
future internet

Article

TwinNet: A Double Sub-Network Framework for
Detecting Universal Adversarial Perturbations

Yibin Ruan and Jiazhu Dai *

School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China;
ruanyibin@i.shu.edu.cn
* Correspondence: daijz@i.shu.edu.cn

Received: 27 January 2018; Accepted: 28 February 2018; Published: 6 March 2018

Abstract: Deep neural network has achieved great progress on tasks involving complex abstract
concepts. However, there exist adversarial perturbations, which are imperceptible to humans,
which can tremendously undermine the performance of deep neural network classifiers. Moreover,
universal adversarial perturbations can even fool classifiers on almost all examples with just a
single perturbation vector. In this paper, we propose TwinNet, a framework for neural network
classifiers to detect such adversarial perturbations. TwinNet makes no modification of the protected
classifier. It detects adversarially perturbated examples by enhancing different types of features in
dedicated networks and fusing the output of the networks later. The paper empirically shows that
our framework can identify adversarial perturbations effectively with a slight loss in accuracy when
predicting normal examples, which outperforms state-of-the-art works.

Keywords: deep neural network; universal adversarial perturbation; double sub-network; detecting;
PCA; ImageNet

1. Introduction

Since 2006, great strides have been made in the science of machine learning (ML). Deep Neural
Network (DNN), a leading branch of ML, has demonstrated impressive performance on tasks involving
complex abstract concepts, such as image classification, document analysis, and speech recognition.

However, adversarial perturbations pose a threat to the security of DNNs: there exist perturbations
of an image example, imperceptible but carefully crafted, which can induce DNNs to misclassify with
high confidence [1]. Merely perturbing some pixels in an image can tremendously undermine a DNN’s
classification accuracy. For some application systems based on DNN, such as face recognition and
driverless cars, adversarial perturbations have become a great potential security risk.

Popular adversarial perturbation generation algorithms [1–4] always leverage gradient knowledge
of a classifier to specifically produce a perturbation for each example independently. This means that
the generation of the adversarial perturbation for a new example requires solving an image-dependent
optimization problem from scratch. Most existing adversarial detecting strategies include a
sub-network that works as a dedicated detecting classifier.

Recent work on universal adversarial perturbation (UAP) [5] shows that it is even possible to
find a single adversarial perturbation that fools the target classifier on most of the examples in the
dataset when added as noise to normal examples (Figure 1). UAP is a highly efficient and low-cost
means for an adversary to attack a classifier. The word ‘universal’ contains a double-decked meaning
on the generalization property: (1) UAPs generated for a rather small subset of a training set fool
new examples with high confidence; and (2) UAPs generalize well across different DNN architectures,
which is called transferability. Although the existence of UAPs implies potential regularities in
adversarial perturbations, there are few effective defenses or detection methods against UAPs now.

Future Internet 2018, 10, 26; doi:10.3390/fi10030026 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
http://dx.doi.org/10.3390/fi10030026
http://www.mdpi.com/journal/futureinternet

Future Internet 2018, 10, 26 2 of 13

In this paper, we propose the TwinNet framework for defending DNNs against UAPs. It separately
extracts different types of features from an example for better detecting capacity. Our inspiration
comes from Li et al.’s analysis [6] on adversarial examples using principal component analysis (PCA)
and Molchanov et al.’s work using a double sub-network system [7] to identify hand gestures. We train
an additional classifier, which performs a completely different behavior pattern from the target
classifier, and then fuse their data processing results. Eventually, both of the classifiers cooperate
with the detecting unit to identify the adversarial perturbation. The experimental results show that
TwinNet can distinguish between normal and adversarial examples very well and is resistant to attacks
with transferability.

Future Internet 2018, 10, x FOR PEER REVIEW 2 of 13

which is called transferability. Although the existence of UAPs implies potential regularities in
adversarial perturbations, there are few effective defenses or detection methods against UAPs now.
In this paper, we propose the TwinNet framework for defending DNNs against UAPs. It separately
extracts different types of features from an example for better detecting capacity. Our inspiration
comes from Li et al.’s analysis [6] on adversarial examples using principal component analysis (PCA)
and Molchanov et al.’s work using a double sub-network system [7] to identify hand gestures. We
train an additional classifier, which performs a completely different behavior pattern from the target
classifier, and then fuse their data processing results. Eventually, both of the classifiers cooperate
with the detecting unit to identify the adversarial perturbation. The experimental results show that
TwinNet can distinguish between normal and adversarial examples very well and is resistant to
attacks with transferability.

Figure 1. Universal adversarial perturbation.

The structure of this paper is organized as follows: Section 2 presents the related work. Section
3 describes the threat model. Section 4 demonstrates the framework architecture and the process of
training shadow classifier in detail. Section 5 describes the experiment and evaluation. Conclusions
and future work are presented in Section 6.

2. Related Work

2.1. Deep Neural Networks

A Deep Neural Network (DNN) consists of many nonlinear functions called neurons, which are
organized in an architecture of multiple successive layers. These layers move forward progressively
to build a simpler abstract representation of the high-dimensional example space, and they are
connected through links weighted by a set of vectors evaluated during the training phase [8]. We call
the output vector of each layer the ‘activations’.

Most DNN architectures can be separated into the two function modules of feature extraction
and classification (Figure 2). Feature extraction contains all convolutional layers, where each layer is
a higher abstract representation of the previous one, while feature classification contains fully
connected layers and a softmax layer, which actually do the classification. Layers between the input
layer and the softmax layer are called hidden layers.

Figure 1. Universal adversarial perturbation.

The structure of this paper is organized as follows: Section 2 presents the related work. Section 3
describes the threat model. Section 4 demonstrates the framework architecture and the process of
training shadow classifier in detail. Section 5 describes the experiment and evaluation. Conclusions
and future work are presented in Section 6.

2. Related Work

2.1. Deep Neural Networks

A Deep Neural Network (DNN) consists of many nonlinear functions called neurons, which are
organized in an architecture of multiple successive layers. These layers move forward progressively to
build a simpler abstract representation of the high-dimensional example space, and they are connected
through links weighted by a set of vectors evaluated during the training phase [8]. We call the output
vector of each layer the ‘activations’.

Most DNN architectures can be separated into the two function modules of feature extraction
and classification (Figure 2). Feature extraction contains all convolutional layers, where each layer is a
higher abstract representation of the previous one, while feature classification contains fully connected

Future Internet 2018, 10, 26 3 of 13

layers and a softmax layer, which actually do the classification. Layers between the input layer and the
softmax layer are called hidden layers.Future Internet 2018, 10, x FOR PEER REVIEW 3 of 13

Figure 2. The architecture of a deep neural network.

2.2. Existing Adversarial Attacks and Defenses

All of the existing adversarial attacks on DNNs are essentially gradient-based attacks. These
attacks can be divided into standalone perturbations, transfer attacks, and universal adversarial
perturbations according to the way that the adversarial perturbations are crafted.

Standalone perturbations. The crafting of standalone perturbations [2,4,9] requires referring to
knowledge of the training data and the target classifier directly. In these attacks, the adversary either
iteratively modifies the input features which have high impacts on the objective function, or tries to
find the nearest decision boundary around the example in geometry space and traverse it. The
perturbation only works for the example which it is crafted from.

Transfer attacks. Such attacks [3,10], the so-called black-box attacks, have no arbitrary access to
the target classifier. A substitute, which performs the same task, will be trained locally using a
synthetic dataset constructed by the adversary. As a result of transferability, adversarial
perturbations crafted against the local substitute can fool the target classifier too.

Universal adversarial perturbation (UAP). It is an adversarial perturbation that is computed
with few examples and removes the image-dependency of adversarial perturbations [5]. UAP
exploits the inherent properties of a DNN to modify normal examples with a perturbation vector of
a pretty small magnitude. It works by simply perturbating the image examples with a single pre-
computed vector. While it takes more time and computing resources compared to other attacks, UAP
possesses such a strong capacity of generalization that the classifier will be fooled on most new
examples with the same perturbation. Furthermore, one UAP can also deceive classifiers adopting
different network architectures.

There have been some efforts to protect deep neural networks against the attacks mentioned
above. Compared to the defenses which aim to increase a classifier’s robustness [1,11,12] or conceal
the gradient information [13,14], perturbation detection makes no modification to the target classifier
and preserves classification accuracy for legitimate users to the greatest possible extent.

Some research has tried to detect adversarial perturbations using a synthetic training set [15,16]
or statistics from intermediate layers [6] rather than rectifying them. This basically includes an
additional classifier working as the detector to discriminate between adversarial and normal
examples. The additional classifier here is generally designed for solving binary classification
problems, and are auxiliary networks of the target classifier. However, the target classifier and the
detector in these methods can be attacked simultaneously by fine-tuning the perturbation.

Detecting universal adversarial perturbations remains a pending issue and only a few works
have taken this into consideration so far. Sengupta et al. [17] proposed a framework against UAP
attacks called the MTD-NN framework. The framework assembles different networks and
periodically selects the most appropriate one for the classification task. This process runs with a
randomization technique; the adversary, therefore, has no idea about which is the specific target
classifier and fails to attack. Unfortunately, it requires prior knowledge about the probability of
attacks before making a decision. They have not provided instructions for automatic network

Figure 2. The architecture of a deep neural network.

2.2. Existing Adversarial Attacks and Defenses

All of the existing adversarial attacks on DNNs are essentially gradient-based attacks.
These attacks can be divided into standalone perturbations, transfer attacks, and universal adversarial
perturbations according to the way that the adversarial perturbations are crafted.

Standalone perturbations. The crafting of standalone perturbations [2,4,9] requires referring to
knowledge of the training data and the target classifier directly. In these attacks, the adversary either
iteratively modifies the input features which have high impacts on the objective function, or tries to find
the nearest decision boundary around the example in geometry space and traverse it. The perturbation
only works for the example which it is crafted from.

Transfer attacks. Such attacks [3,10], the so-called black-box attacks, have no arbitrary access
to the target classifier. A substitute, which performs the same task, will be trained locally using a
synthetic dataset constructed by the adversary. As a result of transferability, adversarial perturbations
crafted against the local substitute can fool the target classifier too.

Universal adversarial perturbation (UAP). It is an adversarial perturbation that is computed
with few examples and removes the image-dependency of adversarial perturbations [5]. UAP exploits
the inherent properties of a DNN to modify normal examples with a perturbation vector of a pretty
small magnitude. It works by simply perturbating the image examples with a single pre-computed
vector. While it takes more time and computing resources compared to other attacks, UAP possesses
such a strong capacity of generalization that the classifier will be fooled on most new examples
with the same perturbation. Furthermore, one UAP can also deceive classifiers adopting different
network architectures.

There have been some efforts to protect deep neural networks against the attacks mentioned
above. Compared to the defenses which aim to increase a classifier’s robustness [1,11,12] or conceal
the gradient information [13,14], perturbation detection makes no modification to the target classifier
and preserves classification accuracy for legitimate users to the greatest possible extent.

Some research has tried to detect adversarial perturbations using a synthetic training set [15,16]
or statistics from intermediate layers [6] rather than rectifying them. This basically includes an
additional classifier working as the detector to discriminate between adversarial and normal examples.
The additional classifier here is generally designed for solving binary classification problems, and are
auxiliary networks of the target classifier. However, the target classifier and the detector in these
methods can be attacked simultaneously by fine-tuning the perturbation.

Detecting universal adversarial perturbations remains a pending issue and only a few works have
taken this into consideration so far. Sengupta et al. [17] proposed a framework against UAP attacks

Future Internet 2018, 10, 26 4 of 13

called the MTD-NN framework. The framework assembles different networks and periodically selects
the most appropriate one for the classification task. This process runs with a randomization technique;
the adversary, therefore, has no idea about which is the specific target classifier and fails to attack.
Unfortunately, it requires prior knowledge about the probability of attacks before making a decision.
They have not provided instructions for automatic network switching when the probability of attacks
is unknown. Additionally, they ignore the threat of a transfer attack.

TwinNet also employs an additional network, which is called the shadow classifier. Contrary to
previous work, we do not leave all of the detecting work to the additional network. Instead, networks
in TwinNet work in parallel and adopt a different metric to identify adversarial perturbations, which
they can use to avoid being attacked simultaneously. Moreover, PCA is used here to evaluate the
performance of the classifier rather than as a tool for data collection [18] or detection [6].

2.3. Double Sub-Network System

Molchanov et al. [7] introduced a hand gesture recognition system which utilizes three-dimensional
(3D) convolutional neural networks along with depth and intensity channels. The information in these
two channels is used to build normalized spatio-temporal volumes which will be fed to two separate
sub-networks dedicated to processing depth and intensity features, respectively. It was proved that
the double sub-network system helps in improving the accuracy of classification tasks which contain
multiple types of features by dispatching different features to specialized networks and fusing the
outputs later.

3. Threat Model

Popular adversarial perturbations are image-dependent, tiny vectors that make classifiers wrongly
classify normal examples. Formally, we define F as a classifier that outputs the predicted label F(x) for
a given example x. An adversary can generate a perturbation r specific to x to make the classifier label
corresponding to the adversarial example as F(x + r), F(x + r) 6= F(x). Additionally, r is not distinct
enough to be perceived by human beings.

However, UAP is independent of image examples. It is a kind of perturbation that can fool a
classifier on almost all examples sampled from a natural distribution with a single vector. Let X denote
the subset containing the majority of the examples in the dataset. Then, a UAP against classifier F,
referred to as v, satisfies

v← argminr‖r2‖ s.t.F(x + r) 6= F(x), x ∈ X. (1)

Most image-dependent adversaries achieve a malicious goal by imposing the least costly
perturbations in the direction towards the adjacent classification region. The example that has been
attacked eventually leaves the original classification region. However, a UAP generation algorithm
requires a rather small subset of the training set, which proceeds by sequentially aggregating the
minimal perturbations that can push successive datapoints in the subset to their respective decision
boundary. These UAPs lie in a low-dimensional subspace that captures the correlations among different
regions of the decision boundary, which makes it universal [5].

4. Method

TwinNet is a framework for detecting universal adversarial perturbations. This section will
present the properties of adversarial perturbation, describe the architecture of the TwinNet framework,
and explain how to train a shadow classifier in detail and identify adversarial perturbations.

4.1. Properties of Adversarial Perturbations

For most ML tasks, normal examples are on a manifold that is of much lower dimension than
the entire example space, while adversarial ones are off this manifold [19]. Besides this, each layer

Future Internet 2018, 10, 26 5 of 13

in a DNN architecture can be seen as a nonlinear function on a linear transformation. The linear
transformation part is responsible for most learning work, where activations are multiplied by weights
and the sum with biases is added. Inspired by the work of Li et al. [6], we apply Principle Component
Analysis (PCA) [20] to the activations of the first fully connected layer of a DNN, which may help to
analyze the distribution of examples in low-dimensional space and explore potential difference in the
way that a DNN processes both types of examples.

We perform a linear PCA on the whole collection of 5000 normal examples randomly selected
from the ImageNet [21] validation set as well as 5000 corresponding universal adversarial examples.
Figure 3a shows the PCA projection onto two prominent directions (the 1st and 2nd eigenvector):
adversarial examples nearly belong to the same distribution as normal examples. However, it appears
that adversarial examples gather more closely in the center, which indicates a significantly lower
standard deviation. In Figure 3b, as we move to the tail of the PCA projection space (the 890th and
891st eigenvector), a similar phenomenon appears while both types of examples are turned to be
similar to random samples under a Gaussian distribution. We also conduct the same processing on the
CIFAR-10 [22] testing set (Figure 3c,d), and it shows a similar phenomenon to that described above.

Future Internet 2018, 10, x FOR PEER REVIEW 5 of 13

may help to analyze the distribution of examples in low-dimensional space and explore potential
difference in the way that a DNN processes both types of examples.

We perform a linear PCA on the whole collection of 5000 normal examples randomly selected
from the ImageNet [21] validation set as well as 5000 corresponding universal adversarial examples.
Figure 3a shows the PCA projection onto two prominent directions (the 1st and 2nd eigenvector):
adversarial examples nearly belong to the same distribution as normal examples. However, it appears
that adversarial examples gather more closely in the center, which indicates a significantly lower
standard deviation. In Figure 3b, as we move to the tail of the PCA projection space (the 890th and
891st eigenvector), a similar phenomenon appears while both types of examples are turned to be
similar to random samples under a Gaussian distribution. We also conduct the same processing on
the CIFAR-10 [22] testing set (Figure 3c,d), and it shows a similar phenomenon to that described
above.

(a) (b)

(c) (d)

Figure 3. Scatter plots of principal component analysis (PCA) projection of activations at the first fully
connected layer onto specific eigenvectors in the target classifier. Blue area indicates normal examples
and red area indicates adversarial ones. Illustrated by the case of the ImageNet validation set: (a)
projection onto the 1st and 2nd eigenvectors; (b) projection onto the 890th and 891st eigenvectors.
Illustrated by the case of the MNIST testing set: (c,d) are projections onto the same eigenvectors as
(a,b), respectively.

According to the above observation, we can reason about the property that features of
adversarial examples, compared to those of normal examples, are not obvious in those DNN
classifiers trained on normal examples. An explanation for that could be that DNN classifiers impose
a strong regularization effect on adversarial examples in almost all of the informative directions. The
features emphasized by a classifier during the training phase tend to reflect the normality of
examples, and we call them normal-related features. However, the same features in an adversarial
example are suppressed. The critical features modified by an adversary, what we call adversarial-
related features, are enhanced instead.

The normal-related features and adversarial-related features are partially overlapped, which
explains the poor performance of adversarial training on defending DNNs against adversarial
perturbations [5]. So, they can hardly be separated. Inspired by Molchanov et al.’s [7] work on
processing depth and intensity features in different classifiers to improve the accuracy of hand

Figure 3. Scatter plots of principal component analysis (PCA) projection of activations at the first
fully connected layer onto specific eigenvectors in the target classifier. Blue area indicates normal
examples and red area indicates adversarial ones. Illustrated by the case of the ImageNet validation set:
(a) projection onto the 1st and 2nd eigenvectors; (b) projection onto the 890th and 891st eigenvectors.
Illustrated by the case of the MNIST testing set: (c,d) are projections onto the same eigenvectors as
(a,b), respectively.

According to the above observation, we can reason about the property that features of adversarial
examples, compared to those of normal examples, are not obvious in those DNN classifiers trained
on normal examples. An explanation for that could be that DNN classifiers impose a strong
regularization effect on adversarial examples in almost all of the informative directions. The features
emphasized by a classifier during the training phase tend to reflect the normality of examples,
and we call them normal-related features. However, the same features in an adversarial example are
suppressed. The critical features modified by an adversary, what we call adversarial-related features,
are enhanced instead.

Future Internet 2018, 10, 26 6 of 13

The normal-related features and adversarial-related features are partially overlapped, which
explains the poor performance of adversarial training on defending DNNs against adversarial
perturbations [5]. So, they can hardly be separated. Inspired by Molchanov et al.’s [7] work on
processing depth and intensity features in different classifiers to improve the accuracy of hand gesture
identification, we devise an additional classifier to enhance adversarial-related features. Additionally,
the target classifier remains a classifier emphasizing normal-related features.

4.2. Architecture of the TwinNet Framework

A TwinNet framework comprises two sub-networks sharing the same network architecture
(Figure 4), which are used to enhance normal-related features and adversarial-related features
respectively: one is the target classifier ftagt, which is a popular DNN classifier, and the other is
the shadow classifier fshdw, which is trained based on ftagt. These two sub-networks have exactly
the same parameters for their feature extraction layers while maintaining different parameters for
their classification layers independently. When it comes to normal examples, ftagt and fshdw will
output normal and adversarial results, respectively. As for adversarial examples, they will both output
adversarial results.

Future Internet 2018, 10, x FOR PEER REVIEW 6 of 13

gesture identification, we devise an additional classifier to enhance adversarial-related features.
Additionally, the target classifier remains a classifier emphasizing normal-related features.

4.2. Architecture of the TwinNet Framework

A TwinNet framework comprises two sub-networks sharing the same network architecture
(Figure 4), which are used to enhance normal-related features and adversarial-related features
respectively: one is the target classifier , which is a popular DNN classifier, and the other is the
shadow classifier , which is trained based on . These two sub-networks have exactly the
same parameters for their feature extraction layers while maintaining different parameters for their
classification layers independently. When it comes to normal examples, and will output
normal and adversarial results, respectively. As for adversarial examples, they will both output
adversarial results.

Figure 4. Architecture of the TwinNet framework.

The detecting unit is responsible for fusing the results output by the sub-networks. According
to the fusion result, TwinNet will determine the type of example and adopt different strategies: if
example was evaluated as adversarial, it would be rejected by the system; If not, a classification label
would be computed based on the output of , because , which is trained for legitimate users,
possesses better classification accuracy on normal examples. The detailed mechanism of the fusion
method and the evaluation criterion are presented in Section 4.4.

Formally, let () denote the output vector of sub-networks in TwinNet for a given input
example . Thus, () is the set of class-membership probabilities for classes that equals to (| , ,), ∈ , (2)

where denotes the common parameters shared by two sub-networks; and and
are the classification layer parameters of and , respectively. Furthermore, the detection
rule is , ∗ = , , , (3)

where the label ∗ is the corresponding class of the highest element in the vector output by if
the example is evaluated as normal.

4.3. Shadow Classifier

The shadow classifier runs in parallel with the target classifier . In comparison with
, is dedicated to enhancing adversarial-related features. Whether it is fed a normal or an

adversarial example, always produces the same result as what outputs given the
corresponding adversarial example.

Hybrid training Set. In order to selectively enhance adversarial-related features in an example,
 is fully trained on a synthetic, specially labelled dataset called a hybrid training set, which is

by definition the product mixture of two types of examples as follows

Figure 4. Architecture of the TwinNet framework.

The detecting unit is responsible for fusing the results output by the sub-networks. According to
the fusion result, TwinNet will determine the type of example and adopt different strategies: if example
was evaluated as adversarial, it would be rejected by the system; If not, a classification label would be
computed based on the output of ftagt, because ftagt, which is trained for legitimate users, possesses
better classification accuracy on normal examples. The detailed mechanism of the fusion method and
the evaluation criterion are presented in Section 4.4.

Formally, let f (x) denote the output vector of sub-networks in TwinNet for a given input example
x. Thus, f (x) is the set of class-membership probabilities for classes C that equals to

P(C|x, θcomn, θi), θi ∈
{

θtagt, θshdw
}

(2)

where θcomn denotes the common parameters shared by two sub-networks; and θtagt and θshdw are the
classification layer parameters of ftagt and fshdw, respectively. Furthermore, the detection rule is{

reject, i f x is adversarial
c∗ = argmaxcP

(
C
∣∣x, θcomn, θtagt

)
, i f x is normal

(3)

where the label c∗ is the corresponding class of the highest element in the vector output by ftagt if the
example is evaluated as normal.

4.3. Shadow Classifier

The shadow classifier fshdw runs in parallel with the target classifier ftagt. In comparison with
ftagt, fshdw is dedicated to enhancing adversarial-related features. Whether it is fed a normal or

Future Internet 2018, 10, 26 7 of 13

an adversarial example, fshdw always produces the same result as what ftagt outputs given the
corresponding adversarial example.

Hybrid training Set. In order to selectively enhance adversarial-related features in an example,
fshdw is fully trained on a synthetic, specially labelled dataset called a hybrid training set, which is by
definition the product mixture of two types of examples as follows

Dhts = {(xnorm, yadv′), (xadv, yadv)}
y′adv = F(xnorm + v),

yadv = F(xadv),
(4)

where F(x) is the classification function of the target classifier, which predicts the label for the
input example x; and v are the universal adversarial perturbations. In the hybrid training set
Dhts, the former tuple is the normal part containing the normal examples xnorm labelled with the
corresponding adversarial labels yadv′ for suppressing the normal-related features. Additionally,
the latter is the adversarial part containing the adversarial examples xadv and the labels yadv for more
obvious adversarial-related features.

Furthermore, all of the examples collected in a hybrid training set are ‘bottleneck values’. We refer
to the term of ‘bottleneck value’ as the activations of the layer just before the classification layers.
The details of constructing a hybrid training set are described in Algorithm 1.

Algorithm 1 Constructing Hybrid Training Set

Input: Dnorm←normal example set, F(x)←classification function of target classifier,
v←universal adversarial perturbation
Output: Dhts←hybrid training set
1: Initialize Dhts←∅
2: for x in Dnorm:
3: if F(x + v) 6= F(x) :
4: ladv←classification label F(x + v)
5: btnknorm←bottleneck activations of x
6: btnkadv←bottleneck activations of (x + v)
7: Dhts←{(btnknorm, ladv)} ∪Dhts
8: Dhts←{(btnkadv, ladv)} ∪Dhts
9: return Dhts

Training. Considering time and computing resources, fshdw is retrained from ftagt on a hybrid
training set using the transfer learning technique [23]. Transfer learning is a technique which shortcuts
a lot of work of parameter training by taking a fully trained model for a set of categories, and retraining
from the existing weights for new classes. Eventually, only the parameters of the classification layers
are learned from scratch, leaving those of the feature extraction layers unchanged. We therefore collect
bottleneck values in a hybrid training set rather than in original image examples.

4.4. Identifying Adversarial Perturbations

In most multiple network detection systems, a detector’s property of passive access to
information makes it possible that the target classifier and the detector will be attacked simultaneously.
An adversary can fine-tune the perturbation referring to the detector’s objective to make it undetectable
again. In TwinNet, however, there is no data exchange between two oppositely working sub-networks.
Additionally, the final decision will be made by the independent detecting unit.

We use cosine as the detection criterion in the detecting unit. Thus, the difference between the
outputs of the target classifier and the shadow classifier is

cos(θ) =
f tagt(x)· f shdw(x)
| f tagt(x)|

∣∣ f shdw(x)
∣∣ = ∑n

i=1 f tagt
i (x) f shdw

i (x)√
∑n

i=1 f tagt
i (x)2

√
∑n

i=1 f shdw
i (x)2

(5)

Future Internet 2018, 10, 26 8 of 13

where f cls
i (x) denotes the ith component of the output vector of classifier cls ∈ {tagt, shdw} for a

given example x. The range of the cosine value is [−1, 1]. The larger the cosine value, the smaller the
angle between output vectors, and vice versa. The criteria for evaluating an example as normal or
adversarial by cosine values is{

normal, i f cos(θ) ≥ T
adversarial, i f cos(θ) < T

, T ∈ (−1, 1) (6)

where T is the threshold for detecting whose value is empirically chosen.
As a result of the construction of a hybrid training set, the shadow classifier has a bias towards

adversarial-related features, which redraws decision boundaries different from that of the target
classifier. From the geometric point of view, adversarial examples go deeper smoothly into the the
adjacent classification region while normal examples leap over a decision boundary directly into the
shadow classifier (Figure 5).

Future Internet 2018, 10, x FOR PEER REVIEW 8 of 13

angle between output vectors, and vice versa. The criteria for evaluating an example as normal or

adversarial by cosine values is

{
𝑛𝑜𝑟𝑚𝑎𝑙, 𝑖𝑓 cos(𝜃) ≥ 𝑇

𝑎𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙, 𝑖𝑓 cos(𝜃) < 𝑇
, T ∈ (−1, 1) (6)

where T is the threshold for detecting whose value is empirically chosen.

As a result of the construction of a hybrid training set, the shadow classifier has a bias towards

adversarial-related features, which redraws decision boundaries different from that of the target

classifier. From the geometric point of view, adversarial examples go deeper smoothly into the the

adjacent classification region while normal examples leap over a decision boundary directly into the

shadow classifier (Figure 5).

Figure 5. Schematic representation of how shadow classifier works in a two-dimensional (2D)

example space. We depict normal and adversarial examples by green dots and red crosses,

respectively.

Thus, the rationale behind using an angle as the key metric to measure the difference between

output vectors is that, in terms of using a target classifier and a shadow classifier, the direction of the

output vector changes smoothly in adversarial examples. By contrast, it changes dramatically in

normal examples. Therefore, the angle of the output vector between two sub-networks in adversarial

examples should be smaller than that in normal examples, no matter how adversarial perturbation is

fine-tuned. It is going to be harder for an adversary to attack all classifiers in TwinNet at the same

time.

5. Experiment

5.1. Setting

Our framework was implemented based on the Tensorflow machine learning library. The

shadow classifier was retrained from the classifier to be tested using the transfer learning technique

[23] and the stochastic gradient descent optimization algorithm [24]. Table 1 shows the training

parameters of the shadow classifier.

Table 1. Training parameters of the shadow classifier.

Parameters Values

Training Method transfer learning

Optimization Method stochastic gradient descent (SGD)

Learning Rate 0.001

Dropout -

Batch Size 100

Steps 28,000

Figure 5. Schematic representation of how shadow classifier works in a two-dimensional (2D) example
space. We depict normal and adversarial examples by green dots and red crosses, respectively.

Thus, the rationale behind using an angle as the key metric to measure the difference between
output vectors is that, in terms of using a target classifier and a shadow classifier, the direction of
the output vector changes smoothly in adversarial examples. By contrast, it changes dramatically in
normal examples. Therefore, the angle of the output vector between two sub-networks in adversarial
examples should be smaller than that in normal examples, no matter how adversarial perturbation is
fine-tuned. It is going to be harder for an adversary to attack all classifiers in TwinNet at the same time.

5. Experiment

5.1. Setting

Our framework was implemented based on the Tensorflow machine learning library. The shadow
classifier was retrained from the classifier to be tested using the transfer learning technique [23] and
the stochastic gradient descent optimization algorithm [24]. Table 1 shows the training parameters of
the shadow classifier.

Table 1. Training parameters of the shadow classifier.

Parameters Values

Training Method transfer learning
Optimization Method stochastic gradient descent (SGD)

Learning Rate 0.001
Dropout -

Batch Size 100
Steps 28,000

Future Internet 2018, 10, 26 9 of 13

Our framework was tested on six different classifier architectures (Table 2) which have been
sufficiently trained and validated on the ILSVRC-2012 dataset [21]. We used six distinct pre-computed
UAPs [25] as the attacks taken by an adversary. These UAPs were generated based on the architectures
mentioned above, respectively, with their L∞ norms restricted within a bound of ξ = 10. We took
5000 examples randomly selected from the ILSVRC-2012 test set, along with their corresponding
universal adversarial examples, as the validation set. The validation set contained examples
from 1000 categories and each category had 10 examples. Each example was a 224 × 224 × 3
(width× height× channel) RGB image.

In the rest of this section, we show the performance of the shadow classifier. Then, we evaluate
the robustness of TwinNet against UAPs and a transfer attack. Finally, scatter plots of the detection
result are provided to demonstrate that TwinNet works well in differentiating normal and universal
adversarial examples. The indicators we use to measure the detecting performance are the fooling
rate (the proportion of adversarially perturbed examples being wrongly predicted by the classifier),
the detecting hit rate (the proportion of adversarial examples being detected successfully), and the
false alarm rate (the proportion of normal examples being wrongly evaluated as adversarial).

5.2. Experiment Results and Analysis

Figure 6a shows the PCA projection of the activations output by the shadow classifier onto the
1st and 2nd eigenvectors. The adversarial part, in comparison to how the target classifier performs
(Figure 6c), appears more dispersed and even covers the normal part, which indicates a higher standard
deviation. It demonstrates that the shadow classifier can effectively enhance adversarial-related
features. When we move to the tail of the projection space (Figure 6b), the distribution of the examples
is similar to that of the target classifier (Figure 6d).

Future Internet 2018, 10, x FOR PEER REVIEW 9 of 13

computed UAPs [25] as the attacks taken by an adversary. These UAPs were generated based on the
architectures mentioned above, respectively, with their ∞ norms restricted within a bound of =10 . We took 5000 examples randomly selected from the ILSVRC-2012 test set, along with their
corresponding universal adversarial examples, as the validation set. The validation set contained
examples from 1000 categories and each category had 10 examples. Each example was a 224 × 224 × 3 (ℎ × ℎ ℎ × ℎ) RGB image.

In the rest of this section, we show the performance of the shadow classifier. Then, we evaluate
the robustness of TwinNet against UAPs and a transfer attack. Finally, scatter plots of the detection
result are provided to demonstrate that TwinNet works well in differentiating normal and universal
adversarial examples. The indicators we use to measure the detecting performance are the fooling
rate (the proportion of adversarially perturbed examples being wrongly predicted by the classifier),
the detecting hit rate (the proportion of adversarial examples being detected successfully), and the
false alarm rate (the proportion of normal examples being wrongly evaluated as adversarial).

5.2. Experiment Results and Analysis

Figure 6a shows the PCA projection of the activations output by the shadow classifier onto the
1st and 2nd eigenvectors. The adversarial part, in comparison to how the target classifier performs
(Figure 6c), appears more dispersed and even covers the normal part, which indicates a higher
standard deviation. It demonstrates that the shadow classifier can effectively enhance adversarial-
related features. When we move to the tail of the projection space (Figure 6b), the distribution of the
examples is similar to that of the target classifier (Figure 6d).

(a) (b)

(c) (d)

Figure 6. Scatter plots of PCA projection of activations at the first fully connected layer onto specific
eigenvectors. Blue area indicates normal examples and red area indicates adversarial ones: in the
shadow classifier, (a) projection onto the 1st and 2nd eigenvectors; (b) projection onto the 890th and
891st eigenvectors; in the target classifier, (c) projection onto the 1st and 2nd eigenvectors; (d)
projection onto the 890th and 891st eigenvectors.

Table 2 shows six different network architectures that we test on and compares the fooling rate
of UAPs before and after applying our framework. Each classifier is tested by the UAP, which is

Figure 6. Scatter plots of PCA projection of activations at the first fully connected layer onto specific
eigenvectors. Blue area indicates normal examples and red area indicates adversarial ones: in the
shadow classifier, (a) projection onto the 1st and 2nd eigenvectors; (b) projection onto the 890th and
891st eigenvectors; in the target classifier, (c) projection onto the 1st and 2nd eigenvectors; (d) projection
onto the 890th and 891st eigenvectors.

Future Internet 2018, 10, 26 10 of 13

Table 2 shows six different network architectures that we test on and compares the fooling rate
of UAPs before and after applying our framework. Each classifier is tested by the UAP, which is
generated with knowledge of the classifier itself. For example, the classifier GoogLeNet is tested by
the UAP generated with knowledge of GoogLeNet.

Table 2. Classification accuracy of six network architectures on normal examples and the fooling rate
that the UAP reached before and after applying the TwinNet framework.

Network Architecture Classification Accuracy/(%) Fooling Rate/(%) Fooling Rate (applying TwinNet)/(%)

GoogLeNet [26] 93.3 78.9 26.68
CaffeNet [27] 83.6 93.3 29.79
VGG-F [28] 92.9 93.7 33.45
VGG-16 [29] 92.5 78.3 23.17
VGG-19 [29] 92.5 77.8 26.19

ResNet-152 [30] 95.5 84 24.7

We can see that TwinNet can significantly improve the robustness of all of the test classifiers.
Additionally, in the best case (CaffeNet), TwinNet is able to reduce the damage brought by the UAP
from 93.3% to 29.79%. This is the best result up to now.

In Table 3, we show the detection performance of TwinNet in more detail (T = 0.45).

Table 3. Detection performance of the TwinNet framework for six network architectures on
10-class ImageNet.

Network Architecture Detecting Hit Rate/% False Alarm Rate/%

GoogLeNet 73.32 6.06
CaffeNet 70.21 6.23
VGG-F 66.55 6.5
VGG-16 76.83 6.01
VGG-19 73.81 6.06

ResNet-152 75.3 6.08

TwinNet is good not only at detecting adversarial perturbations, but it is also good at maintaining a
high accuracy on normal examples. Moreover, the robustness of TwinNet across different architectures
remains stable consistently such that it can get an average detecting hit rate of up to 72.67%, and even
the worst case of VGG-F can reach 66.55%, which is much better than that of existing works.

In Table 4, we evaluate the performance of TwinNet defending GoogLeNet against a transfer
attack (T = 0.45). The fields of the first column are the network architectures used to craft UAPs by
the adversary.

Table 4. Robustness of the TwinNet framework for defending GoogLeNet against a transfer attack on
10-class ImageNet.

Network Architecture of Adversary Detecting Hit Rate/(%) False Alarm Rate/(%)

CaffeNet 67.84 6.7
VGG-F 58.76 6.3
VGG-16 76.54 6.76
VGG-19 73.22 6.26

ResNet-152 75 6.26

The UAPs used here are generated with knowledge of the remaining five classifiers. We find that
TwinNet, with the detecting threshold of 0.45, is practically immune to the transfer attack. It always
maintains a high detecting hit rate and a low false alarm rate, reaching 70.27% and 6.45%, respectively,
on average. We also note that the network of VGG-F is relatively hard to protect.

Future Internet 2018, 10, 26 11 of 13

In Figure 7, we compare the accuracy of classifiers that have applied TwinNet and MTD-NN [17]
when the proportion of adversarial examples in the validation set varies. It shows that as the proportion
increases, the polylines of TwinNet lie above those of MTD-NN. Thus, TwinNet outperforms MTD-NN
on the same dataset.

Illustrated by the case of GoogLeNet, we plot the distribution of the detecting results, that is
cosine values, of all of the examples in the validation set in Figure 8a. It shows that there is obviously a
hierarchical differentiation between the normal and adversarial parts, which proves that a connection
exists between the underlying mechanism of TwinNet and the direction of the examples. Figure 8b
demonstrates that the same detecting threshold of 0.45 generalizes well across UAPs generated based
on different architectures.

Future Internet 2018, 10, x FOR PEER REVIEW 11 of 13

proportion increases, the polylines of TwinNet lie above those of MTD-NN. Thus, TwinNet
outperforms MTD-NN on the same dataset.

Illustrated by the case of GoogLeNet, we plot the distribution of the detecting results, that is
cosine values, of all of the examples in the validation set in Figure 8a. It shows that there is obviously
a hierarchical differentiation between the normal and adversarial parts, which proves that a
connection exists between the underlying mechanism of TwinNet and the direction of the examples.
Figure 8b demonstrates that the same detecting threshold of 0.45 generalizes well across UAPs
generated based on different architectures.

Figure 7. Accuracy of the deep neural network (DNN) when the proportion of adversarial example
in the validation set varies.

(a) (b)

Figure 8. Scatter plot of fusion result of examples in the validation set. The x axis is the example
number, and the y axis is the corresponding cosine value. (a) Adversary uses the same UAP as the
one applied during the training phase; (b) Adversary uses the UAP generated on a different
architecture.

6. Conclusions

As the DNN technique has become more mature, a security problem along with its prevalence
has been noticed. In particular, a universal adversarial perturbation (UAP) can fool the classifier on
almost all examples with a single perturbation vector, and it is short of effective defenses. We propose
TwinNet, a framework for DNN systems to detect UAP attacks. TwinNet processes examples with
two sub-networks: one is a target classifier which focuses on normal-related features and the other is
a shadow classifier dedicated to making adversarial-related features more enhanced. These two
networks and a detecting unit work jointly to identify universal adversarial perturbations. The
framework can be applied to most DNN architectures, and can avoid the situation that all networks

Figure 7. Accuracy of the deep neural network (DNN) when the proportion of adversarial example in
the validation set varies.

Future Internet 2018, 10, x FOR PEER REVIEW 11 of 13

proportion increases, the polylines of TwinNet lie above those of MTD-NN. Thus, TwinNet
outperforms MTD-NN on the same dataset.

Illustrated by the case of GoogLeNet, we plot the distribution of the detecting results, that is
cosine values, of all of the examples in the validation set in Figure 8a. It shows that there is obviously
a hierarchical differentiation between the normal and adversarial parts, which proves that a
connection exists between the underlying mechanism of TwinNet and the direction of the examples.
Figure 8b demonstrates that the same detecting threshold of 0.45 generalizes well across UAPs
generated based on different architectures.

Figure 7. Accuracy of the deep neural network (DNN) when the proportion of adversarial example
in the validation set varies.

(a) (b)

Figure 8. Scatter plot of fusion result of examples in the validation set. The x axis is the example
number, and the y axis is the corresponding cosine value. (a) Adversary uses the same UAP as the
one applied during the training phase; (b) Adversary uses the UAP generated on a different
architecture.

6. Conclusions

As the DNN technique has become more mature, a security problem along with its prevalence
has been noticed. In particular, a universal adversarial perturbation (UAP) can fool the classifier on
almost all examples with a single perturbation vector, and it is short of effective defenses. We propose
TwinNet, a framework for DNN systems to detect UAP attacks. TwinNet processes examples with
two sub-networks: one is a target classifier which focuses on normal-related features and the other is
a shadow classifier dedicated to making adversarial-related features more enhanced. These two
networks and a detecting unit work jointly to identify universal adversarial perturbations. The
framework can be applied to most DNN architectures, and can avoid the situation that all networks

Figure 8. Scatter plot of fusion result of examples in the validation set. The x axis is the example
number, and the y axis is the corresponding cosine value. (a) Adversary uses the same UAP as the one
applied during the training phase; (b) Adversary uses the UAP generated on a different architecture.

6. Conclusions

As the DNN technique has become more mature, a security problem along with its prevalence
has been noticed. In particular, a universal adversarial perturbation (UAP) can fool the classifier on
almost all examples with a single perturbation vector, and it is short of effective defenses. We propose
TwinNet, a framework for DNN systems to detect UAP attacks. TwinNet processes examples with two
sub-networks: one is a target classifier which focuses on normal-related features and the other is a
shadow classifier dedicated to making adversarial-related features more enhanced. These two networks

Future Internet 2018, 10, 26 12 of 13

and a detecting unit work jointly to identify universal adversarial perturbations. The framework can
be applied to most DNN architectures, and can avoid the situation that all networks are fooled
simultaneously to the greatest possible extent. Experiments show that TwinNet can effectively
distinguish between normal examples and adversarial examples. It can achieve a detecting accuracy
which significantly outperforms state-of-the-art work along with a low false alarm rate. In future
work, on the one hand, more network architectures will be tested for a more thorough assessment of
TwinNet. On the other hand, we will explore the possibility of using UAP-trained TwinNet to detect
other popular adversarial perturbations.

Acknowledgments: This work was supported by the Innovation Program of the Shanghai Municipal Education
Commission (Grant No. 13YZ013), the State Scholarship Fund of the China Scholarship Council (Grant
NO.201606895018), and the Natural Science Foundation of Shanghai Municipality (Grant No.17ZR1409800).

Author Contributions: Yibin Ruan is the main author of this article. All the authors have contributed to this
manuscript. All authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties
of neural networks. arXiv 2013, arXiv:1312.6199.

2. Moosavi-Dezfooli, S.M.; Fawzi, A.; Frossard, P. Deepfool: A simple and accurate method to fool deep neural
networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Seattle, WA, USA, 27–30 June 2016; pp. 2574–2582.

3. Papernot, N.; Mcdaniel, P.; Goodfellow, I.; Jha, S.; Celik, Z.B.; Swami, A. Practical black-box attacks against
deep learning systems using adversarial examples. arXiv 2016, arXiv:1602.02697.

4. Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial examples in the physical world. arXiv 2016,
arXiv:1607.02533.

5. Moosavidezfooli, S.M.; Fawzi, A.; Fawzi, O.; Frossard, P. Universal adversarial perturbations. arXiv 2016,
arXiv:1610.08401.

6. Li, X.; Li, F. Adversarial examples detection in deep networks with convolutional filter statistics. arXiv 2016,
arXiv:1612.07767.

7. Molchanov, P.; Gupta, S.; Kim, K.; Kautz, J. Hand gesture recognition with 3d convolutional neural networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston,
MA, USA, 8–10 June 2015; pp. 1–7.

8. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
9. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014,

arXiv:1412.6572.
10. Narodytska, N.; Kasiviswanathan, S.P. Simple black-box adversarial perturbations for deep networks. arXiv

2016, arXiv:1612.06299.
11. Kurakin, A.; Goodfellow, I.; Bengio, S. Adversarial machine learning at scale. arXiv 2016, arXiv:1611.01236.
12. Zheng, S.; Song, Y.; Leung, T.; Goodfellow, I. Improving the robustness of deep neural networks via stability

training. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 27–30 June 2016; pp. 4480–4488.

13. Papernot, N.; Mcdaniel, P.; Wu, X.; Jha, S.; Swami, A. Distillation as a defense to adversarial perturbations
against deep neural networks. In Proceedings of the 2016 IEEE Symposium on Security and Privacy, San Jose,
CA, USA, 23–25 May 2016.

14. Lu, J.; Issaranon, T.; Forsyth, D. Safetynet: Detecting and rejecting adversarial examples robustly. arXiv 2017,
arXiv:1704.00103.

15. Metzen, J.H.; Genewein, T.; Fischer, V.; Bischoff, B. On detecting adversarial perturbations. arXiv 2017,
arXiv:1702.04267.

16. Meng, D.; Chen, H. Magnet: A two-pronged defense against adversarial examples. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3
November 2017.

Future Internet 2018, 10, 26 13 of 13

17. Sengupta, S.; Chakraborti, T.; Kambhampati, S. Securing deep neural nets against adversarial attacks with
moving target defense. arXiv 2017, arXiv:1705.07213.

18. Bhagoji, A.N.; Cullina, D.; Mittal, P. Dimensionality reduction as a defense against evasion attacks on
machine learning classifiers. arXiv 2017, arXiv:1704.02654.

19. Tanay, T.; Griffin, L. A boundary tilting persepective on the phenomenon of adversarial examples. arXiv
2016, arXiv:1608.07690.

20. Jolliffe, I.T. Principal Component Analysis; Springer: New York, NY, USA, 2005; pp. 41–64.
21. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;

Bernstein, M. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252.
[CrossRef]

22. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; Tech Report; University of Toronto:
Toronto, ON, Canada, 2009.

23. Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. Decaf: A deep convolutional
activation feature for generic visual recognition. In Proceedings of the International Conference on Machine
Learning, Beijing, China, 21–26 June 2014.

24. Hardt, M.; Recht, B.; Singer, Y. Train faster, generalize better: Stability of stochastic gradient descent. arXiv
2015, arXiv:1509.01240.

25. Moosavidezfooli, S.M.; Fawzi, A.; Fawzi, O.; Frossard, P. Precomputed Universal Perturbations for Different
Classification Models. Available online: https://github.com/LTS4/universal/tree/master/precomputed
(accessed on 11 March 2017).

26. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. arXiv 2014, arXiv:1409.48427.

27. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe:
Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM International
Conference on Multimedia, San Francisco, CA, USA, 27 October–1 November 2013; pp. 675–678.

28. Chatfield, K.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Return of the devil in the details: Delving deep into
convolutional nets. arXiv 2014, arXiv:1405.3531.

29. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

30. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
Computer Vision and Pattern Recognition, Seattle, WA, USA, 27–30 June 2016; pp. 770–778.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11263-015-0816-y
https://github.com/LTS4/universal/tree/master/precomputed
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Deep Neural Networks
	Existing Adversarial Attacks and Defenses
	Double Sub-Network System

	Threat Model
	Method
	Properties of Adversarial Perturbations
	Architecture of the TwinNet Framework
	Shadow Classifier
	Identifying Adversarial Perturbations

	Experiment
	Setting
	Experiment Results and Analysis

	Conclusions
	References

