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Abstract: This paper presents a mixed-integer linear programming model for demand-responsive
feeder transit services to assign vehicles located at different depots to pick up passengers at the
demand points and transport them to the rail station. The proposed model features passengers’ one
or several preferred time windows for boarding vehicles at the demand point and their expected ride
time. Moreover, passenger satisfaction that was related only to expected ride time is fully accounted
for in the model. The objective is to simultaneously minimize the operation costs of total mileage and
maximize passenger satisfaction. As the problem is an extension of the nondeterministic polynomial
problem with integration of the vehicle route problem, this study further develops an improved bat
algorithm to yield meta-optimal solutions for the model in a reasonable amount of time. When this
was applied to a case study in Nanjing City, China, the mileage and satisfaction of the proposed
model were reduced by 1.4 km and increased by 7.1%, respectively, compared with the traditional
model. Sensitivity analyses were also performed to investigate the impact of the number of designed
bus routes and weights of objective functions on the model performance. Finally, a comparison of
Cplex, standard bat algorithm, and group search optimizer is analyzed to verify the validity of the
proposed algorithm.
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1. Introduction

The first/last mile access to major fixed-route transit networks and connectivity of residential areas
is one of the main challenges faced by public transit. A feasible solution to the problem is the planning,
design, and implementation of efficient feeder transit services [1,2]. Traditionally, transit services have
been divided into two broad categories: the fixed route (FRT) and the demand responsive (DRT). FRTs
do not match the desires of individual riders (the locations of pickup and/or drop off points) and
have a predetermined schedule, while DRTs provide the desired flexibility with a door-to-door type of
service [3,4]. Therefore, DRTs provide increased flexibility, lower operation costs, and a higher service
level compared with FRTs, especially within low-density residential areas.

DRTs are an extension of the vehicle routing problem (VRP) and the pickup and delivery problem
(PDP) with time windows [3]. This aims to assign routes in order to visit demand points and transport
passengers to the rail station, where passengers can acquire travel information through a phone app.
Obviously, passengers’ time windows and expected ride time affect the building process of the route.
The existing DRTs assume that passengers travel only in a single period of time and neglect that
passengers sometimes provide multiple time windows, with the vehicle required to arrive at the
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designated place within one of the specified periods to pick them up. Similar to VRPs with multiple
time windows [5,6], DRTs with multiple time windows can save a greater amount of mileage compared
with the single time window problem. Furthermore, it is very important for passengers to set a
maximum and minimum expected ride time to meet personalized travel needs, which will encourage
the drivers to take the shortest route distance in order to reduce the time in the vehicle for other
passengers. However, DRTs with expected ride time have also not been examined previously.

Another major motivation for this study was to address DRTs in terms of passenger satisfaction,
which involves many factors, such as bus fares, congestion, environment, etc. Some studies have
studied VRPs with consideration of customer satisfaction, although this has been considered less in the
DRTs [7,8]. Without loss of generality, it is only relevant in terms of expected ride time in feeder transit
operation (i.e., the satisfaction is in the range of 0–1) when the ride time is between the minimum and
maximum expected values. Obviously, greater passenger satisfaction and demand for more vehicles to
provide direct services will increase the total mileage and operating expenses. Therefore, it is necessary
to reveal the optimal relationship between passenger satisfaction and the total mileage in order to
balance this with service quality and operating costs.

The main objective of this research is to develop an optimization model for DRTs with passengers’
multiple time windows and satisfaction in order to improve service quality and operating costs.
The paper will focus on the following critical research tasks: (1) coordination of the passenger boarding
time window guidance and feeder transit routing process to balance this with the total mileage and
passenger satisfaction; and (2) development of a heuristic solution algorithm to efficiently yield the
acceptable solution to the proposed mode. Finally, a numeric case study is used to illustrate the
proposed methodology and apply the proposed model during the process of producing the optimal
design fora DRT in the real world.

The remainder of the paper is organized as follows. Section 2 reviews the related literature
onDRTs. Section 3 analyses the framework of the proposed methodology and presents the formulation
of the DRT model. Section 4 presents an improved bat heuristic algorithm for resolving the model.
Section 5 displays a case study to illustrate the proposed model and algorithm. Some concluding
remarks and possible future work are given in Section 6.

2. Literature

DRTs are door-to-door transportation services that provide dial-a-ride pickup/delivery services [9–11].
They have often been described as an extension of two fundamental vehicle routing and scheduling
problems [12,13], in which the vehicle routing problem (VRP) assigns some vehicles to visit a set of
geographically dispersed locations, while the pickup and delivery problem (PDP) moves the number
of goods from certain pickup locations to certain delivery locations. However, there are also distinct
differences between the VRPs and PDPs discussed so far and DRTs. VRPs and PDPs focus on the
transportation of goods, while DRTs are concerned with the transportation of people. Thus, DRTs
address more additional issues and are more complex than VRPs and PDPs. Most reviews with
DRTs are related to service and passenger convenience [11,14]. Since FRTs are not efficient due to
low population density, DRTs perform better in these scheduling areas, especially those with a weak
transportation infrastructure [15].

In general, passengers are picked up and delivered in special time windows, resulting in the VRP
with time windows (VRPTW) and PDP with time windows (PDPTW)problems [16]. Ina recent review
of VRPTWs and PDPTWs, another variant was found when the vehicle can immediately undertake
another route after returning to the depot, which is referred to as the vehicle routing problem with
multiple use of vehicles [8,17,18]. Although DRTs with multiple use of vehicles are more realistic,
the main challenge in addressing multi-vehicle compared with single-vehicle DRTs involves the
inability of direct applications of the solution techniques for the single use of vehicles case to search
the solution space efficiently for multi-vehicle problems. Another variant arises when vehicles can
return to any of these depots after picking up passengers when there are multiple depots [19–21]. DRTs
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with multiple depots are more complex than traditional ones since vehicles from different depots have
different travel costs related to the distance from each depot, thus affecting the routing of all vehicles.
Therefore, it is very important to choose optimal depots for each vehicle to reduce the operation
costs in the problem. Other relevant studies on DRTs address the coordination between design of
the passenger rail service, station spacing, the design of bus routes, and headways using integrated,
robust, and bi-level programming optimization [22–25]. The above varieties of DRTs are addressed
from various objectives, including minimizing the operating costs of the fleet [3,11,26], the shortest
length or travel time of the route [27,28], the minimal fleet size required for shuttle service [1,22], ride
time, and waiting time of passengers [4,15]. Fortunately, these objectives normally do not affect the
properties of DRTs and, thus, similar models and algorithms can be adopted to solve the problem with
different objectives.

As the problem belongs to NP-hard problems, heuristics are most frequently used to handle a
large number of vehicle routing and scheduling variants for DRTs [29–31]. Some scholars have tried to
develop route-building heuristics by first generating a set of feasible routes, before searching fine-tuned
initial solutions [3,4,28,32]. Furthermore, these developed route-building-based heuristics, which are
the three most widely used metaheuristics, are often adopted to contend with VRPTW, including
evolutionary algorithm [26], genetic algorithms [27,32–35] and table search [36–39].

Although most of the aforementioned studies have successfully handled a variety of DRTs,
the following critical issues deserve further investigation:

(1) Traditional DRTs only consider passengers’ single time windows and few of them take multiple
time windows into account. This implies a lack of integrated operation to guide passenger
boarding in the specified time periods from several preferred time windows and routing of transit
from selected demand points to destinations.

(2) Only a few studies have considered the impact of the expected ride time of passengers, which
is related to passenger satisfaction, on the vehicle routing. This implies a lack of an integrated
operation that balances passenger satisfaction and operation costs.

(3) DRTs are NP-hard problems as they are extensions of the classic VRPs and an efficient algorithm
needs to be designed to solve this problem.

3. Methodology

3.1. Research Framework

In this paper, a DRT is proposed that provides services to conveniently transport passengers
from demand points to the rail station [1,40,41]. Using a cellphone app and an open geo-information
system(GIS)tool, we can obtain the traveling information of some passengers and the traffic network
in the study area. Each passenger has one or several preferred boarding time windows as well as
minimum and maximum expected ride times. During the process of designing the route, each vehicle
starts at the dispatch center, visits the demand points to pick up passengers in the specified time
periods, and arrives at the rail transit station. This is designed to meet realistic constraints, such as
time windows and expected ride time, etc. To reveal the optimal relationship between passenger
satisfaction and total mileage to maximize the efficiency in the feeder bus route design, a mixed-integer
programming model was formulated to design routes from selected demand points to the rail station,
which includes the demand points of passengers in the specified time period from several preferred
time windows. These key components are illustrated by a research framework graph, shown in
Figure 1.
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Figure 1. Research Framework.

Figure 2 also provides another explanation of the principle and scope of the proposed model.
Figure 2 includes one rail station (M), three dispatch centers (D1–D3), and five demand points (C1–C5)
in the DRT. The numbers below each demand point (Ci, where i = 1, 2, . . . , 5) denotes the number
of passengers in the location. Two numbers in brackets to the left of each demand point (Ci, where
i = 1, 2, . . . , 5) denote the minimum and maximum values of preferred boarding time windows and
expected ride time. For instance, the value below demand point C1 of Figure 2 is 4, which means that
four people will board the bus at this location. They have two preferred boarding time windows of
[6:50, 7:00] and [7:05, 7:10], while their minimum and maximum expected ride times are 5 min and
10 min. In this example, the optimization process yields three routes as follows. Route 1 is illustrated by
a solid line [D1(7:10)–C5(7:15)–M(7:19)], Route 2 by a dashed line [D3(7:00)–C4(7:06)–C3(7:08)–M(7:13)],
and Route 3 by a dotted line [D2(7:02)–C2(7:04)–C1(7:07)–M(7:11)]. For example, Vehicle 3 departs
from D2 at 7:02, arrives at demand points C2 and C1 at the times of 7:04 and 7:07 to pick up seven and
four people, respectively, before finally returning back to M at 7:11. Thus, the ride times of the two
customers are 7 min and 4 min. We also define the passenger satisfaction related to demand points
as the amount of ride time minus the minimum ride time divided by the amount of the maximum
ride time minus the minimum ride time. In this case, passengers at C2 and C1 would get on the
bus in the time periods of [7:00, 7:10] and [7:05, 7:10], respectively, with their passenger satisfactions
being (10 − 7)/(10 − 5) = 0.6 and 1. In this case, the loading schemes at each stop of Route 1 can be
described as {C5(5)}, while this is described for Routes 2 and 3 as {C4(5), C3(11)} and {C2(7), C1(11)}.
The satisfaction at each stop of Route 1 can be described as {C5(1)}, while this is {C4(0.6), C3(1)}
and {C2(0.6), C1(1)} for Routes 2 and 3. It is important to note that Route 3 may be described as
[D2–C1–C2–M] with more mileage and longer ride times, if passengers at the C1 point can only be
picked up in the time period of [6:50, 7:00].

Our objective is to find a subgraph that simultaneously maximizes passenger satisfaction and
minimizes the total mileage cost of designed feeder routes. To ensure that the proposed DRT model
fits well with the real-world situations, this study considers the following assumptions:

(1) Passengers at the demand point are allowed to travel in one or several preferred boarding time
windows. It is possible to investigate the number of passengers at each demand point around the
rail station and ignore the passenger flow between them.

(2) The distance and travel time between demand points, dispatch centers, and rail stations are
obtained using Baidu GIS.

(3) Each demand point can only be covered once by one vehicle.
(4) The passenger’s satisfaction is only related with her/his ride time. The reduction in passenger

satisfaction can be estimated.
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3.2. Model Formulation

3.2.1. Notation

To facilitate the model presentation, all definitions and notation used hereafter are summarized in
Table 1.

Table 1. Parameters and variables in the mathematical model.

Indices

i, j, m Vehicular node (demand point, dispatch center, and urban rail station) index
k Vehicle index
h Time window

Sets

I Set of demand points
K Set of vehicles
D Set of dispatch centers
M Set of rail transit stations

Parameters

qi Number of passengers at the demand point i; ∀i ∈ I
[lh

i , eh
i ] The hth travel time window of the demand point i; ∀i ∈ I

Lti The maximum expected ride time of the demand point i; ∀i ∈ I
Sti The minimum expected ride time of the demand point i; ∀i ∈ I
Q Maximum capacity of the vehicle
Dmax Maximum length of the vehicle
Tmin Minimum travel time of feeder bus route
dij Distance from the vehicular node i to the vehicular node j;∀i, j ∈ I ∪ D ∪M
tij Travel time from the vehicular node i to the vehicular node j;∀i, j ∈ I ∪ D ∪M
tk

M The time of vehicle k arriving the rail transit stations
tk
i The time of vehicle k arriving the demand point i;∀i ∈ I

qk
i Number of passengers at customer point i assigned to vehicle k;∀i ∈ I

g(tk
M − tk

i )
A function to calculate the passenger satisfaction at demand point i based on his/her ride
time tk

M − tk
i ; ∀i ∈ I, ∀k ∈ K

c1 Operational cost yuan/km
c2 Satisfaction cost yuan/person
H A very large fixed value

Decision Variables

xk
ij

Whether the vehicular node i precedes the vehicular node j on the vehicle k, or not;
∀i, j ∈ I ∪ D ∪M, ∀k ∈ K

yk
i Whether the vehicular node i is covered by the vehicle k, or not; ∀i ∈ I ∪ D ∪M, ∀k ∈ K

Uik An auxiliary (real) variable for sub-tour elimination constraint in vehicle k; ∀k ∈ K
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3.2.2. Formulation

The proposed problem can be formulated as the following mixed-integer program (MIP), which
requires minimization of

min f = c1 · ∑
∀i,j∈I∪D∪M

∑
∀k∈K

xk
ij · dij − c2 · ∑

∀i∈I
∑
∀k∈K

yk
i ·qi · g(tk

M − tk
i ) (1)

subject to

∑
∀i∈I

yk
i ≥ 1, ∀k ∈ K (2)

∑
∀k∈K

yk
i = 1, ∀i ∈ I (3)

∑
∀j∈I

xk
jm = 1, ∀k ∈ K, ∀m ∈ M (4a)

∑
∀j∈I

xk
mj = 0, ∀k ∈ K, ∀m ∈ M (4b)

∑
∀j∈I

xk
jm = 0, ∀k ∈ K, ∀m ∈ D (5a)

∑
∀j∈I

xk
mj = 1, ∀k ∈ K, ∀m ∈ D (5b)

∑
∀j∈I∪D∪M

xk
ij = ∑

∀j∈I∪D∪M
xk

ji = yk
i , ∀k ∈ K, ∀i ∈ I (6)

Uik −Ujk+
∣∣∣I ∪ D ∪M

∣∣∣·xk
ij ≥

∣∣∣I ∪ D ∪M
∣∣∣−1, ∀k ∈ K, ∀i, j ∈ I ∪ D ∪M (7)

tk
i + tij − (1− xk

ij) · H ≤ tk
j , ∀k ∈ K, ∀i, j ∈ I ∪ D ∪M (8a)

tk
i + tij + (1− xk

ij) · H ≥ tk
j , ∀k ∈ K, ∀i, j ∈ I ∪ D ∪M (8b)

lh
i ≤ tk

i ≤ eh
i , ∀k ∈ K, ∀i ∈ I, ∀h (9)

qk
i + qj − (1− xk

ij) · H ≤ qk
j , ∀k ∈ K, ∀i, j ∈ I ∪ D ∪M (10a)

qk
i + qi + (1− xk

ij) · H ≥ qk
j , ∀k ∈ K, ∀i, j ∈ I ∪ D ∪M (10b)

qk
i ≤ Q, ∀k ∈ K, ∀i ∈ I (11)

∑
∀i,j∈I∪M

xk
ijdij ≤ Dmax, ∀k ∈ K, ∀i, j ∈ I ∪ D ∪M (12)

∑
∀i,j∈I∪M

xk
ijtij ≥ Tmin, ∀k ∈ K, ∀i, j ∈ I ∪ D ∪M (13)

where g(tk
M − tk

i ) is a function used to calculate the satisfaction of passengers at the demand point
∀i ∈ I based on his/her ride time tk

M− tk
i , with the arrival time for the vehicle visiting the demand point

i satisfying one of its multiple travel time windows. A shorter ride time results in higher passenger
satisfaction. At present, many researchers mainly use linear and nonlinear functions to describe the
coupling relationship between customer satisfaction and service time in the VRPs. Considering that the
former is incompatible with reality and the latter cannot be quickly and accurately solved, this paper
introduces the fuzzy gradient function to describe passenger satisfaction. Similar to the problem that
considers the time window and customer demands in VRPs [7,39], this can be expressed as follows:
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g(tk
M − tk

i ) =


1, tk

M − tk
i ≤ Sti

Lti−[tk
M−tk

i ]
Lti−Sti

, Sti ≤ tk
M − tk

i ≤ Lti

0, tk
M − tk

i ≥ Lti

. (14)

In this formulation, the objective functions are given by Equation (1) to minimize the loss of
reduction in passenger satisfaction and the total mileage cost of designed feeder routes. Constraint (2)
indicates that each vehicle visits at least one demand point. Constraint (3) guarantees that each demand
point is only covered by one vehicle. Constraints (4a) and (4b) guarantee that each vehicle eventually
started at the dispatch center. Constraints (5a) and (5b) guarantee that each vehicle eventually ends at
the rail transit station. Constraint (6) sets all demand points (except rail station and dispatch center)
being served by the vehicle to have exactly the same incoming and outgoing arcs. Constraint (7) is used
for the sub-tour elimination in the vehicle routing. Constraints (8a) and (8b) are used for calculating the
arrival times of adjacent vehicular points i and j covered by vehicles k. Constraint (9) guarantees the
time that vehicle k reaches demand point i satisfies one of its multiple travel time windows. Constraints
(10a) and (10b) are used for calculating the load capacity of adjacent vehicular points i and j covered
by vehicles k. Constraint (11) guarantees that the number of passengers in each route must be less than
or equal to the vehicle capacity. Constraints (12) and (13) guarantee that the travel distance and time of
each route must meet its upper and lower limits.

4. Improved Bat Algorithm for Resolving DRT

The proposed model is an extension of the VRP as the exact algorithm cannot solve large-scale
situations within an acceptable time. The bat algorithm (BA) is a swarm intelligence algorithm that
simulates the echo-location behavior of bats in hunting prey [42,43]. Combining the BA with other
intelligent algorithms is an effective way to avoid immature convergence of the BA. Group Search
Optimizer (GSO) is a type of swarm intelligence algorithm that simulates the behavior of animals in
nature finding survival resources [44,45]. The homology between BA and GSO determines that they
have natural fusion characteristics [42], although the hybrid algorithm is rarely seen at present.

In this section, a hybrid BA is designed for solving DRT by redefining a coding scheme, a heuristic
algorithm for generating initial population, and an updated formula of position and velocity based on
the problem features. The detailed process of our proposed algorithm is as follows.

4.1. Coding Scheme

Each bat has two characteristics of position and velocity, which are abstracted as a latent solution
in the solution search space. The velocity vector is the movement direction of the bat. According to the
characteristics of the problem, the position vector X = (x1, x2, · · · , xI+K) of the DRT is constructed to
include two parts: the element xi (1 ≤ i ≤|I|) being the number of the demand points and the element
xi (|I|+1 ≤ i ≤|I|+|K|) being the number of vehicles. Both are real numbers. Based on the value of
xi, the locations in the vector of vehicles and demand points are determined, before the order of the
demand points visited by any vehicle is obtained. Based on the greedy principle, we also know which
dispatch center the vehicle departs from. For example, a feasible solution for two vehicles and four
demand points is (0.1 1.3 0.4 0.7 0.2 0.5), with the two vehicle routes being 4–2–1 and 3.

4.2. Fitness Evaluation

According to the coding rules of the solution, each candidate solution must satisfy
Constraints (3)–(7), and may violate Constraints (10) and (12)–(14). To deal with this problem,
we included these constraints as penalty terms into the function of fitness evaluation. Thus, the modified
fitness function in our study is given by the following formulation.
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minF = f + H · ∑
∀i∈I

∑
∀k∈K

max{lh
i − tk

i , 0}+ max{th
i − ei, 0}

+H · ∑
∀k∈K

[ ∑
∀i∈I

max{qk
i −Q, 0}+ max{ ∑

∀i,j∈I∪D∪Ms

xk
ijtij − Tmax, 0}]

+max{ ∑
∀i,j∈I∪D∪Ms

xk
ijdij − Dmax, 0}]

(15)

In this paper, the objective function F is directly used to evaluate the individual’s strengths
and weaknesses.

4.3. Heuristic Algorithm for Generating Initial Population

Many complicated factors influence the DRT model, which creates difficulty in randomly
generating a feasible solution to this problem. Therefore, a heuristic algorithm is designed to generate
the initial population with the specific following steps:

Step 1 Read input data for the DRT model, including: I, M, Q, Dmax and Tmin.
Step 2 Randomly choose a dispatch center m and let i = m and N′ = I. For each vehicle k located at

the dispatch center m, turn to Step 3 to build the route.
Step 3 According to the constraints, such as qk

i ≤ Q, ∑
∀i,j∈I∪Ms

xk
ijdij ≤ Dmax, and ∑

∀i,j∈I∪Ms

xk
ijtij ≥ Tmax,

find the feasible set N′′ of next vehicular nodes in N′ after the vehicle visiting the current
vehicular node i, before randomly selecting the vehicular node j ∈ N′′ as the next visiting
point (i.e., xk

ij = 1). If N′′ = ∅, let j ∈ M and turn to Step 2. Otherwise, return to Step 3.

Step 4 Let N′ = N′ − {j}. If N′ = ∅, output the result. Otherwise, turn to Step 3.

4.4. Update Rules for Speed and Location of Bats

In the hybrid BA, each bat i updates itself at time t by tracking the global optimum, resulting
in a halt in the search of the rest of the solution space if all the bats gather in the same location.
Drawing from the GSO’s idea that “a small number of out-of-group rogues randomly walk”, some
bats randomly generate a head angle and distance, before exchanging part of their vector positions to
traverse the solution space to maintain the diversity of groups. The updated formulas for the position
Xt

i and speed Vt
i of each bat i at the time t areas follows:

Vt
i = Vt−1

i + (Xt−1
i − X∗) fi (16)

Xt
i =

{
Xt−1

i + Vt
i , others

Xt−1
i + liDt

i (ϕt+1), rand > σ
(17)

where fi = fmin + ( fmax− fmin)β, for β ∈ [0, 1] the echo frequency of each bat i; X∗ denotes the current
global optimal solution; li is a random distance between 0 and the maximum search distance lmax;
ϕt+1 is a random head angle between 0 and the maximum search angle θmax; Dt

i (ϕt+1) denotes the
vector corresponding to this angle; and ε, β, and rand are uniformly distributed random numbers in
the interval of [0, 1].

4.5. Local Search Rules of Bats

When all bats gradually converge to the same position, the current optimal bat could randomly
walk to generate a new position at a certain probability σ, where At represents the average loudness of
all the bats and ε ∈ [0, 1] is a random number.

When bats find prey, the rate of pulse increases, while the sound intensity reduces. Essentially,
At+1

i = αAt
i and γt+1

i = γ0
i [1− exp (−γt)], where A0

i and r0
i respectively denote the initial loudness

and the rate of pulse. Both α ∈ [0, 1] and γ > 0 are constant values. Any α and γ satisfy At
i → 0 and

γt
i → γ0

i as t→ ∞ .
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4.6. Specific Steps of the Hybrid Bat Algorithm

Step 1 Initialize parameters, including m and Iter _max, etc.
Step 2 Generate the initial population and calculate the fitness function F(X0

i ) of each bat to determine
the current optimal solution X∗. Let t = 0, before turning to Step 3.

Step 3 According to Equations (16) and (17), calculate the position Xt
i and speed Vt

i of each bat i at
time t.

Step 4 Calculate the population diversity to obtain a certain probability of random disturbance
operations, before perturbing the current optimal solution to the new position X∗ = X∗ + εAt.
All the existing bats are rearranged to update the current optimal solution.

Step 5 Update At
i and γt

i , etc.
Step 6 Let t = t + 1. If t < Iter _max, turn to Step 3. Otherwise, output the result.

5. Numerical Example

5.1. Example Description

To illustrate the applicability of the proposed models in designing feeder bus network access
for urban rail transit, this study has selected one rail station(M), six dispatch centers (D1–D6), and a
total of fifteen demand points (C1–C15) in Nanjing City in China for a case study. Figure 3 is used to
map the distribution of these vehicle visiting points, in which yellow circles represent the dispatch
centers, red small balloons represent customer points, and the white square represents the rail station.
Moreover, the number of passengers and their preferred time windows and expected ride time in
rental points are shown in Table 2. Due to spatial constraints, we could not provide the distance matrix
between rental points and depots in this manuscript. The key parameters used in the case study are
given as follows:

• Maximum capacity of feeder bus route: Q = 12 per;
• Maximum length of vehicle route: Dmax = 9 km;
• Minimum travel time of vehicle route: Tmin = 3 min;
• Operational cost: c1 = 6.5 yuan/km;
• The loss of passenger satisfaction reduction: c2 = 1 yuan/person;
• The parameters of the hybrid algorithm: N = 100, MaxIter = 200, α = 0.9, γ = 0.9, lmax = 5, and

θmax = 45◦.

Table 2. Basic information of demand points.

No. (li, ei) Sti Lti qi

C1 [8:10–8:20], [8:00–8:33] 5 15 3
C2 [8:00–8:10], [8:20–8:30] 10 20 1
C3 [8:10–8:20], [10:05–10:15] 5 15 1
C4 8:15–8:25 5 10 2
C5 8:15–8:25 5 20 2
C6 8:20–8:30 10 20 3
C7 [8:05–8:15], [8:20–8:30] 10 20 4
C8 8:08–8:18 10 20 1
C9 8:10–8:20 5 15 2
C10 [8:05–8:15], [8:10–8:20], [8:35–8:45] 5 15 2
C11 8:20–8:30 5 15 4
C12 [8:10–8:20], [8:25–8:35] 5 20 1
C13 8:00–8:10 5 20 3
C14 8:10–8:20 5 20 1
C15 8:20–8:30 5 20 12
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5.2. Results

As explained before, the proposed model can solve two dimensions, including the assignment of
the number of passengers picked up by the vehicle and the routes of the vehicle. Table 3 summarizes
assignment results, which include boarding time, ride time, and satisfaction for each demand point.
Taking the vehicle visiting the demand point of C5 as an example, the vehicle leaves the dispatch
center of D1 at 8:15 and arrives at the rail station M at 8:27. The ride time of passengers at the customer
point C5 is about 10.2 min when they are picked up at 8:17. Due to their expected ride from 5 to 10 min,
the satisfaction is calculated by (20 − 10.2)/(20 − 5) = 0.65. Table 3 also guides passengers to travel in
the specified time periods from several preferred time windows.

Table 3. Assignment result of passengers picked up by vehicles.

Demand Point Boarding Time Ride Time Satisfaction Vehicle

C5 8:17 10.2 0.65

V1
C6 8:18 9.7 1
C7 8:20 7.3 1
C8 8:21 6.2 1
C15 8:25 2.7 1

C10 8:27 2.3 1

V2
C11 8:22 7.3 0.77
C12 8:25 3.9 1
C14 8:20 9.6 0.69

C1 8:13 2.4 1

V3

C2 8:10 5.7 1
C3 8:12 3.4 1
C4 8:11 4.8 1
C9 8:15 1.1 1
C13 8:05 10.5 0.63

Table 4 shows the routing plan of each vehicle, in which the two depots of D1 and D4 are selected
for these three vehicles. The vehicles have total mileage of 3.1 km, 3.1 km, and 3.0 km, while they
have total travel times of 12.2 min, 12.5 min, and 12.1 min, respectively. Tables 2–4 show that the total
mileage and time taken in the routes were 9.2 km and 36.8 min, while the total passenger satisfaction
was 96.4. The changes in vehicle loading capacity at each point can also be obtained. Taking Route 1
as an example, the vehicle will leave the dispatch center of D1, visit the customer points C5, C6, C7,
C8, and C1, and terminate at the rail station M. An empty vehicle departs from D1. This vehicle first
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stops at C5 to pick up two passengers, thus giving the number of 2 between C5 and C6. After this,
the vehicle visits C6 in which three passengers is loaded, thus giving the number of 5 between C6 and
C7. Following this, the vehicle visits C7, C8, and C15 to pick up four passengers, one passenger and two
passengers, thus giving the number of 9 between C7 and C8, 10 between C8 and C15, and 12 between
C15 and M. Finally, this vehicle visits M to deliver its 12 passengers. In this case, the vehicle loading
capacity at each point of Route 1 can be described as {D1(0), C5(2), C6(5), C7(9), C8(10), C15(13), M(0)}.
Similarly, the capacities for Routes 2 and 3 are described as {D4(0), C14(1), C11(5), C12(6), C10(8), M(0)}
and {D4(0), C13(3), C2(4), C4(6), C3(7), C1(10), C9(12), M(0)}.

Table 4. Routing and scheduling plan of each vehicle.

Vehicle The Sequence of Demand Points
Visited by Vehicle Travel Distance (km) Travel Time (min) Number of

Passengers

V1 D1(8:15)–C5(8:17)–C6(8:18)–C7(8:20)
–C8(8:21)–C15(8:25)–M (8:27) 3.1 12.2 12

V2 D4(8:17)–C14(8:20)–C11(8:22)
–C12(8:25)–C10(8:27)–M(6:29) 3.1 12.5 8

V3 D4(8:03)–C13(8:05)–C2(8:10)–C4(8:11)
–C3(8:12)–C1(8:13)–C9(8:15)–M(8:16) 3.0 12.1 12

Furthermore, our proposed method has unique features compared with the traditional DRTs.
Figure 4 reveals the difference between the proposed model and DRT with single time window
(DRTSTW). When compared with DRT and DRTSTW, the mileage and satisfaction of the proposed
model will be reduced by 1.4 km and increased by 7.1%, respectively. This is due to the vehicle arriving
at the demand point at any time within one of the multiple time windows, which will reduce invalid
travel mileage and time. Therefore, it is very important for passengers to be allowed to choose multiple
travel time windows in practical applications. As shown above, it is apparent that the proposed model
is valid since all aspects of the model are obtained through this illustrative example.Future Internet 2018, 10, x FOR PEER REVIEW  12 of 15 
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5.3. Sensitivity Analysis

In this section, sensitivity analyses are performed to investigate the impact of the number of
designed vehicle routes on the model performance. Table 5 shows a detailed comparison of model
performance among three scenarios. We found that both total satisfaction and mileages slightly
increased, as the number of vehicles increases. As the former increases more than the latter, the objective
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value is slightly reduced. This raise can be attributed to the increase in mileage from vehicles dispatched
from the depot, which results in a reduced number of demand points visited by each truck and an
increase in the invalid mileage. Similarly, it causes the vehicle to reach the rail station faster, as the
number of the customer points visited by each vehicle decreases. In this case, a shorter time spent riding
in the vehicle caused an increase in total passenger satisfaction. Therefore, there is the contradiction
between total passenger satisfaction and total mileage, leading to the appropriate number of vehicles
in the actual operation being decided by both operation cost and service level.

Table 5. Comparison of model and algorithm performance among three scenarios.

Scenario Objective (yuan) Total Satisfaction Total Mileage (km) Total Time (min)

3 Vehicles −36.4 96.4 9.2 36.8
4 Vehicles −52.1 130.9 12.1 49.4
5 Vehicles −68.4 157.4 13.7 57.6

Furthermore, Figure 5 reveals how the changes of weight coefficient c1/c2 affect a trade-off
between total mileage and the total average satisfied demand. As the target weight coefficient c1/c2

gradually increases, the change of the weight coefficient does not reach the critical value and the total
mileage and the passenger satisfaction remain the same, except for c1/c2 = 3.5 changing the objective
value at 0.1 km to be 0.3. When these changes happen, the scheduling objective focuses on sacrificing
passenger satisfaction with a reduction in mileage.Future Internet 2018, 10, x FOR PEER REVIEW  13 of 15 
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Furthermore, the solutions of the improved BA are compared with the standard BA, standard
GSO, and Cplex in order to verify the effectiveness. The results are shown in Table 6, from which we
can see the following:

(1) When the scale of the problem is small, all three heuristic algorithms can find the optimal solution.
As the scale of the problem becomes larger, the quality of the solutions worsens.

(2) The quality and the robustness of the improved BA are better than those of the standard BA and
GSO. This shows that there is effective improvement of the algorithm when introducing the idea
that GSO’s “small part-segmented rogues walk at random” into standard BA to improve the
speed and position updates in the formulas of bats, which can maintain the diversity of groups.

Table 6. Comparison of different algorithms.

Number of
Demand Points

Cplex Improved BA Standard BA Standard GSO

Best Solution
(yuan) Probability Best Solution

(yuan) Probability Best Solution
(yuan) Probability Best Solution

(yuan) Probability

15 −36.4 100% −36.4 86.7% −36.4 74.7% −36.4 73.4%
30 −41.8 100% −40.6 77.1% −38.8 65.2% −37.7 62.8%
60 −76.5 100% −69.9 62.3% −63.3 51.8% −61.5 47.6%
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6. Conclusions

This paper presents a novel optimization methodology for DRT with multiple time windows
to reveal the relationship between the total mileage and passenger satisfaction. Being different from
existing studies, the proposed methodology has the ability to (1) offer an interactive process for
designing feeder transit routing and guiding the passenger to choose a best boarding time window;
and (2) develop a hybrid algorithm combining BA and GSO to efficiently yield the acceptable solution
to the proposed model. The feasibility and applicability of the proposed model is illustrated with a
real-world example solved in terms of optimality. Results show that the total mileage of this model is
significantly reduced by 15.2%, while the total satisfaction is significantly increased by 7.1%, compared
with the traditional DRT model. With an increase in the number of vehicles, both total satisfaction and
mileage slightly increased. Furthermore, the difference in optimal solutions between different heuristic
algorithms and the use of Cplex is about 0–20%, but the calculation time is within an acceptable range.
This proves the validity of the proposed algorithm.

It is important to note that this work is based on a hypothesis of pedestrian boarding places such
as bus stops and neglected the integrated operation of pedestrian guidance (from home addresses to
candidate bus stops). In this sense, the design of the feeder bus network should take the interactions
between passenger walking distances and buses’ operational costs into account. As a result, extending
the model to simultaneously select bus stops and assign pedestrians to the stops is a worthwhile
direction for further work and research.
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