B-RNNs)

Despite its simplicity, B-RNN is a powerful way to improve the neural network ability to learn,

especially for NLP problems. The need for B-RNN helps us consider it in the context of NLP tasks,

especially NER in which we try to extract NEs, such as people, location, organization, date, and time.

We consider the three sentences below:

مملكة عربية يمنية قديمة سبأ “Saba is an ancient Yemeni kingdom.”

اوية المحدودةالمتحدة للصناعات الكيم سبأ “Saba United Chemical Industries Ltd.”

بنت مبخوت الشهراني زعيم أكبر القبائل العربية سبأ “Saba, the daughter of Mbkhout Shahrani leader of the largest

Arab tribes.”

The word ” - سبأ Saba” in the three sentences will be tagged with something else in each sentence.

This word represents a location in the first sentence, a company name in the second sentence, and a

proper noun in the third sentence. The problem is that the word ” appears at the beginning of” سبأ

each sentence. This condition indicates that the RNN network will not detect any other word in the

sentence before it has the opportunity to make a prediction on the word ”سبأ”, resulting in a possible

incorrect prediction. B-RNN solves this problem by traversing the sequence in both directions. The

backward RNN will calculate ℎ𝑇
 ⃖ in reverse direction, starting from hT and then going backward until

h1 for ease of prediction of the right label for the given NE. The idea of going backward helps

accurately mark the NEs for the word ”سبأ” that appears at the beginning of the sentence.

The bidirectional unit contains two LSTM/GRU series: one is propagating in the forward

direction, and the other is propagating toward the back direction. We concatenate the outcome from

the two series to establish a joint representation of the word and its context.

ℎ𝑡 = [ℎ𝑇
 , ℎ1

 ⃖], (14)

where ℎ𝑇
 is the last word in the forward chain and ℎ1

 ⃖ is the last word in the backward chain.

D. Prediction Layer

The joined vectors from the B-LSTM/GRU network are fed into a classification layer with a

feedforward neuron. Furthermore, a SoftMax function is used to normalize the output, and it is given

by the following equation:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (ℎ𝑡). (15)

For each tag type j, the probability of similar outputs can be calculated as follows:

𝑃(𝑙𝑡 = 𝑗|𝑢𝑡) =
exp (𝑢𝑡𝑊𝑗)

∑ exp (𝑢𝑡𝑊𝑘
𝐾
𝑘=1)

, (16)

where lt and ut are the tags or labels and the concatenated vector for each time step t. The highest

possible tag at each word position is chosen. The entire network is trained via backpropagation. The

embedding vectors are updated on the basis of back-propagating errors as well.

4. Experiment

A series of extensive experimentation was conducted to validate the methodology. The datasets

used and the experimental setup were explained thoroughly.

4.1. Datasets

To train and test our ANER system, we evaluated the system with “ANERCorp,” which is a

dataset created by Benajiba from several online resources [29]. The ANERCorp dataset is a manually

annotated corpus that is freely available for research purposes. Two corpora were used: training and

testing. One person annotated the corpus to guarantee the coherence of the annotation, and it had

4901 sentences with 150,286 tokens. Each line contained a single token for easy parsing. Each word

in this dataset was tagged with one of the following: person, location, company, and others.

ANERcorp was annotated into eight classes: B-PERS, beginning of the person’s name; I-PERS, inside

of the person’s name; B-LOC, beginning of the location’s name; B-ORG, beginning of the

“Saba, the daughter of Mbkhout Shahrani leader of the largest
Arab tribes.”

The word “-

Future Internet 2018, 10, x FOR PEER REVIEW 7 of 11

C. Bidirectional Recurrent Neural Networks (B-RNNs)

Despite its simplicity, B-RNN is a powerful way to improve the neural network ability to learn,

especially for NLP problems. The need for B-RNN helps us consider it in the context of NLP tasks,

especially NER in which we try to extract NEs, such as people, location, organization, date, and time.

We consider the three sentences below:

مملكة عربية يمنية قديمة سبأ “Saba is an ancient Yemeni kingdom.”

اوية المحدودةالمتحدة للصناعات الكيم سبأ “Saba United Chemical Industries Ltd.”

بنت مبخوت الشهراني زعيم أكبر القبائل العربية سبأ “Saba, the daughter of Mbkhout Shahrani leader of the largest

Arab tribes.”

The word ” - سبأ Saba” in the three sentences will be tagged with something else in each sentence.

This word represents a location in the first sentence, a company name in the second sentence, and a

proper noun in the third sentence. The problem is that the word ” appears at the beginning of” سبأ

each sentence. This condition indicates that the RNN network will not detect any other word in the

sentence before it has the opportunity to make a prediction on the word ”سبأ”, resulting in a possible

incorrect prediction. B-RNN solves this problem by traversing the sequence in both directions. The

backward RNN will calculate ℎ𝑇
 ⃖ in reverse direction, starting from hT and then going backward until

h1 for ease of prediction of the right label for the given NE. The idea of going backward helps

accurately mark the NEs for the word ”سبأ” that appears at the beginning of the sentence.

The bidirectional unit contains two LSTM/GRU series: one is propagating in the forward

direction, and the other is propagating toward the back direction. We concatenate the outcome from

the two series to establish a joint representation of the word and its context.

ℎ𝑡 = [ℎ𝑇
 , ℎ1

 ⃖], (14)

where ℎ𝑇
 is the last word in the forward chain and ℎ1

 ⃖ is the last word in the backward chain.

D. Prediction Layer

The joined vectors from the B-LSTM/GRU network are fed into a classification layer with a

feedforward neuron. Furthermore, a SoftMax function is used to normalize the output, and it is given

by the following equation:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (ℎ𝑡). (15)

For each tag type j, the probability of similar outputs can be calculated as follows:

𝑃(𝑙𝑡 = 𝑗|𝑢𝑡) =
exp (𝑢𝑡𝑊𝑗)

∑ exp (𝑢𝑡𝑊𝑘
𝐾
𝑘=1)

, (16)

where lt and ut are the tags or labels and the concatenated vector for each time step t. The highest

possible tag at each word position is chosen. The entire network is trained via backpropagation. The

embedding vectors are updated on the basis of back-propagating errors as well.

4. Experiment

A series of extensive experimentation was conducted to validate the methodology. The datasets

used and the experimental setup were explained thoroughly.

4.1. Datasets

To train and test our ANER system, we evaluated the system with “ANERCorp,” which is a

dataset created by Benajiba from several online resources [29]. The ANERCorp dataset is a manually

annotated corpus that is freely available for research purposes. Two corpora were used: training and

testing. One person annotated the corpus to guarantee the coherence of the annotation, and it had

4901 sentences with 150,286 tokens. Each line contained a single token for easy parsing. Each word

in this dataset was tagged with one of the following: person, location, company, and others.

ANERcorp was annotated into eight classes: B-PERS, beginning of the person’s name; I-PERS, inside

of the person’s name; B-LOC, beginning of the location’s name; B-ORG, beginning of the

Saba” in the three sentences will be tagged with something else in each sentence.
This word represents a location in the first sentence, a company name in the second sentence, and a

proper noun in the third sentence. The problem is that the word “

Future Internet 2018, 10, x FOR PEER REVIEW 7 of 11

C. Bidirectional Recurrent Neural Networks (B-RNNs)

Despite its simplicity, B-RNN is a powerful way to improve the neural network ability to learn,

especially for NLP problems. The need for B-RNN helps us consider it in the context of NLP tasks,

especially NER in which we try to extract NEs, such as people, location, organization, date, and time.

We consider the three sentences below:

مملكة عربية يمنية قديمة سبأ “Saba is an ancient Yemeni kingdom.”

اوية المحدودةالمتحدة للصناعات الكيم سبأ “Saba United Chemical Industries Ltd.”

بنت مبخوت الشهراني زعيم أكبر القبائل العربية سبأ “Saba, the daughter of Mbkhout Shahrani leader of the largest

Arab tribes.”

The word ” - سبأ Saba” in the three sentences will be tagged with something else in each sentence.

This word represents a location in the first sentence, a company name in the second sentence, and a

proper noun in the third sentence. The problem is that the word ” appears at the beginning of” سبأ

each sentence. This condition indicates that the RNN network will not detect any other word in the

sentence before it has the opportunity to make a prediction on the word ”سبأ”, resulting in a possible

incorrect prediction. B-RNN solves this problem by traversing the sequence in both directions. The

backward RNN will calculate ℎ𝑇
 ⃖ in reverse direction, starting from hT and then going backward until

h1 for ease of prediction of the right label for the given NE. The idea of going backward helps

accurately mark the NEs for the word ”سبأ” that appears at the beginning of the sentence.

The bidirectional unit contains two LSTM/GRU series: one is propagating in the forward

direction, and the other is propagating toward the back direction. We concatenate the outcome from

the two series to establish a joint representation of the word and its context.

ℎ𝑡 = [ℎ𝑇
 , ℎ1

 ⃖], (14)

where ℎ𝑇
 is the last word in the forward chain and ℎ1

 ⃖ is the last word in the backward chain.

D. Prediction Layer

The joined vectors from the B-LSTM/GRU network are fed into a classification layer with a

feedforward neuron. Furthermore, a SoftMax function is used to normalize the output, and it is given

by the following equation:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (ℎ𝑡). (15)

For each tag type j, the probability of similar outputs can be calculated as follows:

𝑃(𝑙𝑡 = 𝑗|𝑢𝑡) =
exp (𝑢𝑡𝑊𝑗)

∑ exp (𝑢𝑡𝑊𝑘
𝐾
𝑘=1)

, (16)

where lt and ut are the tags or labels and the concatenated vector for each time step t. The highest

possible tag at each word position is chosen. The entire network is trained via backpropagation. The

embedding vectors are updated on the basis of back-propagating errors as well.

4. Experiment

A series of extensive experimentation was conducted to validate the methodology. The datasets

used and the experimental setup were explained thoroughly.

4.1. Datasets

To train and test our ANER system, we evaluated the system with “ANERCorp,” which is a

dataset created by Benajiba from several online resources [29]. The ANERCorp dataset is a manually

annotated corpus that is freely available for research purposes. Two corpora were used: training and

testing. One person annotated the corpus to guarantee the coherence of the annotation, and it had

4901 sentences with 150,286 tokens. Each line contained a single token for easy parsing. Each word

in this dataset was tagged with one of the following: person, location, company, and others.

ANERcorp was annotated into eight classes: B-PERS, beginning of the person’s name; I-PERS, inside

of the person’s name; B-LOC, beginning of the location’s name; B-ORG, beginning of the

” appears at the beginning of each
sentence. This condition indicates that the RNN network will not detect any other word in the sentence

before it has the opportunity to make a prediction on the word “

Future Internet 2018, 10, x FOR PEER REVIEW 7 of 11

C. Bidirectional Recurrent Neural Networks (B-RNNs)

Despite its simplicity, B-RNN is a powerful way to improve the neural network ability to learn,

especially for NLP problems. The need for B-RNN helps us consider it in the context of NLP tasks,

especially NER in which we try to extract NEs, such as people, location, organization, date, and time.

We consider the three sentences below:

مملكة عربية يمنية قديمة سبأ “Saba is an ancient Yemeni kingdom.”

اوية المحدودةالمتحدة للصناعات الكيم سبأ “Saba United Chemical Industries Ltd.”

بنت مبخوت الشهراني زعيم أكبر القبائل العربية سبأ “Saba, the daughter of Mbkhout Shahrani leader of the largest

Arab tribes.”

The word ” - سبأ Saba” in the three sentences will be tagged with something else in each sentence.

This word represents a location in the first sentence, a company name in the second sentence, and a

proper noun in the third sentence. The problem is that the word ” appears at the beginning of” سبأ

each sentence. This condition indicates that the RNN network will not detect any other word in the

sentence before it has the opportunity to make a prediction on the word ”سبأ”, resulting in a possible

incorrect prediction. B-RNN solves this problem by traversing the sequence in both directions. The

backward RNN will calculate ℎ𝑇
 ⃖ in reverse direction, starting from hT and then going backward until

h1 for ease of prediction of the right label for the given NE. The idea of going backward helps

accurately mark the NEs for the word ”سبأ” that appears at the beginning of the sentence.

The bidirectional unit contains two LSTM/GRU series: one is propagating in the forward

direction, and the other is propagating toward the back direction. We concatenate the outcome from

the two series to establish a joint representation of the word and its context.

ℎ𝑡 = [ℎ𝑇
 , ℎ1

 ⃖], (14)

where ℎ𝑇
 is the last word in the forward chain and ℎ1

 ⃖ is the last word in the backward chain.

D. Prediction Layer

The joined vectors from the B-LSTM/GRU network are fed into a classification layer with a

feedforward neuron. Furthermore, a SoftMax function is used to normalize the output, and it is given

by the following equation:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (ℎ𝑡). (15)

For each tag type j, the probability of similar outputs can be calculated as follows:

𝑃(𝑙𝑡 = 𝑗|𝑢𝑡) =
exp (𝑢𝑡𝑊𝑗)

∑ exp (𝑢𝑡𝑊𝑘
𝐾
𝑘=1)

, (16)

where lt and ut are the tags or labels and the concatenated vector for each time step t. The highest

possible tag at each word position is chosen. The entire network is trained via backpropagation. The

embedding vectors are updated on the basis of back-propagating errors as well.

4. Experiment

A series of extensive experimentation was conducted to validate the methodology. The datasets

used and the experimental setup were explained thoroughly.

4.1. Datasets

To train and test our ANER system, we evaluated the system with “ANERCorp,” which is a

dataset created by Benajiba from several online resources [29]. The ANERCorp dataset is a manually

annotated corpus that is freely available for research purposes. Two corpora were used: training and

testing. One person annotated the corpus to guarantee the coherence of the annotation, and it had

4901 sentences with 150,286 tokens. Each line contained a single token for easy parsing. Each word

in this dataset was tagged with one of the following: person, location, company, and others.

ANERcorp was annotated into eight classes: B-PERS, beginning of the person’s name; I-PERS, inside

of the person’s name; B-LOC, beginning of the location’s name; B-ORG, beginning of the

”, resulting in a possible incorrect
prediction. B-RNN solves this problem by traversing the sequence in both directions. The backward

RNN will calculate
←
hT in reverse direction, starting from hT and then going backward until h1 for ease

of prediction of the right label for the given NE. The idea of going backward helps accurately mark the

NEs for the word “

Future Internet 2018, 10, x FOR PEER REVIEW 7 of 11

C. Bidirectional Recurrent Neural Networks (B-RNNs)

Despite its simplicity, B-RNN is a powerful way to improve the neural network ability to learn,

especially for NLP problems. The need for B-RNN helps us consider it in the context of NLP tasks,

especially NER in which we try to extract NEs, such as people, location, organization, date, and time.

We consider the three sentences below:

مملكة عربية يمنية قديمة سبأ “Saba is an ancient Yemeni kingdom.”

اوية المحدودةالمتحدة للصناعات الكيم سبأ “Saba United Chemical Industries Ltd.”

بنت مبخوت الشهراني زعيم أكبر القبائل العربية سبأ “Saba, the daughter of Mbkhout Shahrani leader of the largest

Arab tribes.”

The word ” - سبأ Saba” in the three sentences will be tagged with something else in each sentence.

This word represents a location in the first sentence, a company name in the second sentence, and a

proper noun in the third sentence. The problem is that the word ” appears at the beginning of” سبأ

each sentence. This condition indicates that the RNN network will not detect any other word in the

sentence before it has the opportunity to make a prediction on the word ”سبأ”, resulting in a possible

incorrect prediction. B-RNN solves this problem by traversing the sequence in both directions. The

backward RNN will calculate ℎ𝑇
 ⃖ in reverse direction, starting from hT and then going backward until

h1 for ease of prediction of the right label for the given NE. The idea of going backward helps

accurately mark the NEs for the word ”سبأ” that appears at the beginning of the sentence.

The bidirectional unit contains two LSTM/GRU series: one is propagating in the forward

direction, and the other is propagating toward the back direction. We concatenate the outcome from

the two series to establish a joint representation of the word and its context.

ℎ𝑡 = [ℎ𝑇
 , ℎ1

 ⃖], (14)

where ℎ𝑇
 is the last word in the forward chain and ℎ1

 ⃖ is the last word in the backward chain.

D. Prediction Layer

The joined vectors from the B-LSTM/GRU network are fed into a classification layer with a

feedforward neuron. Furthermore, a SoftMax function is used to normalize the output, and it is given

by the following equation:

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (ℎ𝑡). (15)

For each tag type j, the probability of similar outputs can be calculated as follows:

𝑃(𝑙𝑡 = 𝑗|𝑢𝑡) =
exp (𝑢𝑡𝑊𝑗)

∑ exp (𝑢𝑡𝑊𝑘
𝐾
𝑘=1)

, (16)

where lt and ut are the tags or labels and the concatenated vector for each time step t. The highest

possible tag at each word position is chosen. The entire network is trained via backpropagation. The

embedding vectors are updated on the basis of back-propagating errors as well.

4. Experiment

A series of extensive experimentation was conducted to validate the methodology. The datasets

used and the experimental setup were explained thoroughly.

4.1. Datasets

To train and test our ANER system, we evaluated the system with “ANERCorp,” which is a

dataset created by Benajiba from several online resources [29]. The ANERCorp dataset is a manually

annotated corpus that is freely available for research purposes. Two corpora were used: training and

testing. One person annotated the corpus to guarantee the coherence of the annotation, and it had

4901 sentences with 150,286 tokens. Each line contained a single token for easy parsing. Each word

in this dataset was tagged with one of the following: person, location, company, and others.

ANERcorp was annotated into eight classes: B-PERS, beginning of the person’s name; I-PERS, inside

of the person’s name; B-LOC, beginning of the location’s name; B-ORG, beginning of the

” that appears at the beginning of the sentence.
The bidirectional unit contains two LSTM/GRU series: one is propagating in the forward direction,

and the other is propagating toward the back direction. We concatenate the outcome from the two
series to establish a joint representation of the word and its context.

ht = [
→
hT ,

←
h1], (14)

where
→
hT is the last word in the forward chain and

←
h1 is the last word in the backward chain.

D. Prediction Layer

The joined vectors from the B-LSTM/GRU network are fed into a classification layer with a
feedforward neuron. Furthermore, a SoftMax function is used to normalize the output, and it is given
by the following equation:

output = so f tmax (ht). (15)

Future Internet 2018, 10, 123 8 of 12

For each tag type j, the probability of similar outputs can be calculated as follows:

P(lt = j|ut) =
exp

(
utWj

)
∑K

k=1 exp(utWk)
, (16)

where lt and ut are the tags or labels and the concatenated vector for each time step t. The highest
possible tag at each word position is chosen. The entire network is trained via backpropagation.
The embedding vectors are updated on the basis of back-propagating errors as well.

4. Experiment

A series of extensive experimentation was conducted to validate the methodology. The datasets
used and the experimental setup were explained thoroughly.

4.1. Datasets

To train and test our ANER system, we evaluated the system with “ANERCorp,” which is a
dataset created by Benajiba from several online resources [29]. The ANERCorp dataset is a manually
annotated corpus that is freely available for research purposes. Two corpora were used: training and
testing. One person annotated the corpus to guarantee the coherence of the annotation, and it had 4901
sentences with 150,286 tokens. Each line contained a single token for easy parsing. Each word in this
dataset was tagged with one of the following: person, location, company, and others. ANERcorp was
annotated into eight classes: B-PERS, beginning of the person’s name; I-PERS, inside of the person’s
name; B-LOC, beginning of the location’s name; B-ORG, beginning of the organization’s name; I-ORG,
inside of the organization’s name; B-MISC, beginning of the miscellaneous word; I-MISC, inside of the
miscellaneous word; O, the word that is not an NE but refers to other NEs. The dataset distribution
was as follows: 39% for person, 30.4% for location, 20.6% for organization, and the remaining 10%
for miscellaneous.

4.2. Baseline

Many approaches tackle the ANER problem. We selected some of the works that have been
carried out previously and compared them with our work by using the same dataset and evaluation
metrics. The following works were selected as baselines:

• The work using a minimally supervised approach for ANER proposed in [30]
• The approach using CRFs by Yassine Benajiba in [31]
• The ANN approach using a neural network technique by Naji and Nazlia in [16]

4.3. Setting

An NVIDIA GeForce GTX1080Ti (12 GB and Intel i7-6800K 3.4GHZx12 Processor with 32 GB
RAM) was used to train the model. It was built on Ubuntu and implemented in the Keras environment.
For each token, the model was trained to predict either one of the eight appropriate labels described in
Section 4.1. The embedding dimension was fixed to 100, and the size of the hidden state was aligned
to 200. The combination of forward and backward LSTM provided a dimension of 400 Tanh, which
was used as the hidden activation function. Its output was fed into a Softmax output layer to produce
probabilities for each of the eight tags. Categorical cross-entropy was used as the objective function,
and L2-regularization component was added to the cost function for output tuning. For the over-fitting
problem, 50% dropout was used as an additional measure to control the inputs to the LSTM network
and the Softmax layer. AdaGrad was used to optimize the network cost. The batch sizes were set to
128. A total of 30 epochs were used to train each network. We set the maximum sequence length to 100
to ensure the same length of all the sequences. Sequence greater than this length would be truncated
and sequence less than this length would be padded with zeros to obtain the same length.

Future Internet 2018, 10, 123 9 of 12

4.4. Evaluation

The efficiency of the system was assessed by the general measures, namely, precision (P), recall
(R), and F-measure score (F), because they are standard for NER.

P =
X
Y

, (17)

R =
X
Z

, (18)

F−measure(F) =
2× Precision× Recall

Precision + Recall
, (19)

where X is the total number of correctly extracted entities, Y is the entire number of recognized entities,
and Z is the total number of correct entities.

5. Results

We run our experiments on the ANERCorp dataset described above. To evaluate the performance
of our Bi-LSTM/GRU model, we run each model 5 times and take the average of each score value.
The experimental results are summarized in Table 1. RNN can handle the sequence labeling problem
efficiently without the need for additional information, such as Chunks or Gazetteers, which are
essential especially for the NER task.

Table 1. Results obtained by our model with different architectures.

Model P R F1

LSTM 80.49 79.71 80.07
GRU 75.46 76.86 76.13

BLSTM 86.85 86.01 86.42
BGRU 85.70 83.96 84.81

BLSTM + char 88.49 87.57 88.01
BGRU + char 87.73 86.51 87.12

The experimental results show that our proposed model with embedding attention layer performs
considerably better than the other neural NE recognition and previous baseline systems. The best
F-scores of our model are 88.01% and 87.12% for BLSTM and BGRU, respectively.

6. Discussion

6.1. Comparison of Different Architectures

To evaluate the performance of our Bi-LSTM/GRU model and show the effect of different
architectures (i.e., the bidirectionality and the impact of character embedding), we first run our
experiment on the unidirectional LSTM/GRU. Then, we run the Bi-LSTM/GRU. Finally, we add the
character embedding. As observed from the results above, the model achieves 80.07% and 76.13%
for LSTM and GRU, respectively. The model obtains slight improvement in bidirectionality and
achieves the best results of 88.01% and 87.12% for BLSTM and BGRU, respectively, when the character
embedding is added to it. Notably, the performance of B-LSTM and B-GRU is nearly similar and
slightly better than that of LSTM. Moreover, RNN with word embedding can perform effectively in
the ANER task without the need for manual feature engineering.

6.2. Comparison with Other Models

The performance of the proposed model is compared with those of other existing state of the
arts. Table 2 shows the comparison results obtained by our model against those of other systems.
Our proposed model, B-LSTM/GRU, achieves the best result regarding the metrics used for evaluation

Future Internet 2018, 10, 123 10 of 12

on the “ANERCorp” dataset. This performance emphasizes that using RNN leads to excellent
performance and improves the labeling task. Specifically, the efficiency results obtained on the
NER task are comparable to those of previous methods.

Table 2. Comparison of F-score performance measure of the proposed models concerning the baseline
systems on ANERCorp.

Model P% R% F%

Maha Althobaiti [30] 84.94 52.68 63.22
Benajiba (ANERsys 2.0) [31] 65.33 58.60 61.73

Nazlia Omar [16] 65.03 62.33 57.47
F Dahan (HMM) [7] 77 73 75.2

OUR B-LSTM 88.49 87.57 88.01
OUR B-GRU 87.73 86.51 87.12

6.3. Effect of Character Embedding

Apart from the effect of word embedding, which is a powerful tool to learn word representation
and can perform excellently on various NLP tasks, character embedding enhances the performance of
the model by handling the OOV problem and providing an accurate representation for words that do
not have corresponding word embeddings.

7. Conclusions

Arabic is a challenging language because of its high morphological ambiguity, writing style, and
absence of capitalization. Thus, any NLP task for this language requires a large number of feature
engineering and preprocessing steps. In this study, we experiment with a B-RNN with LSTM/GRU
for the ANER task. Without using any feature engineering or additional preprocessing, we tackle
the problem of NER for the Arabic text. We find that deep learning-based approaches, especially
LSTM network, are useful for identifying Arabic NEs and can efficiently outperform many other
methods based on manually engineered features or rule systems. The incorporation of pre-trained
word embedding enables the system to obtain considerable improvements in the recognition task
and achieve excellent results in F-score measures, where we achieved a high F-score measure of
approximately 88.01% and 87.12% for Bi-LSTM and Bi-GRU respectively.

Author Contributions: M.N.A.A. wrote the paper with support from A.H. A.H carried out the experiments with
the help of M.N.A.A. G.T. supervised the whole project. All the authors revised the manuscript.

Funding: This work was partially funded by the National Natural Science Foundation of China (Project
No. 61403422).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Shaalan, K.; Oudah, M. A hybrid approach to Arabic named entity recognition. J. Inf. Sci. 2014, 40, 67–87.
[CrossRef]

2. Etaiwi, W.; Awajan, A.; Suleiman, D. Statistical Arabic Name Entity Recognition Approaches: A Survey.
Procedia Comput. Sci. 2017, 113, 57–64. [CrossRef]

3. Zirikly, A.; Diab, M. Named entity recognition for arabic social media. In Proceedings of the 1st Workshop
on Vector Space Modeling for Natural Language Processing, Berlin, Germany, 12 August 2016; pp. 176–185.

4. Nydell, M.K. Understanding Arabs: A Guide for Modern Times; Intercultural Press: Boston, MA, USA, 2018.
5. Shaalan, K.; Raza, H. NERA: Named entity recognition for Arabic. J. Assoc. Inf. Sci. Technol. 2009, 60,

1652–1663. [CrossRef]
6. Oudah, M.; Shaalan, K. NERA 2.0: Improving coverage and performance of rule-based named entity

recognition for Arabic. Nat. Lang. Eng. 2017, 23, 441–472. [CrossRef]

http://dx.doi.org/10.1177/0165551513502417
http://dx.doi.org/10.1016/j.procs.2017.08.288
http://dx.doi.org/10.1002/asi.21090
http://dx.doi.org/10.1017/S1351324916000097

Future Internet 2018, 10, 123 11 of 12

7. Dahan, F.; Touir, A.; Mathkour, H. First Order Hidden Markov Model for Automatic Arabic Name Entity
Recognition. Int. J. Comput. Appl. 2015, 123, 37–40. [CrossRef]

8. Tomas, M. Statistical Language Models Based on Neural Networks. Available online: http://www.fit.vutbr.
cz/~{}imikolov/rnnlm/google.pdf (accessed on 9 December 2018).

9. Goyal, A.; Gupta, V.; Kumar, M. Recent Named Entity Recognition and Classification techniques:
A systematic review. Comput. Sci. Rev. 2018, 29, 21–43. [CrossRef]

10. Al-Ayyoub, M.; Nuseir, A.; Alsmearat, K.; Jararweh, Y.; Gupta, B. Deep learning for Arabic NLP: A survey.
J. Comput. Sci. 2018, 26, 522–531. [CrossRef]

11. Awad, D.; Sabty, C.; Elmahdy, M.; Abdennadher, S. Arabic Name Entity Recognition Using Deep Learning.
In Proceedings of the International Conference on Statistical Language and Speech Processing, Mons,
Belgium, 15–16 October 2018; pp. 105–116.

12. Li, J.; Zhao, S.; Yang, J.; Huang, Z.; Liu, B.; Chen, S.H.; Pan, H.; Wang, Q. WCP-RNN: A novel RNN-based
approach for Bio-NER in Chinese EMRs: Paper ID: FC_17_25. J. Supercomput. 2018. [CrossRef]

13. Le, T.A.; Arkhipov, M.Y.; Burtsev, M.S. Application of a hybrid Bi-LSTM-CRF Model to the task of Russian
named entity recognition. Commun. Comput. Inf. Sci. 2018, 789, 91–103.

14. Ouyang, L.; Tian, Y.; Tang, H.; Zhang, B. Chinese Named Entity Recognition Based on B-LSTM Neural
Network with Additional Features. In Proceedings of the International Conference on Security, Privacy
and Anonymity in Computation, Communication and Storage, Guangzhou, China, 12–15 December 2017;
pp. 269–279.

15. Wu, Y.; Jiang, M.; Lei, J.; Xu, H. Named Entity Recognition in Chinese Clinical Text Using Deep Neural
Network. Stud. Health Technol. Inform. 2015, 216, 624–628. [PubMed]

16. Mohammed, N.F.; Omar, N. Arabic named entity recognition using artificial neural network. J. Comput. Sci.
2012, 8, 1285–1293.

17. Yousfi, S.; Berrani, S.-A.; Garcia, C. Contribution of recurrent connectionist language models in improving
LSTM-based Arabic text recognition in videos. Pattern Recognit. 2017, 64, 245–254. [CrossRef]

18. Baly, R.; Hajj, H.; Habash, N.; Shaban, K.B.; El-Hajj, W. A sentiment treebank and morphologically enriched
recursive deep models for effective sentiment analysis in arabic. ACM Trans. Asian Low-Resour. Lang.
Inf. Process. 2017, 16, 23. [CrossRef]

19. Chherawala, Y.; Roy, P.P.; Cheriet, M. Feature set evaluation for offline handwriting recognition systems:
Application to the recurrent neural network model. IEEE Trans. Cybern. 2016, 46, 2825–2836. [CrossRef]
[PubMed]

20. Jozefowicz, R.; Zaremba, W.; Sutskever, I. An empirical exploration of recurrent network architectures.
In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015;
pp. 2342–2350.

21. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space.
arXiv 2013, arXiv:1301.3781.

22. Li, F.; Zhang, M.; Fu, G.; Ji, D. A neural joint model for entity and relation extraction from biomedical text.
BMC Bioinform. 2017, 18, 198. [CrossRef] [PubMed]

23. Ling, W.; Luís, T.; Marujo, L.; Astudillo, R.F.; Amir, S.; Dyer, C.; Black, A.W.; Trancoso, I. Finding
function in form: Compositional character models for open vocabulary word representation. arXiv 2015,
arXiv:1508.02096.

24. Ballesteros, M.; Dyer, C.; Smith, N.A. Improved transition-based parsing by modeling characters instead of
words with LSTMs. arXiv 2015, arXiv:1508.00657.

25. Kim, Y.; Jernite, Y.; Sontag, D.; Rush, A.M. Character-Aware Neural Language Models. In Proceedings of the
AAAI, Phoenix, AZ, USA, 12–17 February 2016; pp. 2741–2749.

26. Cocos, A.; Fiks, A.G.; Masino, A.J. Deep learning for pharmacovigilance: Recurrent neural network
architectures for labeling adverse drug reactions in Twitter posts. J. Am. Med. Inform. Assoc. 2017, 24,
813–821. [CrossRef] [PubMed]

27. Soliman, A.B.; Eissa, K.; El-Beltagy, S.R. Aravec: A set of arabic word embedding models for use in arabic
nlp. Procedia Comput. Sci. 2017, 117, 256–265. [CrossRef]

28. Rei, M.; Crichton, G.K.O.; Pyysalo, S. Attending to characters in neural sequence labeling models. arXiv
2016, arXiv:1611.04361.

http://dx.doi.org/10.5120/ijca2015905397
http://www.fit.vutbr.cz/~{}imikolov/rnnlm/google.pdf
http://www.fit.vutbr.cz/~{}imikolov/rnnlm/google.pdf
http://dx.doi.org/10.1016/j.cosrev.2018.06.001
http://dx.doi.org/10.1016/j.jocs.2017.11.011
http://dx.doi.org/10.1007/s11227-017-2229-x
http://www.ncbi.nlm.nih.gov/pubmed/26262126
http://dx.doi.org/10.1016/j.patcog.2016.11.011
http://dx.doi.org/10.1145/3086576
http://dx.doi.org/10.1109/TCYB.2015.2490165
http://www.ncbi.nlm.nih.gov/pubmed/26561491
http://dx.doi.org/10.1186/s12859-017-1609-9
http://www.ncbi.nlm.nih.gov/pubmed/28359255
http://dx.doi.org/10.1093/jamia/ocw180
http://www.ncbi.nlm.nih.gov/pubmed/28339747
http://dx.doi.org/10.1016/j.procs.2017.10.117

Future Internet 2018, 10, 123 12 of 12

29. Benajiba, Y.; Rosso, P.; Benedíruiz, J.M. Anersys: An arabic named entity recognition system based on
maximum entropy. In Proceedings of the International Conference on Intelligent Text Processing and
Computational Linguistics, Mexico City, Mexico, 18–24 February 2007.

30. Kruschwitz, U.; Poesio, M. Combining minimally-supervised methods for arabic named entity recognition.
Trans. Assoc. Comput. Linguist. 2015, 3, 243–255.

31. Benajiba, Y.; Rosso, P. Arabic Named Entity Recognition using Conditional Random Fields. Proc. Work. HLT
NLP Arab. World LREC 2008, 8, 143–153.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Approach
	Recurrent Neural Network (RNN)
	Long Short-Term Memory (LSTM)
	Gated Recurrent Units (GRUs)
	Proposed Model

	Experiment
	Datasets
	Baseline
	Setting
	Evaluation

	Results
	Discussion
	Comparison of Different Architectures
	Comparison with Other Models
	Effect of Character Embedding

	Conclusions
	References

