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Abstract: In the field of cognitive radio spectrum sensing, the adaptive silence period management
mechanism (ASPM) has improved the problem of the low time-resource utilization rate of the
traditional silence period management mechanism (TSPM). However, in the case of the low
signal-to-noise ratio (SNR), the ASPM algorithm will increase the probability of missed detection
for the primary user (PU). Focusing on this problem, this paper proposes an improved adaptive
silence period management (IA-SPM) algorithm which can adaptively adjust the sensing parameters
of the current period in combination with the feedback information from the data communication
with the sensing results of the previous period. The feedback information in the channel is achieved
with frequency resources rather than time resources in order to adapt to the parameter change in the
time-varying channel. The Monte Carlo simulation results show that the detection probability of the
IA-SPM is 10–15% higher than that of the ASPM under low SNR conditions.
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1. Introduction

Cognitive radio (CR) has attracted considerable attention for its ability to maximize the rate of
usage of limited spectrum resources [1–3]. The essence of the CR concept is opportunistic spectrum
sharing [4]. Specifically speaking, this technology allows non-licensed users (secondary users, SUs)
to opportunistically use primary users’ (PUs) frequency band resources for data transmission while
the PUs are idle. These spectrum resources that are used by SUs during a specific period of time are
referred to as ‘spectrum holes’. So, the performance of CR depends highly on the successful detection
of the corresponding spectrum holes.

In a traditional sensing process in CR, time is divided into fixed portions which are called time
slots. Each time slot is divided into a small period of spectrum sensing (silence period) and a relatively
long period of data transmission [5]. In the sensing period, SUs use various techniques to sense if the
PUs are active or idle. This is the typical “listen-before-talk” paradigm [6].

In the literature, several types of spectrum sensing schemes have been proposed. When the
PU’s signal waveform and channel noise properties are known a priori, the matched filter detector is
optimal [7]. The cyclostationary feature detection method requires a priori knowledge about the cyclic
frequencies of the PU signals [8]. The energy detection method is usually simple to implement since
it does not require knowledge about the PU signal. However, it does require the knowledge of the
involved noise variance. The above three common spectrum sensing technologies are classified into
the first type of spectrum sensing algorithm because they need to know the signal and/or channel
information. Because these three typical spectrum sensing techniques need to know signal and/or
channel information, they are grouped into the same group.
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The second group of detectors for spectrum sensing are based on eigenvalue properties of
an estimated correlation matrix. Because the eigenvalue-based spectrum sensing techniques may
operate without knowledge of the PU signal [8] and noise variance [4], they can be used in a totally
blind manner. The current research results in this area include the maximum eigenvalue detector [9],
the maximum–minimum eigenvalue detector [9], the decentralized eigenvalue algorithms [10],
the sequential likelihood ratio test scheme [11], and so on. These algorithms may offer a remarkably
improved performance for specific signal categories. However, this is done at the expense of simplicity.

Different complexity spectrum detection algorithms will bring different degrees of delay. This will
affect the proportion of the silence period in a time slot. Because no data transmission takes place during
the silence period, an excessive silence period will reduce the SU’s throughput. So the management
algorithm of the silence period is one of the key issues to improve the efficiency of spectrum sensing
and time utilization.

In order to reduce the spectrum sensing time, an optimization algorithm which combines energy
detection and feature detection is proposed [12]. Since energy detection focuses only on the energy
level of the channel, it requires only a relatively short period of time for spectrum sensing. This method,
through the results of energy detection, can determine whether it is needed to start feature detection or
not, so it can improve the time utilization rate on the basis of ensuring sufficient detection accuracy in
the silent periods. In [13], a mechanism to reduce the length of the silent period is given. When the
number of continuous energy detection alarms is higher than a certain preset value, the characteristic
detection is triggered. The Markov analysis is used to study the decision threshold of the energy
detection results. In [14], a method of spectrum sensing without the silence period is proposed in
which the secondary user (SU) performs spectrum sensing for the primary users (PU) while carrying
out the data transmission. In this algorithm, the detection node first uses the linear prediction method
to estimate the signal characteristics of the SUs in the next period. Then, in the spectrum sensing,
the result of subtracting the estimated value from the received signal is used as the judgment criterion to
determine whether the PU exists or not. In [15], the authors add a feedback time slot in the center-based
spectrum allocation algorithm architecture, so that the number of sampling points can be adjusted
automatically according to the feedback information. However, in the case of low signal-to-noise ratio
(SNR), it cannot guarantee the reliable transmission of the feedback information which allows for the
possibility of over-regulation which will reduce the detection probability of the PU. At the same time,
the introduction of the feedback time slot will also reduce the time utilization rate of the time resources
to a certain extent.

Referring to the ideas on feedback information proposed in [15], we constructed a cognitive
wireless communication system model with an additional signaling channel. The model utilizes
additional frequency resources rather than time resources to feedback the state information of
the data transmission which can characterize the time-varying channel characteristics in the data
transmission. So, on this basis, an improved adaptive silence period management (IA-SPM) algorithm
is proposed. The algorithm combines the results of the previous perception period with the data
channel communication result feedback from the signaling channel to adaptively adjust the relevant
parameters to be used in the current sensing period. The signaling channel can not only reduce the
interference of noise, but it can also ensure the reliability of the transmission through coding error
correction. Meanwhile, we used the discrete Markov analysis method to construct a mathematical
simulation model of the system and analyze the detection probability of the proposed algorithm.
As a result, in the case of low SNR, the detection probability of our algorithm was 10–15% higher than
that of the algorithm proposed in [16].

2. The Silence Period Management (SPM) Algorithm

In the cognitive radio network, the SU carries on the spectrum sensing to the PU’s frequency
band to find the free band and wait for access [17]. In the process of spectrum sensing, the SU receives
signals not only from PUs and noise, but also from other SUs. In order to avoid interference in the
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detection results, when the SU performs spectrum sensing, all SUs in the system need to stop any
transmitting activities. This time in the periodic window is called the silence period. In order to
enhance the time utilization rate, the length of the silence period needs to be reasonably optimized.

Figure 1a is a schematic diagram of the slot division scheme in the traditional silent period
algorithm. The sensing period is divided into the silent period and the sensing interval. The SU
determines whether the data can be transmitted during the sensing interval based on the sensing
results of the silence period. Figure 1b is a schematic diagram of the slot division scheme in the
adaptive silence period algorithm. One of the most significant changes is the addition of a feedback
slot at the end of each sensing period.
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As shown in the figure, T is the sensing period, Ts is the time length of the silence period, and TI
is the time length of the data transmission. In general, the parameter T is keeps constant. Additionally,
in the traditional sensing period algorithm, Ts is equal within each sensing period. However, in the
adaptive sensing period algorithm, Ts is different in each sensing period.

3. System Modeling

In a wireless communication system, the signal power not only decreases with increasing
propagation distance, but it is also affected by the additional fading caused by a variety of obstacles or
complex terrain. At the same time, this additional fading will change randomly due to the movement
of the mobile station and the change of the channel environment. The time-varying characteristic of
this wireless channel will cause the received signal to be distorted, with the waveform broadened and
overlapping, which affects the communication quality of the channel [18]. In severe cases, it may lead
to communication abnormalities.

The traditional adaptive silence management algorithm uses the shared data band to transmit
feedback information. When the data band is affected by the environment and causes a sharp decline
in the signal, the system performance of the scheme deteriorates significantly due to the fact that the
SU cannot obtain the feedback information reliably.

Considering that the small-scale fading in a wireless channel usually has frequency selectivity,
we made a decision to construct a cognitive wireless communication system with an additional
signaling channel (CWCS-ASC). The corresponding system model is shown in Figure 2. By selecting
the specific frequency band outside the spectrum of the data channel as the signaling channel, adding
the signaling channel not only avoids the influence of the PU on the signal transmission, but also
enables the SU to divide the time into non-overlapping frames, and then divide the frames into
non-overlapping channels. Additionally, the users will have one-to-one correspondence according
to the time slot, in order to distinguish users from different addresses of the signal, thus completing
the multiple access. Furthermore, opening additional signaling channels can increase the additional
transmission power and through the error correction coding to reduce the noise interference, the system
can still guarantee the reliable transmission of feedback information even when the data band suffers
a great fading.
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Figure 2. The cognitive wireless communication system with an additional signaling channel (CSCS-ASC)
system model.

The information interaction sequence diagram for the CWCS-ASC system is shown in Figure 3.
The SU decides whether to transmit data by the data band based on the perceived results of the current
silent period and their own communication needs. The time window used to transmit data is defined
as the data transmission period, whose length of time needs to be less than the sensing interval ti.
The difference between the sensing interval and the data transmission period is defined as the free
period. The longer the silence period, the higher the reliability of the detection, the lower the utilization
rate of the band, and the smaller the throughput of the cognitive user [19]. The presence of the free
period ensures that the data transmission from the SU does not interfere with the spectrum sensing in
the next sensing period.
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In order to avoid communication conflicts, after obtaining the sensing result, the SU will use the
signaling slot in the signaling band to transmit interactive information which is used to coordinate the
allocation algorithm among SUs. In addition, after a certain secondary user (SU1) sends the business
data, the other SUs in the region will generate feedback information based on the result of the received
signals. Then they send the feedback information to the SU1 via the feedback slot in the signaling
band. The SU1 can estimate the channel characteristics based on the feedback information obtained,
thereby reasonably adjusting the configuration parameters for the next silent period.

4. Mathematical Modelling and the IA-SPM Algorithm

In cognitive radio systems, SUs must always check whether a frequency band is being occupied
by the PU. The PU has the highest priority. If a certain SU discovers that the PU appears during the
transmission of the data, the SU will immediately stop the data transmission process. The PU status is
detected by the SU in each sensing period as either in an active state or an idle state.
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4.1. The IA-SPM Model Based on the Markov Chain

Assuming that the cognitive user detects the channel at the beginning of each sensing period,
the system state can be modeled as a discrete time Markov chain. The system state is represented
by (i, j), where i indicates the status of the authorized user. When i = 1, it indicates that the PU
exist. Otherwise, the PU does not exist. j indicates the serial number of the silent period. pi and qi,
respectively, represent the false alarm probability of system states (0, j) and (1, j). Since the false alarm
probability and false dismissal probability is a random process, the SU’s detection process satisfies the
Markovian nature. It has the properties pij ≥ 0, qij ≥ 0; i, j ∈ I

∑j∈I pij = 1, ∑j∈I qij = 1; j ∈ I
(1)

We define the K-step transition probability as Pij(K).
Assuming that the probability of using the frequency band by the PU is θ and the probability of

releasing the frequency band by the PU is ρ, the state transition of the system can be obtained by the
state transition diagram which is shown in Figure 4. In this system model, λ(i, j) denotes the stationary
probability of the state (i, j).
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From Figure 4, we can get the state transition equations

λ(0,0) = (1− β)q0λ(0,0) + (1− β)(1− q1)λ(0,1) + ρλ(1,0) (2)

λ(0,j) = (1− β)qi−1λ(0,i−1) + (1− β)(1− qi+1)λ(0,i+1) + ρλ(1,i) (3)

λ(0,k) = (1− β)qk−1λ(0,k−1) + (1− β)qkλ(0,k) + ρλ(1,k) (4)

λ(1,0) = βλ(0,0) (5)

λ(1,j) = (1− ρ)λ(0,j−1) + βλ(1,j) (6)

λ(1,k) = (1− ρ)λ(1,k−1) + βλ(0,k) + (1− ρ)λ(1,k) (7)
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The stability probability of each state can be obtained by the above flow Equations (2)–(7).
The normalized equation can be expressed as

k

∑
i=0

(λ(1,i) + λ(0,i)) = 1 (8)

4.2. The IA-SPM Algorithm

The state equation is analyzed by the discrete Markov process, and the quantitative analysis of
the system detection probability of the IA-SPM is obtained.

According to the state of the PU, when the SU sends the data, the signal stored in the frequency
band can be represented by the formula

y(k) =

{
n(k) H0

n(k) + s(k) H1
(9)

where k represents the sampling time, y(k) is the signal stored in the frequency band, n(k) indicates
the signal transmitted by the PU, s(k) indicates the signal transmitted by the PU, and s(k) is the
existence of a probabilistic problem. In order to facilitate the study, we assume that it is a single-carrier
modulated, phase-modulated signal and that the channel it is passed through is an additive Gaussian
white noise channel. H0 indicates that the PU is in an idle state and H1 indicates that the PU is in
an active state. In order to reduce the complexity of the analysis, it is assumed that there is no channel
noise. When the system is in the H1 state, there is a conflict.

Assuming that n(k) and s(k) are random processes (i, i, d) with a Gaussian distribution, their mean
is 0 and their variance is δ2

n and δ2
s , respectively. For an SU that receives the signal, n(k) is a useful signal

and s(k) is an interfering noise. So γ = δ2
s /δ2

n is defined as the signal-to-noise ratio, which represents
the power ratio of the PU transmitting signal to the SU transmitting signal.

It is the key to how to adaptively adjust the parameters of the silent period under the condition
that the sensing period is determined. The minimum length of the silence period is specified as Nmin
and the maximum length is Nmax. The IA-SPM is divided into the following two conditions:

Condition 1: If an SU judges that the PU is not present based on the perceived result during the
current silence period, it will send the data and then wait for the response from the receiver.

If the SU sender receives the feedback signal successfully, it is judged that the PU does not exist.
So the self-detection time of the next period can be reduced. The sampling points are reduced by
µ1/2(µ ≥ 1) times, expressed by the formula

Ni+1 = max
{

round
(

Ni ÷ µ
1
2

)
, Nmin

}
(10)

If the SU sender does not receive the feedback signal, it judges that the PU is present. Then the
next period of self-detection time increases. So that the energy detection can be greater than the
threshold, the number of sampling points is expanded by µ1/2(µ ≥ 1) times, expressed by the formula

Ni+1 = min
{

round
(

Ni × µ
1
2

)
, Nmax

}
(11)

Condition 2: If an SU judges that the PU is present based on the perceived results during the
current silence period, it will automatically increase the length of the silence until it is determined that
the PU has disappeared.

Ni+1 =

 Ni PU exists

max
{

round
(

Ni × µ
1
2

)
, Nmax

}
PU not exists

(12)
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Then, the silent period of the next sensing cycle remains unchanged until the SU judges that the
PU does not exist. This will then go to Condition 1.

5. Simulation and Results Analysis

5.1. Simulation Model

In order to analyze the performance of the IA-SPM, the detection probability of the cognitive
radio network is calculated.

Let N be the number of samples in silence and ε be the selected detection threshold. The detection
probability of the system can be expressed as [20]

PD =
1
2
× er f c(ε− N − N × γ)√

(2× (2× N + 4× N × γ))
(13)

where γ represents the power ratio between the PU signal and the SU signal. In this paper, it is named
the SNR. It is well known that in the time-varying channel, the SNR is time-varying. In order to ensure
that the study is not affected by other factors, we assume that the SNR is time varying in different
periods and that the SNR is kept constant in the same period. The detection points have different
energy-aware samples in different periods.

The state equilibrium equation of the Markov chain represented by the Equation (8) can be used
to solve the detection probability

P(D,i) =
1
2
× er f c(εi − Ni − Ni × γi)√

(2× (2× Ni + 4× Ni × γi))
(14)

PD =
k

∑
i=1

λ(1,j) P(D,i)

∑k
j=1 λ(1,j)

(15)

Assuming that each silence period is τi and the sensing period is T, the signal will be sampled at
the Nyquist sampling frequency fs. Then we can get the following relationship between the silence
period and the number of samples per period

Ni = τi × fs (16)

Since the impulse response of the fading channel is time-varying, the SNR of the channel varies
randomly within a finite interval. Assuming that the SU uses the energy detection method for spectrum
sensing and that the SUs do not know the current SNR, the threshold for energy detection should be
represented by the equation

ε =

(
N +

√
(2× N)×Q−1

(
Pf

))
(17)

where Pf is the false dismissal probability.

5.2. Results Analysis

In order to compare the detection probability of the IA-SPM with the TSPM and the ASPM,
the Monte Carlo simulation is used to analyze the models. In the following experiment, we did the
simulation 1000 times in each period

In this paper, the efficiency of the IA-SPM is determined by the average number of samples.
The higher the number of samples, the higher the cost of the IA-SPM, the larger the parameter µ,
and the higher the linearity of the number of samples. Therefore, in order to jointly optimize the number
of samples and the probability of detection, we compare the selection of parameter µ. According to the
detection probability of µ under different values, as shown below Figure 5.
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It can be seen from the figure that both the detection probabilities of IA-SPM and ASPM
are influenced by the parameter µ. The detection probabilities of these two algorithms showed
a monotonically increasing trend with the increase of µ. However, when the value of µ exceeds
a certain threshold, the detection probabilities of both algorithms tend to be stable. In addition,
the maximum detection probability of IA-SPM algorithm is better than ASPM algorithm. Therefore,
in the following experiment, we set the parameter µ = 3 and the SNR was used to simulate the
channel’s time-varying characteristics within a certain range.

First, we compared the improvement of the IA-SPM algorithm with respect to the TSPM algorithm.
The simulation results are shown in Figure 6.Future Internet 2018, 10, x FOR PEER REVIEW  9 of 11 
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We found that in any kind of detection algorithm the greater the SNR, the greater the detection
probability; and the greater the false dismissal probability, the higher the probability of detection.
At the same time, it can be clearly seen that the detection probability of the IA-SPM is superior to that
of the TSPM under the same conditions.
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Then, we compared the detection probability of the IA-SPM algorithm with the ASPM algorithm
under the same SNR conditions. The simulation results are shown in Figure 7.
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Figure 7. The IA-SPM vs. the ASPM.

As the result shows, the detection probability of the IA-SPM is better than that of the ASPM.
Especially under low SNR conditions, the IA-SPM is better than the ASPM by 10–15%. With the
increase of the SNR, the detection efficiency of the two algorithms tends to be consistent. This data
shows that the IA-SPM is more suitable for time-varying channels.

Finally, we set the SNR to be equal to −15, −10, and −8 dB. Under these three conditions,
we compared the differences of the false dismissal probability between the IA-SPM algorithm and the
TSPM algorithm. The simulation results are shown in Figure 8.Future Internet 2018, 10, x FOR PEER REVIEW  10 of 11 
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Through the above figures we can find that, in the same case, with the increase of the false
dismissal probability, the probability of detection, and the SNR increase at the same time. So, we can
see that the results of the IA-SPM are much higher than that of the TSPM.
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6. Conclusions

For the issue of channel time-varying in wireless communication, we have established an IA-SPM
communication model which carries out signaling transmission among SUs so that the SUs can
obtain the feedback information through an additional spectrum. By setting additional signaling
bands, on the one hand, the time efficiency of the data band can be improved, and on the other hand,
channel interference to the feedback information can be avoided.

On this basis, we propose the IA-SPM algorithm which can adjust the parameters of spectrum
sensing such as the length of the silence duration and the length of the transmission. The change of the
parameters depends on the spectrum sensing results and the data transmission feedback information
in the previous periods.

In the case of low SNR, this algorithm that makes the sampling points will not have a steep
drop so the algorithm can better guarantee the detection performance in the time-varying channel
environment. Simulation results show that the IA-SPM is 10–15% higher than the ASPM under low
SNR conditions.

Acknowledgments: This work was supported by the Chinese National Science Foundation under grants 61501078,
61601078, and 61231006, the Fundamental Research Funds for the Central Universities under grant 3132016208.

Author Contributions: Jingbo Zhang designed the CSCS-ASC system model and the time sequence diagram
of the system information interaction and organized the paper; Zhenyang Sun carried out the simulations and
was responsible for the writing and editing of the manuscript; and Shufang Zhang supervised the work and
contributed to the writing of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fantacci, R.; Marabissi, D. Cognitive Spectrum Sharing: An Enabling Wireless Communication Technology
for a Wide Use of Smart Systems. Future Internet 2016, 8, 23. [CrossRef]

2. Bayrakdar, M.E.; Atmaca, S.; Karahan, A. A slotted ALOHA-based cognitive radio network under capture
effect in Rayleigh fading channels. Turkish J. Electr. Eng. Comput. Sci. 2016, 24, 1955–1966. [CrossRef]

3. Chen, Y.; Zhou, H.; Kong, R.; Zhu, L.; Mao, H. Decentralized Blind Spectrum Selection in Cognitive Radio
Networks Considering Handoff Cost. Future Internet 2017, 9, 10. [CrossRef]

4. Tsinos, C.G.; Berberidis, K. Decentralized Adaptive Eigenvalue-Based Spectrum Sensing for Multiantenna
Cognitive Radio Systems. IEEE Trans. Wirel. Commun. 2015, 14, 1703–1715. [CrossRef]

5. Zhao, Y.; Hong, Z.; Wang, G.; Huang, J. High-Order Hidden Bivariate Markov Model: A Novel Approach on
Spectrum Prediction. In Proceedings of the 25th International Conference on Computer Communication and
Networks (ICCCN), Waikoloa, HI, USA, 1–4 August 2016; pp. 1–7.

6. Politis, C.; Maleki, S.; Tsinos, C.G.; Liolis, K.P.; Chatzinotas, S.; Ottersten, B. Simultaneous Sensing and
Transmission for Cognitive Radios With Imperfect Signal Cancellation. IEEE Trans. Wirel. Commun. 2017, 16,
5599–5615. [CrossRef]

7. Ma, J.; Li, G.Y.; Juang, B.H. Signal processing in cognitive radio. Proc. IEEE 2009, 97, 805–823.
8. Ainomae, A.; Bengtsson, M.; Trump, T. Distributed Largest Eigenvalue Based Spectrum Sensing using

Diffusion LMS. IEEE Trans. Signal Inf. Process. Netw. 2017. [CrossRef]
9. Zeng, Y.; Liang, Y.C. Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans. Commun.

2009, 57, 1784–1793. [CrossRef]
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