
future internet

Article

Dynamic Linked Data: A SPARQL Event
Processing Architecture

Luca Roffia 1,∗ ID , Paolo Azzoni 2, Cristiano Aguzzi 1 ID , Fabio Viola 1 ID , Francesco Antoniazzi 1 ID

and Tullio Salmon Cinotti 1,3

1 Department of Computer Science and Engineering (DISI), University of Bologna, I-40126
Bologna, Italy; cristiano.aguzzi@unibo.it (C.A.); fabio.viola@unibo.it (F.V.);
francesco.antoniazzi@unibo.it (F.A.); tullio.salmoncinotti@unibo.it (T.S.C.)

2 Eurotech S.p.a., Via Fratelli Solari 3/a, 33020 Amaro (Udine), Italy; paolo.azzoni@eurotech.com
3 Advanced Research Center on Electronic Systems “Ercole De Castro” (ARCES), University of Bologna,

I-40126 Bologna, Italy
* Correspondence: luca.roffia@unibo.it; Tel.: +39-051-209-5423

Received: 12 February 2018; Accepted: 16 April 2018; Published: 20 April 2018
����������
�������

Abstract: This paper presents a decentralized Web-based architecture designed to support the
development of distributed, dynamic, context-aware and interoperable services and applications.
The architecture enables the detection and notification of changes over the Web of Data by means
of a content-based publish-subscribe mechanism where the W3C SPARQL 1.1 Update and Query
languages are fully supported and used respectively by publishers and subscribers. The architecture
is built on top of the W3C SPARQL 1.1 Protocol and introduces the SPARQL 1.1 Secure Event protocol
and the SPARQL 1.1 Subscribe Language as a means for conveying and expressing subscription
requests and notifications. The reference implementation of the architecture offers to developers a
design pattern for a modular, scalable and effective application development.

Keywords: dynamic Linked Data; publish-subscribe; Semantic Web; SPARQL; event processing;
protocols; distributed Web applications; interoperability; security

1. Introduction

In the last couple of decades, the World Wide Web, initially conceived of to share human-friendly
information, has been growing into a new form: the Semantic Web [1], intended as a global Web of
Data, which can be interpreted and processed directly by digital machines. In 2006, Tim Berners-Lee
published a document on Linked Data claiming to be “the unexpected re-use of information the
value added by the Web” (Tim Berners-Lee, Linked Data, 2006, https://www.w3.org/DesignIssues/
LinkedData.html) and providing a set of rules on how to publish data on the Web (such as
URI (https://tools.ietf.org/html/rfc3986), HTTP (https://tools.ietf.org/html/rfc2616), RDF (https:
//www.w3.org/TR/rdf11-concepts/) and SPARQL (https://www.w3.org/TR/sparql11-overview/).
In 2009, the Linked Data concept and relative technologies, along with an assessment of the Web of Data
evolution, have been further described in [2]. By that time, research efforts on developing Linked Data
have been made in several directions, including standards (e.g., SPARQL 1.1 Protocol (https://www.
w3.org/TR/sparql11-protocol/), SPARQL 1.1 Query language (https://www.w3.org/TR/sparql11-
query/), SPARQL 1.1 Update language (https://www.w3.org/TR/sparql11-update/), JSON-LD (https:
//json-ld.org/spec/latest/json-ld/), Linked Data Platform 1.0 (https://www.w3.org/TR/ldp/)),
ontologies and vocabularies (e.g., OWL (https://www.w3.org/TR/owl2-primer/), CIDOC-CRM
(http://www.cidoc-crm.org/Version/version-6.2.1), W3C OWL Time (https://www.w3.org/TR/
owl-time/), Semantic Sensor Network Ontology (https://www.w3.org/TR/vocab-ssn/), schema.org

Future Internet 2018, 10, 36; doi:10.3390/fi10040036 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0003-1546-1574
https://orcid.org/0000-0002-8934-3303
https://orcid.org/0000-0002-1381-3807
https://orcid.org/0000-0002-8173-8044
http://www.mdpi.com/1999-5903/10/4/36?type=check_update&version=1
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc2616
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-protocol/
https://www.w3.org/TR/sparql11-protocol/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-update/
https://json-ld.org/spec/latest/json-ld/
https://json-ld.org/spec/latest/json-ld/
https://www.w3.org/TR/ldp/
https://www.w3.org/TR/owl2-primer/
http://www.cidoc-crm.org/Version/version-6.2.1
https://www.w3.org/TR/owl-time/
https://www.w3.org/TR/owl-time/
https://www.w3.org/TR/vocab-ssn/
http://www.mdpi.com/journal/futureinternet
http://dx.doi.org/10.3390/fi10040036


Future Internet 2018, 10, 36 2 of 33

(http://schema.org/), RDF Data Cube Vocabulary (https://www.w3.org/TR/vocab-data-cube/), just
to mention a few), RDF stores and SPARQL endpoints (e.g., Jena (https://jena.apache.org/index.html),
Fuseki (https://jena.apache.org/documentation/fuseki2/), Virtuoso (https://virtuoso.openlinksw.
com/), Blazegraph (https://www.blazegraph.com/, Stardog (https://www.stardog.com/) and
Amazon Nepture (https://aws.amazon.com/neptune/)), tools (e.g., for ontologies editing, like Protegè
(https://protege.stanford.edu/) or RDF graphs visualization, like LodLive (http://en.lodlive.it/) and
Visual Data Web (http://www.visualdataweb.org/index.php)) and Semantic Web portals (e.g, DBpedia
(http://wiki.dbpedia.org/), WiKidata (https://www.wikidata.org/wiki/Wikidata:Main_Page)).

The adoption of Semantic Web technologies follows two main trends: the first tries to exploit
their potential to create autonomous systems, in its widest meaning, while the second focuses on
solutions that take advantage of the flexible RDF data model. The use of Semantic Web technologies
in autonomous systems enables machines to generate, publish and consume new information
autonomously (e.g., from simple autonomous systems adopted in IoT applications, to complex systems
for the autonomous analysis of a huge amount of data that would be impossible for a human operator).
At the same time, the adoption of a flexible data model is intended to support the applications where
it is difficult to define the knowledge-base and its model once and for ever. In fact, the adoption of a
static model is often not reasonable, because information is living and evolves in time. While relational
databases intrinsically do not provide this level of flexibility, the flexibility offered by RDF ensures that
the unanticipated and unexpected evolution of the knowledge base can be integrated on the fly. These
two trends appear to be interdependent, and in this paper, we propose an enabling technology that
could allow their convergence.

Focusing on data, the heterogeneity of data produced and consumed on the Web is very high,
and the amount of data globally processed is huge (i.e., Big Data): social data collected from social
networks (e.g., Facebook, Twitter), medical data (e.g., Medical Subject Headings RDF (https://id.nlm.
nih.gov/mesh/), W3C Semantic Web Health Care and Life Sciences Interest Group (https://www.w3.
org/2001/sw/hcls/), HealthData.gov (https://www.healthdata.gov/)), scientific data from several
science fields (e.g., NASA Global Change Master Directory (https://gcmd.gsfc.nasa.gov/), Science
Environment for Ecological Knowledge (http://seek.ecoinformatics.org/), NeuroCommons project
(http://neurocommons.org/page/Main_Page), NASA Semantic Web for Earth and Environmental
Terminology (https://sweet.jpl.nasa.gov/), Bio2RDF (http://bio2rdf.org/)), e-commerce information
(e.g., Best Buy, Sears, Kmart, O’Reilly publishing, Overstock.com), governmental data (e.g., Opening
Up Government (http://data.gov.uk/), Tetherless World Constellation - Linking Open Government
Data (https://logd.tw.rpi.edu/), Data-gov WiKi (https://data-gov.tw.rpi.edu/wiki)) and human
knowledge (e.g., Wikipedia). Also from this perspective, the use of Semantic Web technologies for Big
Data processing and analysis follows the previously-mentioned trends: on the one hand, software
platforms research, analyze and harvest with different levels of autonomy the Web to provide enhanced
and enriched results; on the other hand, specific applications are developed to consume, publish or
combine information for the purpose of a vertical domain. The solution we present is this paper is
information agnostic and able to manage data sources gathered from different and heterogeneous
domains, providing support for standard Web protocols (i.e., HTTP and WebSocket). Furthermore,
we extend the concept of Wed of Data to applications that become the actionable extension of the
Semantic Web.

Nowadays, the Web of Data is becoming a Web of Dynamic Data, where detecting, communicating
and tracking the evolution of data changes play crucial roles and open new research questions [3,4].
Moreover, detecting data changes is functional to enable the development of distributed Web of Data
applications where software agents may interact and synchronize through the knowledge base [5,6].
The need for solutions on detecting and communicating data changes over the Web of Data has been
emphasized in the past few years by research focused on enabling interoperability in the Internet of
Things through the use of Semantic Web technologies (like the ones shown in [7–10] just to cite a few).
Last but not least, an attempt made by W3C is represented by the Web of Things (https://www.w3.

http://schema.org/
https://www.w3.org/TR/vocab-data-cube/
https://jena.apache.org/index.html
https://jena.apache.org/documentation/fuseki2/
https://virtuoso.openlinksw.com/
https://virtuoso.openlinksw.com/
https://www.blazegraph.com/
https://www.stardog.com/
https://aws.amazon.com/neptune/
https://protege.stanford.edu/
http://en.lodlive.it/
http://www.visualdataweb.org/index.php
http://wiki.dbpedia.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page
https://id.nlm.nih.gov/mesh/
https://id.nlm.nih.gov/mesh/
https://www.w3.org/2001/sw/hcls/
https://www.w3.org/2001/sw/hcls/
https://www.healthdata.gov/
https://gcmd.gsfc.nasa.gov/
http://seek.ecoinformatics.org/
http://neurocommons.org/page/Main_Page
https://sweet.jpl.nasa.gov/
http://bio2rdf.org/
http://data.gov.uk/
https://logd.tw.rpi.edu/
https://data-gov.tw.rpi.edu/wiki
https://www.w3.org/WoT/
https://www.w3.org/WoT/


Future Internet 2018, 10, 36 3 of 33

org/WoT/) working group and by the Linked Data Notifications (https://www.w3.org/TR/ldn/)
released in 2017 that provide the recommendation to enable notifications over Linked Data.

In this paper, we propose a decentralized Web-based software architecture, named SEPA (SPARQL
Event Processing Architecture) built on top of the authors’ experience acquired developing an
open interoperability platform for smart space applications [11–21]. SEPA derives and extends the
architecture presented in [22] through the use of standard Linked Data technologies and protocols.
It enables the detection and communication of changes over the Web of Data by means of a
content-based publish-subscribe mechanism where the W3C SPARQL 1.1 Update and Query languages
are fully supported respectively by publishers and subscribers. SEPA is built on top of the SPARQL
1.1 Protocol and introduces the SPARQL 1.1 Secure Event protocol and the SPARQL 1.1 Subscribe
Language as a means for conveying and expressing subscription requests and notifications.

In particular, assuming an event as “any change in an RDF store”, SEPA has been mainly designed
to enable event detection and distribution. The core element of SEPA is its broker (see Figure 1):
it implements a content-based publish-subscribe mechanism where publishers and subscribers use
respectively SPARQL 1.1 Updates (i.e., to generate events) and SPARQL 1.1 Queries (i.e., to subscribe to
events). In particular, at subscription time, subscribers receive the SPARQL query results. Subsequent
notifications about events (i.e., changes in the RDF knowledge base) are expressed in terms of added
and removed query results since the previous notification. With this approach, subscribes can easily
track the evolution of the query results (i.e., the context), with the lowest impact on the network
bandwidth (i.e., the entire results set is not sent every time, but just the delta of the results). The SEPA
broker design is detailed in Section 4.

Figure 1. From the Web of Data to the Web of Dynamic Data. SEPA, SPARQL Event Processing
Architecture.

https://www.w3.org/WoT/
https://www.w3.org/WoT/
https://www.w3.org/TR/ldn/


Future Internet 2018, 10, 36 4 of 33

In this paper, we propose the SPARQL 1.1 Secure Event (SE) Protocol and the SPARQL 1.1
Subscribe Language presented, along with the mechanisms to support client and server authentication,
data encryption and message integrity, in Section 3. The SPARQL 1.1 SE Protocol allows agents to
interact with the broker like with a standard SPARQL Protocol service (also know as the SPARQL
endpoint), but at the same time, it allows one to convey subscriptions and notifications expressed
according to the SPARQL 1.1 Subscribe Language. SEPA provides developers with a design pattern
where an application is constituted by a collection of agents. As shown in Figure 1, each agent plays a
specific role within an application (i.e., producer, aggregator or consumer) and can be shared among
different applications. While a producer publishes events by means of a SPARQL 1.1 Update, a
consumer is subscribed to specific events through a SPARQL 1.1 Query. An aggregator plays both
roles: it is subscribed to events and generates new events based on the received notifications. The
application design pattern introduced by SEPA, along with the application domains that may benefit
from the adoption of this model, are presented in Section 5. Section 2 frames our proposal within the
technologies and alternative solutions we have identified in the literature, while overall conclusions
are drawn in Section 6.

2. Related Work

The architecture presented in this paper can be framed within the research topics known as stream
reasoning [23], linked stream data processing [24] and content-based publish-subscribe [25]. To the
best of our knowledge, the Linked Data concept and relative technologies were formalized for the first
time in [2]. As concerns Linked Data dynamics, [3] provides a deep insight into aspects like discovery,
granularity level, description of changes, detection algorithms and notification mechanisms related to
detect, propagate and describe changes in Linked Data. In particular, with reference to the notification
mechanism, some approaches are compared and divided into two classes: pull-based and push-based.
With reference to pull-based approaches, the most recent one seems to be the Linked Data Notifications
protocol, for the first time presented in [26]. In [27], the authors discuss the Web of Data Streams and
present a set of requirements to be met by an infrastructure to exchange RDF streams on the Web.
In particular, the “keep the data moving” requirement states that architectures “must prioritize active
paradigms for data stream exchange, where the data supplier can push the stream content to the actors
interested in it”. SEPA meets this requirement, as well as all the other requirements stated in [27], and
it provides a push-based mechanism (i.e., based on the SPARQL 1.1 Secure Event and SPARQL 1.1
Subscribe Language herein proposed) through the publish-subscribe paradigm. However, at the same
time, the SEPA broker reference architecture is open for implementing also pull-based mechanisms (e.g.,
Linked Data Notifications) and providing adaptive push-pull techniques like the one presented in [28].

The publish-subscribe paradigm [25] is an essential brick in the development of modern,
distributed applications. This communication paradigm contemplates the existence of two types
of clients (i.e., publishers and subscribers), respectively devoted to produce data and consume
only those matching the client declared interest. One of the main advantages of this paradigm
is the full decoupling in space and time of the involved entities that do not need to know each
other and be online at the same time. Furthermore, publishers and subscribers also benefit from a
synchronization decoupling: they still performs their tasks, while asynchronously generating events
or receiving notifications. For example, Baldoni et al. in [29] adopt the publish-subscribe paradigm
as the communication means among a set of processes and propose a framework based on a limited
set of primitives (i.e., publish, subscribe, unsubscribe and notify) that contains all the essentials of
the paradigm.

However, the publish-subscribe paradigm itself is not enough to have a complete definition
of the semantics of data. We believe that Semantic Web technologies could play a significant role
in defining the data semantics, and among all the solutions we have been able to discover, in the
following, we summarize the ones closest to our approach. Initial solutions for Semantic Web-based
publish-subscribe are presented by Wang et al. [30] and Chirita et al. [31], while a first attempt to use



Future Internet 2018, 10, 36 5 of 33

SPARQL as the subscription language is presented in [32]. Another early SPARQL-based RDF stream
processing proposal is streaming SPARQL [33], where the authors propose to extend SPARQL with
time-windows like in continuous SPARQL (C-SPARQL) [34], SPARQLStream [35], event processing
SPARQL (EP-SPARQL) [36], continuous query evaluation over Linked Data streams (CQELS) [37]
and Sparkwave [38]. A time-window specifies the triples for which the query is executed. It can
be defined either by the number of triples (last triples from the stream) or the time (e.g., the last
15 min). The window specification defines also how often the window is updated and consequently
the frequency of query evaluation. C-SPARQL is a language for expressing persistent SPARQL queries
over RDF streams, and in addition to the extensions for windows, it extends SPARQL 1.0 with
support for time management and aggregations. SPARQLStream differs from Streaming SPARQL and
C-SPARQL in three ways. First, the SPARQLStream only considers time-based windows, whereas
Streaming SPARQL and C-SPARQL support also windows defined by a concrete number of triples.
Second, the SPARQLStream enables windows to be defined into the past in contrast to Streaming
SPARQL and C-SPARQL, where the windows always start from the present. The third difference is
that the SPARQLStream proposes window-to-stream operations that are used to transform a stream of
windows into a stream of RDF triples with timestamps. The EP-SPARQL focuses on the detection of
RDF triples in a specific temporal order, and it proposes several binary operations that can be used
to combine RDF graph patterns in a temporal-sensitive manner. EP-SPARQL does not enforce the
use of windows, but instead, it provides an optional SPARQL function that can be used inside the
FILTER pattern to create time windows by setting time intervals for which the query is active. CQELS
uses its own native processing model in the query engine that transforms SPARQL into logic rules,
Rete networks or data suitable for standard stream processing engines. This makes it possible to have
full control of the query execution plan, and it is used in practice to dynamically reorder operators
based on changes in the input data. Sparkwave is based on the Rete algorithm [39] that provides
a generalized solution to perform pattern matching, where facts are matched against rules. In this
case, the facts are presented with RDF triples and rules with persistent SPARQL queries. There are
four notable aspects that differentiate SEPA from the window-based SPARQL streaming approaches
presented above. First, the SEPA does not use windows to define the triples for which the query is
evaluated (i.e., we concentrate on real-time evaluation of events within the whole system). Second,
SEPA fully supports SPARQL 1.1 both to generate (i.e., update) and subscribe (i.e., query) to events,
and it is based on the W3C SPARQL 1.1 Protocol (i.e., it would be transparent to clients performing
SPARQL 1.1 Updates and SPARQL 1.1 Queries). Third, instead of processing individual RDF triples
coming from specific RDF streams, SEPA is based on an interaction model where any agent can trigger
events by modifying the context of the system with SPARQL 1.1 Update Language operations. Fourth,
the SEPA broker detects how the results have changed from the initial query results, whereas the
window-based approaches provide the whole result set whenever it is modified in any way. Because of
these fundamental differences in the SPARQL event processing approaches, also the implementations
of the event processing mechanisms and algorithms are totally different.

Other research works focusing on using SPARQL as a subscription language include the one
by Groppe et al. [40], EventCloud [41,42], INSTANS [43,44], semantic event notification service
(SENS) [5,6,45,46] and Smart-M3 [47] (i.e., Suomalainen et al. [48] proposed a secure broker, called RIBS.
Galov et al. [49] have developed the CuteSIB , focusing on extensibility, dependability and portability.
Viola et al. [12] proposed pySIB , targeted especially at resource-constrained computing platforms.).
The approach presented in [50] focuses on providing a secure publish-subscribe mechanism for the
management of complex supply chains in enterprises based on RDF. They use the same authorization
framework used by SEPA (i.e., the OAuth 2.0 Authorization Framework, https://tools.ietf.org/html/
rfc6749), suggesting also other solutions, like WebID (https://www.w3.org/2005/Incubator/webid/
spec/). They adopt WebSub (https://www.w3.org/TR/2018/REC-websub-20180123/) (formerly
PubSubHubBub) as a mean for conveying notifications, the same notification mechanism is used by
Passant and Mendes [51].

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
https://www.w3.org/2005/Incubator/webid/spec/
https://www.w3.org/2005/Incubator/webid/spec/
https://www.w3.org/TR/2018/REC-websub-20180123/


Future Internet 2018, 10, 36 6 of 33

Research efforts on developing Linked Data, and in particular detecting Linked Data changes,
would have an impact on the development of real applications as much as Web standards will be
adopted and promoted. The main Web players, including W3C, are pushing in this direction by
promoting standards and defining ontologies and vocabularies. The SPARQL 1.1 Secure Event Protocol
and the SPARQL 1,1 Subscribe Language proposed in this paper go in that direction.

3. SPARQL 1.1 Secure Event Protocol and Subscribe Language

The SPARQL 1.1 Secure Event (SE) Protocol (http://mml.arces.unibo.it/TR/sparql11-se-protocol.
html) wraps the SPARQL 1.1 Protocol to support subscriptions and secure communications.
The SPARQL 1.1 SE Protocol aims to transparently support the HTTP methods, provided by the
SPARQL 1.1 Protocol, for conveying SPARQL 1.1 Queries and Updates. As shown in Figure 2, this
is obtained by complementing these two languages with a third one: the SPARQL 1.1 Subscribe
Language (see Sections 3.1–3.3). For instance, according to the SPARQL 1.1 Service Description (https:
//www.w3.org/TR/sparql11-service-description/), this could be specified by a SEPA broker through
the sd:languageExtension and sd:supportedLanguage properties. Furthermore, subscriptions need a
two-way asynchronous communication between subscribers (i.e., to issue subscribe and unsubscribe
requests) and the SEPA broker (i.e., to provide notifications). SEPA is mainly focused on pushing
notifications to agents in order to deal with high frequency changes and to provide high;y reliable
agents synchronization. The SEPA broker reference implementation adopts the WebSocket protocol
(https://tools.ietf.org/html/rfc6455) for conveying subscribe/unsubscribe requests and notifications,
but other protocols like MQTT (http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html) or
COAP (https://tools.ietf.org/html/rfc7252) can be easily supported. Furthermore, according to [28],
the push mechanism can be complemented by a pull mechanism (e.g., the one provided by Linked
Data Notifications [26]).

Figure 2. SPARQL 1.1 Secure Event Protocol.

http://mml.arces.unibo.it/TR/sparql11-se-protocol.html
http://mml.arces.unibo.it/TR/sparql11-se-protocol.html
https://www.w3.org/TR/sparql11-service-description/
https://www.w3.org/TR/sparql11-service-description/
https://tools.ietf.org/html/rfc6455
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://tools.ietf.org/html/rfc7252


Future Internet 2018, 10, 36 7 of 33

The SPARQL 1.1 Subscribe Language (http://mml.arces.unibo.it/TR/sparql11-subscribe.html)
complements the SPARQL 1.1 Update and Query Languages in order to express subscribe/unsubscribe
requests and notifications. The language can be used by those agents who want to subscribe to changes
in the content of an RDF store (i.e., aggregators or consumers, as shown in Figure 1 and detailed in
Section 5). The following requirements have been assumed:

• The content of a subscribe request is the same as the one of a SPARQL 1.1 Query;
• At subscription time, an agent receives the complete set of query results;
• A notification includes the added and removed results since the previous notification;
• A client may activate more than one subscription at the same time;
• A notification refers to a specific subscription;
• Notifications related to the same subscription must be differentiated by an incremental index.

The language presented in this paper includes the minimum set of messages required to
implement the above requirements and can be extended in the future if needed. This section presents
a JSON (https://tools.ietf.org/html/rfc7159) serialization of the SPARQL 1.1 Subscribe Language.
Other type of serializations may be implemented.

Concerning the security aspects, these are addressed by the SPARQL 1.1 SE protocol providing:

• Client authentication based on OAuth 2.0,
• Data encryption, server authentication and message integrity.

Figure 3 gives an overview of the interactions between a client and a broker. Every client requiring
a secure communication must first register to obtain its own credentials (Step 1). Registration can be
performed once, and policies on managing multiple registrations are considered application specific
(please refer to Section 3.4 for more details). The client credentials are then used to obtain (or renew) a
JSON Web Token (https://tools.ietf.org/html/rfc7519) (Step 2), as further described in Section 3.5.
A valid token can be used by a client to: (i) perform updates and queries (Step 3), according to
the SPARQL 1.1 Protocol; (ii) subscribe and unsubscribe (Step 4), using the SPARQL 1.1 Subscribe
Language (see Sections 3.1–3.3).

Figure 3. Registration, authentication and secure primitives invocation. JWT, JSON Web Token.

http://mml.arces.unibo.it/TR/sparql11-subscribe.html
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7519


Future Internet 2018, 10, 36 8 of 33

3.1. Subscribe Primitive

A subscribe request is expressed as shown in Listing 1. The value of the sparql member must
be a SPARQL 1.1 Query; the value of the authorization member (if present) must be a Bearer JSON
Web Token; and the value of the alias member (if present) is a string representing a friendly name of
the subscription. The sparql member is required, while the other two are optional. The authorization
member is only required for secure operations (see Section 3.6), and the value of the alias member,
if present, will be included in the subscribe response.

If the subscribe request is successfully processed, the SEPA broker replies as shown in Listing 2.
The value of the spuid member is an URI. It is used to identify the corresponding notifications,
and it must be present. The alias member (if present) has the same value of the corresponding
alias member of the subscribe request. The use of the alias member is recommended if the client
sends multiple subscribe requests. In fact, subscribe responses are not supposed to arrive with
the same order as the corresponding requests have been issued. Using an alias, the client will be
able to relate each response to the corresponding request, and as a consequence, it will be able
to relate each notification with the corresponding subscribe request. The value of the sequence
member will be always zero (i.e., the response to a subscribe request can be considered the first
notification). Eventually, the value of the addedResults member corresponds to the results of the
SPARQL query specified in the request, according to the SPARQL 1.1 Query Results JSON format
(https://www.w3.org/TR/sparql11-results-json/), while the value of the removedResults will be
always empty (i.e., at subscription time, the results will be always new results).

In the case of error, the SEPA broker is expected to reply as shown in Listing 11.

3.2. Unsubscribe Primitive

A client may request to remove a specific subscription. This can be done by sending a message
like the one shown in Listing 3. The spuid member value is the subscription URI provided by the
subscribe response message. The value of the authorization member (if present) must be a Bearer JSON
Web Token. The former member is required, while the latter is only required for secure primitives
(see Section 3.6). The SEPA broker replies to an unsubscribe request with the message shown in
Listing 4. In case of error, it is expected to reply as shown in Listing 11.

3.3. Notification

As described in Section 3.1, at subscription time, an agent receives the entire SPARQL query
result set (i.e., initial bindings). In order to keep track of the following changes in the result set, the
agent is notified of the bindings added and removed since the previous notification (i.e., or since
subscription time in case of the first notification). The effect of this is two-fold: the network overhead is
optimized (i.e., it is unnecessary to send the entire result set every time), and the notification processing
is simplified (i.e., the agent only needs to add and remove from its result set the added and removed
bindings, respectively). The notification content is expressed as shown in Listing 2. The value of the
spuid member is the URI of the subscription that generates the notification, and it corresponds to the
one received by the agent at subscription time (see Section 3.1). The value of the sequence member is a
number, initialized at zero at subscription time and incremented by one at every new notification of
the same subscription. Eventually, the values of the addedResults and removedResults members are
both in the form of the SPARQL 1.1 Query Results JSON Format (see Section 3.1).

3.4. Client Registration

Registration allows a client to obtain the credentials needed to request (or renew) a JSON Web
Token. Every SEPA implementation must support the client credentials authorization grant. Other
authorization grants and registration mechanisms may be supported. To obtain the credentials, a
client must own an application-specific identifier, known as client_identity. The client_identity may

https://www.w3.org/TR/sparql11-results-json/


Future Internet 2018, 10, 36 9 of 33

correspond to the device serial number, the MAC address, the Electronic Product Code, an e-mail
or any other sort of identifier defined by the application, even a TPM key (https://www.iso.org/
standard/66510.html). This allows devices to register also without human intervention. For the
scope of this paper, registration can be done once. Multiple registration requests (i.e., using the same
client_identity) are not allowed: multiple registration policies and mechanisms are out of the scope of
this paper and are considered implementation dependent.

A client can issue a registration request with an HTTP POST over TLS (https://tools.ietf.org/
html/rfc5246), as shown in Listing 5. A SEPA broker must provide a JSON response as shown in
Listing 6. The JSON object contains the client credentials (client_id and client_secret) and the signature.
The signature shall be used by the client to verify the JWT.

3.5. Client Authentication

Once a client has registered and holds the credentials, it can request a JWT by sending an HTTP
POST like the one shown in Listing 7. The authorization header uses the HTTP basic authentication
scheme (https://tools.ietf.org/html/rfc2617) having as the value the base64 encoding (https://tools.
ietf.org/html/rfc4648) of the string “client_id:client_secret”. A SEPA broker implementation must
respond to a token request with a JSON object like the one shown in Listing 8. The response contains
the following members: access_token is the JWT, token_type to specify the token type (i.e., the default
is bearer) and expires_in, representing the number of seconds after which the token will expire. Once a
token is expired, the client can request a new token by using its credentials. Requesting a token while
the current one is not expired generates an error.

3.6. Secure Primitives: Query, Update, Subscribe and Unsubscribe

Secure requests are authorized through JWT and sent over TLS connections (e.g., HTTPS or WSS).
For HTTPS requests (i.e., updates or queries), clients must add to the SPARQL 1.1 Protocol request
the authorization header as shown in Listing 9. For WSS requests (i.e., subscribes and unsubscribes),
the JWT is assigned to the authorization member of the request as shown in Listing 3 (i.e., the same
applies for unsubscribes; see Listing 1).

3.7. Error Responses

In the case of error, the SEPA broker replies with a JSON object like the one shown in Listing 11. If
it applies, the use of the HTTP status codes is recommended.

4. Broker Design

The modular design of the SEPA broker allows one to support new protocols, mechanisms and
algorithms for enabling subscriptions over the Web of Data. A reference implementation of the broker
is available on GitHub (https://github.com/arces-wot/SEPA). As shown in Figure 4, the broker
architecture is layered in three parts: gates, scheduler and core. The following sections provide details
on the different parts of the broker.

4.1. Protocols And Dependability

The gates layer implements the SPARQL 1.1 SE Protocol (see Section 3): it create requests
(i.e., update, query, subscribe and unsubscribe) for the scheduler and delivers responses and
notifications. As shown in Figure 4, the SEPA broker reference implementation provides two gates:
HTTP(S) and WS(S), both supporting also the Transport Layer Security (TLS) Protocol. The former
processes updates and queries according to the SPARQL 1.1 Protocol, while the latter uses the
WebSocket protocol for conveying subscription requests and notifications. The HTTP gate is based
on the non-blocking, event-driven I/O model based on Java NIO, provided by the Apache HTTP
Components (https://hc.apache.org/), while the WebSocket gate is based on the Java WebSockets

https://www.iso.org/standard/66510.html
https://www.iso.org/standard/66510.html
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc2617
https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc4648
https://github.com/arces-wot/SEPA
https://hc.apache.org/


Future Internet 2018, 10, 36 10 of 33

library by TooTallNate (https://github.com/TooTallNate/Java-WebSocket). Other protocols like
MQTT, COAP or Linked Data Notification can be supported by implementing the corresponding gates.

Figure 4. Broker reference architecture.

SEPA aims to provide a minimum level of dependability [52] through the Dependability Manager.
On the one hand, it implements the security policies and mechanisms presented in Section 3. In a
real-world scenario, the OAuth 2.0 Authorization Server would be different form the Resource Server
(i.e., the SEPA broker). Clients who need secure access to the SEPA broker would register and get
a valid token from such an external service (e.g., https://auth0.com). However, at the same time,
to provide an off-the-shelf solution for testing SEPA security, the reference implementation of the
Dependability Manager implements the client credentials grant type and uses JSON Web Tokens
(JWT) (i.e., the reference implementation uses the APIs provided by Connect2Id, https://connect2id.
com/products/nimbus-jose-jwt). On the other hand, reliability is achieved with simple, but effective
methods of failure detection in the communication between the broker and subscribed agents. This
property is important to grant the general dependability of the connection, but also, it is functional,
on the broker side, for cleaning unused resources. In this sense, the WebSocket protocol used by the
reference implementation embeds a failure detection mechanism. In fact, thanks to the ping-pong
controls frames, the broker and the agents can recognize a failure (i.e., a broken connection) and react
accordingly to some fault-tolerant policies. Furthermore, the broker can exploit this information to free
unused resources created by agents that have been disconnected in an unexpected way, avoiding a
negative impact on the performance. Overall, the protocol and the broker architecture must support
the development of distributed applications with some degree of availability and resilience. Therefore,
future implementations of new gates should at least implement a basic fault detection mechanism to
recognize disconnections or node failures.

https://github.com/TooTallNate/Java-WebSocket
https://auth0.com
https://connect2id.com/products/nimbus-jose-jwt
https://connect2id.com/products/nimbus-jose-jwt


Future Internet 2018, 10, 36 11 of 33

4.2. Requests Scheduling and Responses Dispatching

The scheduler layer implements the scheduling mechanisms and policies. In the reference
implementation, requests are scheduled as FIFO, and the scheduler can be configured with a maximum
number of pending requests (i.e., the size of the FIFO queue). The scheduler implements also the
dispatching of responses coming from the core layer by forwarding the correct response to the correct
gate, which will then send back the response to its client. The same applies to notifications. The requests
coming from the gates layer may also be scheduled according to load balancing policies (e.g., processing
may performed also on a different machine), and the scheduler may deny requests due to a high number
of pending requests (e.g., for quality of service purposes). Requests may also have different priorities,
or some requests may be avoided in some application contexts (e.g., the use of time-consuming queries
may be avoided in highly synchronized and reactive environments).

4.3. Processing

The core of the broker processes the requests coming from the scheduler (i.e., update, query,
subscribe and unsubscribe). As shown in Figure 5, the main building blocks of the core are: the Query
processor, the Update processor the Subscription Processing Unit (SPU) manager and a main thread
holding a FIFO queue of update requests.

Figure 5. Core of the broker architecture. EOP, end-of-processing; SPU, Subscription Processing Unit.

While queries can be processed in parallel (i.e., multiple Query processor instances can run
concurrently), updates are sequentially processed through a FIFO queue (i.e., only one instance of the
Update processor can be active). As soon as a query arrives, it is sent to the underpinning SPARQL
endpoint, and the decision on when to process such a query is made there. As most of the SPARQL
endpoints are supposed to be able to process multiple requests in parallel, queuing together queries
and updates could result in a substantial decrease of the performance. On the one hand, this means
that the coherence of query processing (with respect to updates) is not granted, but on the other hand,
this allows one to take advantage of all the processing power of the underpinning SPARQL endpoint.



Future Internet 2018, 10, 36 12 of 33

Instead, the sequential processing of updates is a fundamental requirement to grant coherence
on subscriptions’ processing. In fact, as updates change the content of the RDF store, all the active
subscriptions must be checked on the same RDF store snapshot. Because of that, a new update can
only be processed after the processing of all subscriptions ended. More in detail, the Update processor
and SPU manager are synchronized as follows. The core thread sends an update request to the Update
processor and waits to receive a response. Once received, the response is forwarded to the publisher.
It should be noted that, in this way, the publisher receives a response on the effective status of its
update (i.e., the response to the publisher is not provided as soon as the request has been inserted
into the FIFO queue, but once the response from the SPARQL endpoint has been received). At the
application level, this allows to implement the synchronization mechanisms that are fundamental for
the development of distributed applications. In case of a successful response, the core thread activates
the SPU manager and waits to receive an end-of-processing (EOP) indication. The EOP indicates that
all the active subscriptions have been processed. The core thread can so extract from the FIFO queue
the next update request (if present) and send it to the Update processor.

With this approach, the update processing will never overlap with the subscription processing.
This can be avoided only if the SPU manager does not need to perform queries on the SPARQL
endpoint during subscription processing. There are two possibilities to implement this: (i) the SPU
manager holds a local RDF store (i.e., cache) for each subscriptions (i.e., this is referred to as the Context
Triple Store in [22]); (ii) the SPU manager implements a subscription algorithm that does not require
access to the knowledge base, like the one presented in [53] (based on the Rete algorithm [39]). In both
cases, the Update processor must return the triples that have been added or removed so that the SPU
manager can track the evolution of the RDF store caches or the Rete network. In this scenario, the SPU
manager is expected to indicate the EOP as soon as it receives an activate request (i.e., the request can
be added to a synchronized queue), and the core can immediately start processing the next update
request.

4.4. Subscription Processing Unit Manager

This section describes the internal structure of the Subscription Processing Unit (SPU) manager
that processes the subscriptions. The SPU manager architecture is shown in Figure 6.

Figure 6. SPU manager architecture.



Future Internet 2018, 10, 36 13 of 33

Each subscription is processed by an SPU that is instantiated by the Creator module when a
subscribe request is received. The Creator module, by analyzing the SPARQL query, may instantiate a
different kind of SPU (i.e., implementing a different algorithm) or link the subscription with an existing
SPU (i.e., the SPARQL query is the same [54]). An SPU is deallocated by the Destroyer module when
an unsubscribe request is received. This may be issued directly by a client (see Section 3.2) or by the
Dependability Manager (see Figure 4) if a client connection has been lost.

On each update received by the broker, the SPU manager is activated (see Activate in Figure 6).
The Activator module activates all the SPUs and waits for all of them to complete processing. Then, it
signals to the main core thread (see Figure 5) the effective end-of-processing (EOP) so that the next
update request can be processed. SPUs run in parallel, and each SPU may also run on a different
machine in a distributed computing environment.

An SPU implements the subscription algorithm and notifies its subscriber (or subscribers if the
SPU is shared by multiple clients) of changes due to the last update (if any). As each subscription must
be processed at any update, subscription processing shapes the scalability level. Here, multi-resolution
approaches where a fast coarse-grained step filters out most unaffected subscriptions leaving the
burden of detecting the need for notification to a few candidates, turn out to be particularly effective,
as shown by the performance evaluation sections in [11,22]. In particular, in [22], an algorithm is
presented that speeds up the query processing and the results matching by (i) binding variables before
sending the query to the SPARQL endpoint and (ii) performing a fast filtering stage based on look-up
tables to reduce the amount of subscriptions that are candidates to produce notifications. Another
option to optimize the subscription processing could be to implement a Rete network as described
in [53]. Discussion on subscriptions processing optimization is out of the scope of this paper, but the
reader can refer to [55] for a discussion on how performance can be evaluated.

5. Application Design Pattern

The aim of this section is to present the application design pattern implemented by SEPA to
achieve modular, extensible and cost-effective solutions (see Section 5.2). Section 5.1 provides the
reader with a plethora of examples of applications that may benefit from SEPA. In Section 5.3 is
presented the JSON SPARQL Application Profile (JSAP), as a means to describe an application, while
two intentionally simple examples are presented in Section 5.4 to clarify the proposed application
design pattern and the role played by Semantic Web technologies in the design of interoperable
and extensible applications. Eventually, these two examples are also considered to provide some
preliminary results of the evaluation of the SEPA baseline implementation (see Section 5.5).

5.1. Application Domains

In the following, we present some examples of applications that we argue may benefit from SEPA.
The most immediate application is the monitoring of the Semantic Web itself: the subscribe/notify
mechanism and the living SPARQL queries allow one to monitor Linked Data over time. Monitoring
Linked Data are extremely interesting in order to understand, for example, at which rate the Semantic
Web grows, how frequently data and links are modified, which evolution patterns can be identified,
how the structure of information evolves, what is the nature of stored information, what is the
granularity and how long data are available before disappearing from the Semantic Web.

Web applications, like search engines, use meta-data and semantics to improve search results, both
in terms of topic coherence, number of results, user satisfaction, business opportunities and market
impact potentially generated by the results. The most important players in the Web industry are
trying to promote the annotation of Web pages through the adoption of standards, in order to increase
the potentialities of the Semantic Web: Microsoft, Google and Yahoo promote Schema.org; Facebook
developed the Open Graph Protocol (http://ogp.me/); while the e-commerce industry frequently
adopts the GoodRelations vocabulary (http://www.heppnetz.de/projects/goodrelations/).

http://ogp.me/
http://www.heppnetz.de/projects/goodrelations/


Future Internet 2018, 10, 36 14 of 33

A more restricted class of Web applications that could significantly take advantage of SEPA
are recommender systems, applications that use information provided by users, users’ profiles and
meta-data to generate recommendations. A few examples of works in this wide domain are [56–60].

At the enterprise level, Semantic Web technologies can be adopted to develop inexpensive,
scalable and incremental solutions for agile data integration and information classification [61–63].
Data integration is fundamental in enterprises in order to provide unified views of a large amount of
information. Traditional solutions for data integration [64] are limited by the capabilities of database
management systems, while the adoption of semantics can fill this gap in flexibility, ensuring system
evolution and lowering maintenance costs.

Newspapers, televisions, governmental and public authorities, large enterprises and online global
services rely on dynamic content management to produce and maintain information-rich Web sites and
portals with very limited human intervention. Using technologies like ontology-driven reasoning [65]
and automated topics aggregation/generation [66,67], dynamic content management allows one to
create Web sites where the information dynamicity, the diversity of media format, the interactivity and
automation cannot be achieved with traditional content management systems [68].

The flexibility of SEPA allows one to address also domains completely different from the previous
ones, including supply chain optimization, financial data monitoring and security. Every company
has to deal with the complexity of a supply chain: changes of suppliers, changes of data managed, a
high volume of data and a significant effort to generate a unified view of information are required.
The financial domain is a wide and heterogeneous ecosystem where a huge amount of complex and
valuable information is exchanged every day. It is an extremely dynamic world in constant evolution,
characterized by a lack of interoperability and rapid changes. Increasing the control on financial
information and the reactivity on its changes have an important economical and societal impact:
monitor the health of financial markets, anticipate financial crisis, avoid frauds, protect investments,
identify profitable business and investments and perform risk analysis. A great effort is currently
spent to find a flexible model shared by all financial stakeholders: in October 2017, the Enterprise
Data Management (EDM) Council released a new version of the Financial Industry Business Ontology
(FIBO) (https://www.edmcouncil.org/financialbusiness), trying to push the financial community to
adopt Semantic Web technologies and promote interoperability. As a final use case, we mention the
security domain where future solutions will be more oriented toward the automatic identification
of threats, frauds, vulnerabilities and attacks. An automated approach relies on a knowledge base
that models the system and its vulnerabilities, in conjunction with an initial set of security patterns,
that evolves in time depending on the identification of new vulnerabilities and on the attacks that the
system undergoes.

5.2. Software Framework and Application Design Pattern

Recalling Figure 1, a SEPA application is composed by agents (i.e., producers, consumers and
aggregators), the interaction of which is mediated by vocabularies and rules defined through shared
ontologies. While producers and consumers should be kept as simple as possible to be reused and
shared by different applications, aggregators implement the application logic. Aggregators link the
functionalities provided by producers and consumers in order to achieve the desired behaviors. To
this end, they subscribe to events created by producers and create new events that may trigger actions
of consumers or other aggregators. In general, the application logic implemented by an aggregator can
be combinatorial (i.e., no context memory is needed) or sequential (i.e., the context evolution is stored
into the aggregator internal context memory). Within SEPA, an aggregator plays the role played by an
event processing agent within the event processing network presented in [69].

The advantages of the proposed design guidelines are two-fold. First, since producers and
consumers are implemented independently from a specific use case, they can be shared between
different applications (i.e., by modifying existing or implementing new aggregators, the overall system
functionality can be modified or extended indefinitely). This, of course, leads to cost savings also when

https://www.edmcouncil.org/financialbusiness


Future Internet 2018, 10, 36 15 of 33

new systems are deployed. Second, since the processing performed by consumers and producers is
very simple, they may be implemented in resource-restricted devices.

SEPA provides the software framework shown in Figure 7. Interoperability at the information level
is granted by RDF/RDFS/OWL ontologies: as a best practice, application developers are recommended
to adopt standard and recognized ontologies. The framework offers an API in several programming
languages and at different levels of abstraction, to allow developers to choose the desired one (also
with reference to the class of the device as defined in RFC7228 (https://tools.ietf.org/rfc/rfc7228.txt):
low-level APIs implement the SPARQL 1.1 Secure Event Protocol (see Section 3), while higher level
APIs provide an application design pattern that can be followed to enhance reuse, modularization and
interoperability (see APCI, Aggregator Producer Consumer API, in Figure 7). At the application level,
SEPA promotes the reuse of software modules through the APCI: along with the adopted ontologies,
an application can be characterized by the set of updates and subscribes issued by its agents. Within the
APCI, each agent is linked to a specific primitive: a producer to an update, a consumer to a subscribe
and an aggregator to a pair subscribe-update.

Figure 7. SEPA framework.

5.3. The JSON SPARQL Application Profile

SEPA introduces the JSON SPARQL Application Profile (JSAP) (http://mml.arces.unibo.it/TR/
jsap.html) as a means to describe an application. JSAP is a JSON file, whose root structure is shown in
Listing 12. JSAP allows describing a SEPA application by including the parameters needed to interact
with one (or more) SEPA broker instance(s), along with all the SPARQL 1.1 Updates and Queries used
by the application. Queries and updates can be written in a compact format thanks to the prefixed
names for IRIs (https://tools.ietf.org/html/rfc3987). Prefixes are specified within the namespaces
member (see Listing 12), and the PREFIX keywords are automatically appended by the API to the
SPARQL issued to the broker. The graphs member includes the optional HTTP query string parameters
as defined by the SPARQL 1.1 Protocol for queries (i.e., default-graph-uri and named-graph-uri) and

https://tools.ietf.org/rfc/rfc7228.txt
http://mml.arces.unibo.it/TR/jsap.html
http://mml.arces.unibo.it/TR/jsap.html
https://tools.ietf.org/html/rfc3987


Future Internet 2018, 10, 36 16 of 33

updates (using-graph-uri and using-named-graph-uri). The host member (see Listing 12) specifies the
IP address of the broker (i.e., it can be overwritten by nested host members).

The sparql11protocol member (see Listing 13) and the sparql11seprotocol member (see Listing 14)
allow one to configure the protocol (i.e., the former for updates and queries, while the latter
for subscribes). The sparql11seprotocol member has two mandatory members: protocol and
availableProtocols. The former specifies the protocol gate to be used (see Section 4.1). Such a protocol
must be present as a JSON object within the availableProtocols member (i.e., the latter contains all
the identifiers of the available protocol gates that can be used for subscriptions). The content of each
member of "availableProtocols" is protocol specific. If present, the security member contains the
parameters to connect to the OAuth service provided by the SEPA.

One of the main benefits of JSAP consists of the ability to create a template for an application,
which can be fetched and modified at run-time to fit the application needs. This template acts as an
identity card of an application. For example, a producer that updates the value of a temperature sensor
will only need to fill a field in the template (i.e., the current value). Here is where the definition of
forced bindings comes to help. A forced binding enables the developer to substitute at run-time a
variable in a template with a custom value. To define forced bindings, the key forcedBindings must
be used. The value is a JSON object. The variable of a forced binding is a key in that JSON object.
Its value is again a JSON object containing the keys type and value. The type key is mandatory and
must be one of uri, bnode or literal. The value key is optional and should be used to specify a default
value for that variable.

All the SPARQL Updates and SPARQL Queries used by the application, along with their forced
bindings, are respectively enumerated within the updates and queries members of the JSAP (see
Listing 12), according to the structure shown in Listing 15. The scope of an update (or subscribe) can
also be redefined with reference to the default protocol parameters (e.g., the host or the port). This
can be achieved by overwriting one or more fields of the sparql11protocol member (for update and
queries) or the sparql11seprotocol member (for subscribes). In this way, an application can interact
with multiple SEPA brokers and/or SPARQL endpoints at the same time. For example, an aggregator
can subscribe to a SEPA broker instance and publish on a SPARQL endpoint (i.e., storing events for
later analysis).

5.4. Examples of the Design of a SEPA Application

In order to provide the reader with a better understanding of the SEPA application design
pattern and the role of JSAP, this section presents two simple examples. The first can be considered
as a minimum-working example aimed at explaining the proposed application design pattern
(producer-aggregator-consumer) and the role of JSAP. It should be noted that this example shows how
agents can interact and synchronize, fundamental requirements for the development of distributed
applications. The second highlights the role of ontologies on defining a shared meaning, thus enabling
interoperability at the information level. Raw sensor data gathered from an MQTT broker are
contextualized and stored according to the W3C Semantic Sensor Network Ontology. Furthermore,
these data are timestamped according to the W3C Time Ontology in OWL and inserted into a dedicated
RDF Big Data store for future analysis.

The first example is a chat application where users exchange text messages. As shown in Figure 8,
a client is composed of three agents: a producer (Sender) and two aggregators (Receiver and Remover).
The JSAP fragment of the application is listed in Appendix C.

In Figure 8 is shown the sequence of updates and notifications triggered by the action of sending
a message from Client #1 (identified by the schema:PersonURI1 URI) to Client #2 (identified by the
schema:PersonURI2 URI):

• When the two clients join the chat, their Receiver and Remover agents subscribe to the SEPA
broker by replacing respectively the receiver forced binding in the SENT query and the sender



Future Internet 2018, 10, 36 17 of 33

forced binding in the RECEIVED query with the client identifier (e.g., schema:PersonURI1 for
Client #1 and schema:PersonURI2 for Client #2).

• When Client #1 sends a new message to Client #2, it invokes the SEND update (1), first replacing
the Sender and Receiver forced bindings with the current one (i.e., respectively schema:PersonURI1
and schema:PersonURI2) and the text binding with the message to be sent. The effect of the update
is to create the bold graph shown in Figure 8.

• This update triggers a notification for Client #2 (2): its Receiver agent inserts the dotted part of
the graph to specify the receiving time. This is done by invoking the SET_RECEIVED update (3),
replacing the message forced binding with the corresponding one included in the notification.

• This update triggers a notification on Client #1 (4): Client #1 knows at this time that Client #2
has received the message (i.e., clients are synchronized) and can delete the corresponding graph
from the RDF store. This is done invoking the REMOVE update (5), replacing the message
forced binding with the effective URI of the message to be removed. The effect of this update
is two-fold: the RDF store is cleaned by all messages that have been received (i.e., the store
contains only the messages that have been sent, but not yet received), and the Receiver agent is
notified of the removed bindings (i.e., Client #2 is aware that Client #1 has been notified by the
SET_RECEIVED update).

Figure 8. A simple chat application.

The second example is a typical Internet of Things application consisting of monitoring sensor
data. The application consists of four agents (see Figure 9) and is described by the JSAP shown in
Listing 18.

Heterogeneous sensor data (e.g., soil moisture and temperature and humidity of some server
control rooms) gathered by heterogeneous wireless sensor networks (e.g., DASH7 [70,71], LoRa



Future Internet 2018, 10, 36 18 of 33

(https://www.semtech.com/technology/lora/what-is-lora) and 6LowPan (https://tools.ietf.org/
html/rfc6282)) are sent over MQTT along with the temperatures of CPUs and hard disks of a set of
servers. The application is an example of how raw data (i.e., the topic-value pairs provided by an
MQTT broker) can be mapped into RDF triples. At the same time, it provides an overview of how to
store temporal data for later analysis (i.e., based on SPARQL and semantic reasoning techniques [72]).
Information level interoperability is achieved through the use of the following ontologies:

• W3C Sensor Network Ontology (https://www.w3.org/TR/vocab-ssn/)
• W3C Time Ontology in OWL (https://www.w3.org/TR/owl-time/)
• Quantities, Units, Dimensions and Data Types (QUDT) Ontology (http://www.linkedmodel.org/

doc/qudt/1.1/index.html)

According to the core ontology SOSA (Sensor, Observation, Sample, and Actuator), the
application maps each topic into an observation, providing the data value as the numeric value
(i.e., qudt-1-1;numericValue) of a quantity (i.e., qudt-1-1:QuantityValue). The ontology has been
extended with the arces-monitor:hasMqttTopic property that allows one to link an observation URI
with a MQTT topic (see the “ADD_OBSERVATION” update in Listing 18 for details on how this
mapping is performed). Mappings are dynamically added by the Topics Manager agent. A set of initial
mappings can also be specified within the extended member of the JSAP (see Listing 12). An example
of the content of an entry used to map the topic pepoli/6lowpan/network/NODO1/Temperature
with the arces-monitor:Pepoli-6lowpan-Nodo1-Temperature observation URI is shown in Listing 17.

Figure 9. An MQTT sensors’ monitoring application.

Data values are updated by the MQTT Adapter agent. On the one hand, the agent is subscribed
to the MQTT broker (i.e., to all the topics using the “#” wildcard); on the other hand, it is subscribed,

https://www.semtech.com/technology/lora/what-is-lora
https://tools.ietf.org/html/rfc6282
https://tools.ietf.org/html/rfc6282
https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/owl-time/
http://www.linkedmodel.org/doc/qudt/1.1/index.html
http://www.linkedmodel.org/doc/qudt/1.1/index.html


Future Internet 2018, 10, 36 19 of 33

through the “TOPICS” query, to the mappings created by the Topics Manager. On every notification
coming from the MQTT broker (i.e., topic-value), the MQTT Adapter agent finds the observation URI
that matches with the topic and extracts the numeric value of the observed quantity from the value
(i.e., using regular expressions). This is where the lack of information level interoperability comes
out: the value has no a predefined format, and its meaning is unknown. Moreover, in some cases, the
data identifier is embedded within the topic, while in other cases, it is included within the value: an
agreement with the MQTT broker provider is required in order to parse and understand the content of
each topic-value pair. On the contrary, semantic information is all described in RDF, identified by URIs
and their meaning represented through ontologies.

The events generated by the MQTT Adapter agent are consumed by two different agents
(see “OBSERVATIONS_VALUES” in Figure 9): the Web Application and the Big Data Storing Service.
The former, based on the Java Script APIs, visualizes the data in a Web browser as shown in Figure 13.
The latter, through the “STORE_OBSERVATION” update, stores the events in a Big Data RDF store to be
later analyzed. Events are time stamped according to the W3C Time Ontology in OWL. The discussion
of the big data analysis techniques that could be used to extract meaningful information is out of the
scope of this paper.

5.5. Experimental Evaluation and Preliminary Results

This section provides some preliminary results of the evaluation of the SEPA baseline
implementation (https://github.com/arces-wot/SEPA) If on the one hand, a complete performance
analysis like the one presented in [22] is out of scope, on the other hand, to provide evidence regarding
the feasibility of the proposed architecture, some experiments have been done. The experiments are
based on the two previously-presented examples. The SEPA broker here considered implements a
naive subscription algorithm (i.e., on each update, all the subscriptions are evaluated and the results of
the queries compared to the previous ones): the results represent a lower bound of the performance
that could be achieved (e.g., a significant speed-up would be obtained by implementing smarter
algorithms and approaches like the one presented in [11,22,53]). All the experiments have been run on
the following configuration: (i) a server (Ubuntu 15.04, Intel(R) Xeon(R) CPU E5-2430 v2 @ 2.50 GHz,
64 GB RAM) hosting the SEPA broker and the Virtuoso Open Source SPARQL endpoint; (ii) a server
(Ubuntu 16.04.2 LTS, QEMU Virtual CPU version (cpu64-rhel6) @ 2.2 GHz, 1 GB RAM) hosting the
client applications.

The initial two experiments refer to the chat example. The first one aims at evaluating the
overhead introduce by the SEPA broker on the underpinning SPARQL endpoint. A client performs the
updates and queries used by the chat application (see Listing 16) in the same order shown in Figure 8.
In particular, the client issues 10 SEND updates, followed by 10 SENT queries, 10 SET_RECEIVED
updates, 10 RECEIVED queries and 10 REMOVE updates. The time spent by the broker to handle
each request has been sampled along with the time required by the SPARQL endpoint to perform each
single SPARQL request (i.e., update or query). As shown in Figure 10, in this experiment, the SEPA
broker introduces an almost negligible overhead (i.e., 1.5%) to the update and query processing.

The second experiment provides the reader with an overview of the update time and the latency
of notifications. It consists of a client sending to itself a stream of 100 messages. Messages are sent
without any break, and each message produces the sequence of notifications and updates shown in
Figure 8 (i.e., (1) SEND update; (2) SENT notification; (3) SET RECEIVED update; (4) RECEIVED
notification; (5) REMOVE update). As shown in Figure 11, the update time is almost limited by the
SPARQL endpoint update time (attested around 50—100 ms, as shown in Figure 10). Figure 12 gives
a first impression of the notification latency that can be provided by a SEPA broker. In this simple
experiment, a notification is sent to a client with a latency of less then 60 ms.

The last experiment refers to the MQTT monitoring example. The system has been deployed
and run for more than 45 days. A screenshot of the Web application developed to monitor the
sensor data is shown in Figure 13. Some preliminary dependability indicators (see Table 1) have been

https://github.com/arces-wot/SEPA


Future Internet 2018, 10, 36 20 of 33

collected through a JMX console (see Figure 14). This experiment demonstrates the feasibility of the
proposed approach and provides an indication of the level of reliability granted by the baseline SEPA
implementation.

Table 1. Some preliminary dependability indicators of the SEPA baseline implementation with reference
to the MQTT monitoring application.

Up-time >45 days
Processed requests >30 M

Maximum active subscriptions 5

SPARQL endpoint query average time 28 ms
SPARQL endpoint update average time 26 ms

SEPA broker update processing average time 55 ms
SPU manager processing average time 30 ms

Figure 10. Analysis of the overhead introduce by the SEPA broker on the processing of updates
and queries.



Future Internet 2018, 10, 36 21 of 33

Figure 11. A client would be able to send up to 10 messages/s. This value is mainly limited by the
SPARQL endpoint update time.

Figure 12. A client is notified within 10 and 60 ms after it has issued the update who triggered
the notification.



Future Internet 2018, 10, 36 22 of 33

Figure 13. Dynamic Linked Data Web application: MQTT sensors’ monitoring screenshot.

Figure 14. The JMX console of the SEPA broker.



Future Internet 2018, 10, 36 23 of 33

6. Conclusions

Over the last decade, research on Linked Data has focused on unlocking the potential behind
sharing data on the Web scale. If on the one hand, as evidenced by the Web of Things, the lack
of interoperability across platforms and application domains can be tackled through Semantic Web
technologies and standards, on the other hand, such technologies are not ready for the development
of distributed, dynamic, context-aware and decentralized Web applications. Furthermore, detecting
and notifying about any change within the Linked Data would be a fundamental building block, as
confirmed by the ICT community with standards like Linked Data Notifications and WebSub. However,
for those scenarios requiring security and dealing with high frequency data changes, solutions are still
missing.

In this paper, we presented SEPA, a SPARQL Event Processing Architecture aimed at enabling
the detection and communication of changes over the Web of Data by means of a content-based
publish-subscribe mechanism where the W3C SPARQL 1.1 Update and Query Languages are fully
supported respectively by publishers and subscribers. SEPA is built on top of the SPARQL 1.1 Protocol
and introduces the SPARQL 1.1 Secure Event Protocol and the SPARQL 1.1 Subscribe Language as a
means for conveying and expressing subscription requests and notifications. The SEPA Framework
provides a development environment and an application design pattern that can be adopted to
enhance reuse, modularization and interoperability. The framework, complemented by tools for the
performance analysis, remote monitoring and control, offers developers a modular, extensible and
cost-effective solution for implementing distributed, dynamic, context-aware, interoperable and secure
Dynamic Linked Data applications and services.

Acknowledgments: The work presented in this paper is being developed within the EU project SWAMP
(Smart Water Management Platform), Project ID: 777112, Funded under: H2020-EU.2.1.1.—INDUSTRIAL
LEADERSHIP—Leadership in enabling and industrial technologies—Information and Communication
Technologies (ICT).

Author Contributions: Luca Roffia is the principal investigator of SEPA. He conceived the architecture and
developed the reference SEPA broker implementation and Java API. He designed and performed the experiments.
Paolo Azzoni, as an industrial partner, mainly contributed presenting the most relevant application domains.
He has also been involved in the definition of the structure of the paper and in its overall revision. Cristiano Aguzzi
contributed to the design of the architecture, in particular, regarding dependability and extensibility. He mainly
contributed to the definition of the SPARQL 1.1 Subscribe language and reviewed the presented examples. He is
responsible for the software distribution and integration platform and GitHub repository management and the
development of the JavaScript API. Fabio Viola contributed to the related work section and the overall revision of
the paper. He is responsible for the implementation of the Python API and part of the subscription processing
components. Francesco Antoniazzi contributed to the overall revision of the paper and with the implementation
of the C API. Tullio Salmon Cinotti contributed to Sections 4.4 and 5.5 and to the final review.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. SPARQL 1.1 SE Protocol and Subscribe Language

{"subscribe" : {

"sparql":"The SPARQL query",

"authorization":"Bearer Here goes the JWT",(optional)

"alias":"Friendly name"(optional)}}

Listing 1: SPARQL 1.1 Subscribe request.



Future Internet 2018, 10, 36 24 of 33

{"notification" : {

"spuid":"Subscription URI",

"alias":"Friendly name"(optional),

"sequence":Incremental index,

"addedResults":{JSON results},

"removedResults":{JSON results}}}

Listing 2: SPARQL 1.1 Notification.

{"unsubscribe" : {

"spuid":"Subscription URI",

"authorization":"Bearer Here goes the JWT"(optional)}}

Listing 3: SPARQL 1.1 Unsubscribe request.

{"unsubscribed" : {

"spuid":"Subscription URI"}}

Listing 4: SPARQL 1.1 Unsubscribe response.

POST https://mml.arces.unibo.it:8443/oauth/register

Content-Type: application/json

Accept: application/json

Request body

{"register" : {

"client_identity":"Unique ID",

"grant_types":["client_credentials"]}}

Listing 5: Client registration request over HTTPS.

{"credentials" : {

"client_id":"...",

"client_secret":"...",

"signature":{

"kty":"RSA",

"e":"...",

"x5t":"...",

"kid":"sepacertificate",

"x5c":["..."],

"n":"..."}}}

Listing 6: Client registration response.

POST https://mml.arces.unibo.it:8443/oauth/token

Content-Type: application/json

Accept: application/json

Authorization: Basic base64(client_id:client_secret)

Listing 7: Token request over HTTPS.



Future Internet 2018, 10, 36 25 of 33

{"token" : {

"access_token" : "Here goes the JWT",

"token_type" : "bearer",

"expires_in" : Number of seconds }}

Listing 8: Token response.

POST https://mml.arces.unibo.it:8443/sparql

Authorization: Bearer Here goes the JWT

Listing 9: Secure query and update over HTTPS.

wss://mml.arces.unibo.it:9443/subscribe

Listing 10: Secure subscribe over WSS.

{"error": {

"body" : "SPARQL endpoint not found",

"code" : 500}}

Listing 11: Error responses.

Appendix B. JSON SPARQL Application Profile

{"host":"Host name or IP" ,

"sparql11protocol":{...},

"sparql11seprotocol":{...}},

"namespaces" : {

"prefix-1":"namespace URI1" ,

...,

"prefix-N":"namespace URIn"},

"graphs": { (all are optional)

"default-graph-uri":"...",

"named-graph-uri":"...",

"using-graph-uri":"...",

"using-named-graph-uri":"..."},

"updates":{...},

"queries":{...},

"extended":{...}(optional)}

Listing 12: JSAP structure. A JSAP includes, along with the protocol configuration parameters, all the
SPARQL updates and queries used by an application.



Future Internet 2018, 10, 36 26 of 33

"sparql11protocol": {

"host":"Name or IP",(optional)

"protocol":"http",

"port":8000,

"query":{

"path":"/...",

"method":"POST"

"format":"JSON"}

"update":{

"path":"/...",

"method":"URLENCODED_POST"

"format":"HTML"}}

Listing 13: JSAP sparql11protocol member. It allows to define the SPARQL 1.1 Protocol configuration
parameters, including the overwriting of the host if needed.

"sparql11seprotocol":{

"host": "Name or IP",(optional)

"protocol":"Choose one among the available protocols",

"availableProtocols":{

"protocolID-1":{...},

...,

"protocolID-N":{...}},

"security":{...}(optional)}

Listing 14: JSAP sparql11seprotocol member. It allows to specify the SPARQL 1.1 SE Protocol
configuration parameters, including the overwriting of the host if needed.

"IDENTIFIER" : {

"sparql":"SPARQL Update or Query" ,

"forcedBindings":{ (optional)

"variable-1" : {

"type" : "literal" ,

"value" : "..."}, (optional)

"..." :{...},

"variable-N" : {

"type" : "uri" ,

"value" : "..."}}, (optional)

"sparql11protocol":{...}, (optional, used by updates or queries)

"sparql11seprotocol":{...}, (optional, used by subscribes)

"graphs":{...} (optional, used by updates, queries or subscribes)

}

Listing 15: Template representing an update or query within a JSAP. It includes the forced bindings
and it allows to overwrite some protocol parameters if required.



Future Internet 2018, 10, 36 27 of 33

Appendix C. JSAP of the Chat and MQTT Examples

{"host":"..." ,

"sparql11protocol":{...},

"sparql11seprotocol":{...}

"namespaces":{

"schema" : "http://schema.org/" ,

"rdf" : "http://www.w3.org/1999/02/22-rdf-syntax-ns#"},

"updates":{

"SEND":{"sparql" : "INSERT {?message rdf:type schema:Message ;

schema:text ?text ; schema:sender ?sender ; schema:toRecipient ?receiver;

schema:dateSent ?time} WHERE {?sender rdf:type schema:Person .

?receiver rdf:type schema:Person

BIND(STR(now()) AS ?time)

BIND(IRI(CONCAT(\"http://schema.org/Message-\",STRUUID())) AS ?message)}",

"forcedBindings":{

"text":{"type":"literal"} ,

"sender":{"type":"uri"} ,

"receiver":{"type":"uri"}}},

"SET_RECEIVED":{"sparql" : "INSERT {?message schema:dateReceived ?time}

WHERE {?message rdf:type schema:Message

BIND(STR(now()) AS ?time)}",

"forcedBindings":{

"message":{"type":"uri"}}},

"REMOVE":{"sparql" : "DELETE {?message ?p ?o}

WHERE {?message rdf:type schema:Message . ?message ?p ?o}",

"forcedBindings":{

"message":{"type":"uri"}}},

"queries":{

"SENT":{"sparql" : "SELECT ?message ?sender ?name ?text ?time

WHERE {?message rdf:type schema:Message ; schema:text ?text ;

schema:sender ?sender ; schema:toRecipient ?receiver ;

schema:dateSent ?time . ?sender rdf:type schema:Person ;

schema:name ?name . ?receiver rdf:type schema:Person} ORDER BY ?time",

"forcedBindings":{

"receiver":{"type":"uri"}}},

"RECEIVED":{"sparql" : "SELECT ?message ?time

WHERE {?message schema:sender ?sender ; schema:dateReceived ?time ;

rdf:type schema:Message}",

"forcedBindings":{

"sender":{"type":"uri"}}}}}

Listing 16: JSAP of the chat example

"semantic-mappings":{

...

"pepoli/6lowpan/network/NODO1/Temperature":{

"observation":"arces-monitor:Pepoli-6lowpan-Nodo1-Temperature",

"unit":"qudt-unit-1-1:DegreeCelsius",

"location":"arces-monitor:Star",

"comment":"Server room temperature---Viale Pepoli (6LowPan)",

"label":"Server room temperature"},

...}

Listing 17: MQTT mapping.



Future Internet 2018, 10, 36 28 of 33

{"host":"..." ,

"sparql11protocol":{Monitoring data store parameters},

"sparql11seprotocol":{Monitoring data store parameters},

"namespaces":{

"rdf":"http://www.w3.org/1999/02/22-rdf-syntax-ns#",

"rdfs":"http://www.w3.org/2000/01/rdf-schema#" ,

"sosa":"http://www.w3.org/ns/sosa/" ,

"qudt-1-1":"http://qudt.org/1.1/schema/qudt#" ,

"qudt-unit-1-1":"http://qudt.org/1.1/vocab/unit#" ,

"arces-monitor":"http://mml.arces.unibo.it/monitor#",

"time":"http://www.w3.org/2006/time#"},

"updates":

"ADD_OBSERVATION" : {"sparql" : "DELETE {?observation ?p ?o . ?q ?p1 ?o1}

INSERT {?observation rdf:type sosa:Observation ; rdfs:label ?label ;

rdfs:comment ?comment ; sosa:hasFeatureOfInterest ?location ;

arces-monitor:hasMqttTopic ?topic; sosa:hasResult ?quantity .

?quantity rdf:type qudt-1-1:QuantityValue ; qudt-1-1:unit ?unit}

WHERE{

BIND(IRI(CONCAT(\"http://mml.arces.unibo.it/monitor#QuantityValue-

\",STRUUID())) AS ?quantity) . OPTIONAL {?observation rdf:type

sosa:Observation ; ?p ?o ; sosa:hasResult ?q . ?q ?p1 ?o1 }}",

"forcedBindings":{ "observation":{"type":"uri"},

"comment":{"type":"literal"}, "label":{"type":"literal"},

"location":{"type":"uri"}, "topic":{"type":"literal"},

"unit":{"type":"uri"}}},

"UPDATE_VALUE" : {"sparql" : "DELETE {?quantity qudt-1-1:numericValue

?oldValue} INSERT {?quantity qudt-1-1:numericValue ?value}

WHERE {?observation rdf:type sosa:Observation ; sosa:hasResult

?quantity . OPTIONAL {?quantity qudt-1-1:numericValue ?oldValue}}",

"forcedBindings":{"observation":{"type":"uri"},

"value":{"type":"literal"}},

"STORE_OBSERVATION":{"sparql":"INSERT {?observation rdf:type

sosa:Observation ; sosa:hasResult ?quantity . ?quantity rdf:type

qudt-1-1:QuantityValue ; qudt-1-1:unit ?unit ; qudt-1-1:numericValue

?value; time:hasTime ?instant . ?instant rdf:type time:Instant ;

time:inXSDDateTimeStamp ?time} WHERE{

BIND(IRI(CONCAT(\"arces-monitor:QuantityValue-\",STRUUID()))

AS ?quantity)

BIND(IRI(CONCAT(\"http://www.w3.org/2006/time#Instant\",

STRUUID())) AS ?instant)

BIND(STR(now()) AS ?time)}",

"forcedBindings":{ "observation":{"type":"uri"}, "unit":{"type":"uri"},

"value":{"type":"literal"}},

"sparql11protocol":{Big data store parameters}}},

"queries":{

"TOPICS" : {"sparql" : "SELECT ?observation ?topic WHERE {?observation rdf:type

sosa:Observation ; arces-monitor:hasMqttTopic ?topic}"},

"OBSERVATIONS_VALUES" : {"sparql" : " SELECT ?observation ?location ?quantity

?label ?value ?unit WHERE {?observation rdf:type sosa:Observation ;

rdfs:label ?label ; sosa:hasFeatureOfInterest ?location ;

sosa:hasResult ?quantity . ?quantity rdf:type qudt-1-1:QuantityValue ;

qudt-1-1:unit ?unit ; qudt-1-1:numericValue ?value}"}}

Listing 18: JSAP of the MQTT monitoring example.



Future Internet 2018, 10, 36 29 of 33

References

1. Berners-Lee, T.; Hendler, J.; Lassila, O. The Semantic Web. Sci. Am. 2001, 284, 28–37.[CrossRef]
2. Bizer, C.; Heath, T.; Berners-Lee, T. Linked Data—The Story So Far. Int. J. Semant. Web Inf. Syst. 2009,

5, 1–22.[CrossRef]
3. Umbrich, J.; Villazön-Terrazas, B.; Hausenblas, M. Dataset Dynamics Compendium: A Comparative

Study. In Proceedings of the First International Conference on Consuming Linked Data, Shanghai, China,
8 November 2010; CEUR-WS.org: Aachen, Germany, 2010; Volume 665; pp. 49–60.

4. Sanderson, R.; Van de Sompel, H. Cool URIs and Dynamic Data. IEEE Int. Comput. 2012, 16, 76–79.[CrossRef]
5. Murth, M.; Kühn, E. Knowledge-based interaction patterns for semantic spaces. In Proceedings of the

4th International Conference on Complex, Intelligent and Software Intensive Systems, Krakow, Poland,
15–18 February 2010; pp. 1036–1043.

6. Murth, M.; Kühn, E. Knowledge-based coordination with a reliable semantic subscription mechanism.
In Proceedings of the 2009 ACM Symposium on Applied Computing, Honolulu, HI, USA, 8–12 March 2009;
ACM: New York, NY, USA, 2009; pp. 1374–1380.

7. Llanes, K.R.; Casanova, M.A.; Lemus, N.M. From Sensor Data Streams to Linked Streaming Data: A survey
of main approaches. J. Inf. Data Manag. 2016, 7, 130–140.

8. Schade, S.; Ostermann, F.; Spinsanti, L.; Kuhn, W. Semantic Observation Integration. Future Internet 2012,
4, 807–829.[CrossRef]

9. Boulos, M.N.; Yassine, A.; Shirmohammadi, S.; Namahoot, C.S.; Brückner, M. Towards an “internet of food”:
Food ontologies for the internet of things. Future Internet 2015, 7, 372–392.[CrossRef]

10. Alti, A.; Lakehal, A.; Laborie, S.; Roose, P. Autonomic semantic-based context-aware platform for mobile
applications in pervasive environments. Future Internet 2016, 8, 48.[CrossRef]

11. D’Elia, A.; Viola, F.; Roffia, L.; Azzoni, P.; Salmon Cinotti, T. Enabling interoperability in the internet
of things: A OSGi semantic information broker implementation. Int. J. Semant. Web Inf. Syst. 2017,
13, 146–167.[CrossRef]

12. Viola, F.; D’Elia, A.; Roffia, L.; Salmon Cinotti, T. A modular lightweight implementation of the
Smart-M3 semantic information broker. In Proceedings of the 2016 18th Conference of Open Innovations
Association and Seminar on Information Security and Protection of Information Technology (FRUCT-ISPIT),
St. Petersburg, Russia, 18–22 April 2016; pp. 370–376.

13. D’Elia, A.; Viola, F.; Roffia, L.; Salmon Cinotti, T. A Multi-broker Platform for the Internet of Things.
In Proceedings of the ruSMART 2015: Internet of Things, Smart Spaces, and Next Generation Networks and
Systems, St. Petersburg, Russia, 26–28 August 2015; pp. 34–46.

14. Bedogni, L.; Bononi, L.; Di Felice, M.; D’Elia, A.; Mock, R.; Montori, F.; Morandi, F.; Roffia, L.; Rondelli, S.;
Salmon Cinotti, T. ; et al. An interoperable architecture for mobile smart services over the internet of energy.
In Proceedings of the 2013 IEEE 14th International Symposium and Workshops on World of Wireless, Mobile
and Multimedia Networks (WoWMoM), Madrid, Spain, 4–7 June 2013; pp. 1–6.

15. Morandi, F.; Roffia, L.; D’Elia, A.; Vergari, F.; Salmon Cinotti, T. RedSib: A Smart-M3 semantic information
broker implementation. In Proceedings of the 12th FRUCT Conference, Oulu, Finland, 5–9 November 2012;
pp. 86–98.

16. Roffia, L.; Bartolini, S.; Manzaroli, D.; D’Elia, A.; Salmon Cinotti, T.; Raffa, G. Requirements on System Design
to Increase Understanding and Visibility of Cultural Heritage. In Handbook of Research on Technologies and
Cultural Heritage: Applications and Environments; IGI Global: Hershey, PA, USA, 2011; Chapter 13, pp. 259–284.

17. Pantsar-Syväniemi, S.; Ovaska, E.; Ferrari, S.; Salmon Cinotti, T.; Zamagni, G.; Roffia, L.; Mattarozzi, S.;
Nannini, V. Case study: Context-aware supervision of a smart maintenance process. In Proceedings of
the 11th IEEE/IPSJ International Symposium on Applications and the Internet, Munich, Bavaria, Germany,
18–21 July 2011; pp. 309–314.

18. Vergari, F.; Salmon Cinotti, T.; D’Elia, A.; Roffia, L.; Zamagni, G.; Lamberti, C. An integrated framework
to achieve interoperability in person-centric health management. Int. J. Telemed. Appl. 2011, 2011, 549282.
[CrossRef]

http://dx.doi.org/10.1038/scientificamerican0501-34
http://dx.doi.org/10.4018/jswis.2009081901
http://dx.doi.org/10.1109/MIC.2012.78
http://dx.doi.org/10.3390/fi4030807
http://dx.doi.org/10.3390/fi7040372
http://dx.doi.org/10.3390/fi8040048
http://dx.doi.org/10.4018/IJSWIS.2017010109
http://dx.doi.org/10.1155/2011/549282


Future Internet 2018, 10, 36 30 of 33

19. Manzaroli, D.; Roffia, L.; Salmon Cinotti, T.; Ovaska, E.; Azzoni, P.; Nannini, V.; Mattarozzi, S. Smart-M3 and
OSGi: The Interoperability Platform. In Proceedings of the SISS 2010, IEEE First International Workshop on
Semantic Interoperability for Smart Spaces, Symposium on Computers and Communications, Riccione, Italy,
22–25 June 2010; pp. 1053–1058.

20. Vergari, F.; Bartolini, S.; Spadini, F.; D’Elia, A.; Zamagni, G.; Roffia, L.; Salmon Cinotti, T. A Smart Space
application to dynamically relate medical and environmental information. In Proceedings of the 2010
Design, Automation Test in Europe Conference Exhibition (DATE 2010), Dresden, Germany, 8–12 March
2010; pp. 1542–1547.

21. D’Elia, A.; Roffia, L.; Zamagni, G.; Vergari, F.; Toninelli, A.; Bellavista, P.; D’Elia, A.; Roffia, L.; Zamagni, G.;
Vergari, F.; et al. Smart Applications for the Maintenance of Large Buildings: How to Achieve Ontology-based
Interoperability at the Information Level. In Proceedings of the SISS 2010, IEEE First International
Workshop on Semantic Interoperability for Smart Spaces, Symposium on Computers and Communications,
Riccione, Italy, 22–25 June 2010; pp. 1072–1077.

22. Roffia, L.; Morandi, F.; Kiljander, J.; D’Elia, A.; Vergari, F.; Viola, F.; Bononi, L.; Salmon Cinotti, T. A Semantic
Publish-Subscribe Architecture for the Internet of Things. IEEE Int. Things J. 2016, 3, 1274–1296.[CrossRef]

23. Della Valle, E.; Ceri, S.; Harmelen, F.V.; Fensel, D. It’s a Streaming World! Reasoning upon Rapidly Changing
Information. IEEE Intell. Syst. 2009, 24, 83–89.[CrossRef]

24. Le-phuoc, D.; Parreira, J.X.; Hauswirth, M. Linked Stream Data Processing. In Proceedings of the Reasoning
Web. Semantic Technologies for Advanced Query Answering: 8th International Summer School 2012, Vienna,
Austria, 3–8 September 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 245–289.

25. Eugster, P.T.; Felber, P.A.; Guerraoui, R.; Kermarrec, A.M. The many faces of publish/subscribe. ACM
Comput. Surv. 2003, 35, 114–131.[CrossRef]

26. Capadisli, S.; Guy, A.; Lange, C.; Auer, S.; Sambra, A.; Berners-Lee, T. Linked Data Notifications:
A Resource-Centric Communication Protocol. In Proceedings of the ESWC 2017 The Semantic Web,
Portorož, Slovenia, 28 May–1 June 2017; Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P.,
Hartig, O., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 537–553.

27. Dell’Aglio, D.; Le Phuoc, D.; Le-Tuan, A.; Ali, M.; Calbimonte, J.P. On a Web of data streams. In Proceedings
of the ISWC2017 workshop on Decentralizing the Semantic Web, Vienna, Austria, 21–22 October 2017.

28. Bhide, M.; Deolasee, P.; Katkar, A.; Panchbudhe, A.; Ramamritham, K.; Shenoy, P. Adaptive push-pull:
Disseminating dynamic Web data. IEEE Trans. Comput. 2002, 51, 652–668.[CrossRef]

29. Baldoni, R.; Contenti, M.; Tucci Piergiovanni, S.; Virgillito, A. Modeling publish/subscribe communication
systems: Towards a formal approach. In Proceedings of the Eighth International Workshop on
Object-Oriented Real-Time Dependable Systems (WORDS 2003) Guadalajara, Mexico, 17 January 2003;
pp. 304–311.

30. Wang, J.; Jin, B.; Li, J. An Ontology-Based Publish/Subscribe System. In Proceedings of the Middleware
2004, Toronto, ON, Canada, 18–22 October 2004; Jacobsen, H.A., Ed.; Springer: Berlin/Heidelberg, Germany,
2004; pp. 232–253.

31. Chirita, P.A.; Idreos, S.; Koubarakis, M.; Nejdl, W. Publish/Subscribe for RDF-based P2P Networks.
In Proceedings of the Lecture Notes in Computer Science, Crete, Greece, 10–12 May 2004; pp. 1–15.

32. Skovronski, J. An Ontology-Based Publish-Subscribe Framework. Master’s Thesis, State University of
New York at Binghamton, Vestal, NY, USA, 2006.

33. Bolles, A.; Grawunder, M.; Jacobi, J. Streaming SPARQL—Extending SPARQL to Process Data Streams.
In Proceedings of the ESWC2008—The Semantic Web: Research and Applications, Tenerife, Canary
Islands, Spain, 1–5 June 2008; Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M., Eds.; Springer:
Berlin/Heidelberg, Germany, 2008; pp. 448–462.

34. Barbieri, D.F.; Braga, D.; Ceri, S.; Grossniklaus, M. An Execution Environment for C-SPARQL
Queries. In Proceedings of the 13th International Conference on Extending Database Technology,
Lausanne, Switzerland, 22–26 March 2010; ACM: New York, NY, USA, 2010; pp. 441–452.

35. Calbimonte, J.P.; Corcho, O.; Gray, A.J.G. Enabling Ontology-Based Access to Streaming Data Sources.
In Proceedings of the Semantic Web—ISWC 2010, Shanghai, China, 7–11 November 2010; Patel-Schneider, P.F.,
Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B., Eds.; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 96–111.

http://dx.doi.org/10.1109/JIOT.2016.2587380
http://dx.doi.org/10.1109/MIS.2009.125
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1109/TC.2002.1009150


Future Internet 2018, 10, 36 31 of 33

36. Anicic, D.; Fodor, P.; Rudolph, S.; Stojanovic, N. EP-SPARQL: A Unified Language for Event Processing and
Stream Reasoning. In Proceedings of the 20th International Conference on World Wide Web, Hyderabad,
India, 28 March–1 April 2011; ACM: New York, NY, USA, 2011; pp. 635–644.

37. Le-Phuoc, D.; Dao-Tran, M.; Xavier Parreira, J.; Hauswirth, M. A Native and Adaptive Approach for Unified
Processing of Linked Streams and Linked Data. In Proceedings of the Semantic Web—ISWC 2011, Bonn,
Germany, 23–27 October 2011; Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N.,
Blomqvist, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 370–388.

38. Komazec, S.; Cerri, D.; Fensel, D. Sparkwave: Continuous Schema-enhanced Pattern Matching over RDF
Data Streams. In Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems,
Berlin, Germany, 16–20 July 2012; ACM: New York, NY, USA, 2012; pp. 58–68.

39. Forgy, C.L. Rete: A Fast Algorithm for the Many PatternIMany Object Pattern Match Problem. Artif. Intell.
1982, 19, 17–37.[CrossRef]

40. Groppe, S.; Groppe, J.; Kukulenz, D.; Linnemann, V. A SPARQL Engine for Streaming RDF Data.
In Proceedings of the 2007 3rd International IEEE Conference on Signal-Image Technologies and
Internet-Based System, Shanghai, China, 16–18 December 2007; pp. 167–174.

41. Pellegrino, L.; Baude, F.; Alshabani, I. Towards a scalable cloud- based RDF storage offering a pub/sub query
service. In Proceedings of the CLOUD COMPUTING 3rd International Conference on Cloud Computing
and GRIDs Virtualization, Nice, France, 22–27 July 2012; pp. 243–246.

42. Pellegrino, L.; Huet, F.; Baude, F.; Alshabani, A. A Distributed Publish/Subscribe System for RDF Data.
In Proceedings of the Data Management in Cloud, Grid and P2P Systems, Prague, Czech Republic, 28–29 August
2013; Hameurlain, A., Rahayu, W., Taniar, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 39–50.

43. Abdullah, H.; Rinne, M.; Törmä, S.; Nuutila, E. Efficient Matching of SPARQL Subscriptions Using Rete.
In Proceedings of the 27th Annual ACM Symposium on Applied Computing, Trento, Italy, 26–30 March
2012; ACM: New York, NY, USA, 2012; pp. 372–377.

44. Rinne, M.; Abdullah, H.; Törmä, S.; Nuutila, E. Processing Heterogeneous RDF Events with Standing
SPARQL Update Rules. In Proceedings of the Confederated International Conferences on the Move to
Meaningful Internet Systems: OTM 2012, Rome, Italy, 10–14 September 2012; Meersman, R., Panetto, H.,
Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi, S., Cruz, I.F., Eds.;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 797–806.

45. Murth, M. A Semantic Event Notification Service for Knowledge-Driven Coordination. In Proceedings of
the 1st Int’l. Workshop on Emergent Semantics and Cooperation in Open Systems (ESTEEM), Rome, Italy,
1 July 2008.

46. Murth, M.; Kühn, E. A heuristics framework for semantic subscription processing. In The Semantic Web:
Research and Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 96–110.

47. Honkola, J.; Laine, H.; Brown, R.; Tyrkko, O. Smart-M3 information sharing platform. In Proceedings of the
IEEE symposium on Computers and Communications, Riccione, Italy, 22–25 June 2010; pp. 1041–1046.

48. Suomalainen, J.; Hyttinen, P.; Tarvainen, P. Secure Information Sharing Between Heterogeneous Embedded
Devices. In Proceedings of the Fourth European Conference on Software Architecture: Companion Volume,
Copenhagen, Denmark, 23–26 August 2010; ACM: New York, NY, USA, 2010; pp. 205–212.

49. Galov, I.V.; Lomov, A.A.; Korzun, D.G. Design of semantic information broker for localized computing
environments in the internet of things. In Proceedings of the 2015 17th Conference of Open Innovations
Association (FRUCT), Yaroslavl, Russia, 20–24 April 2015; pp. 36–43.

50. Frommhold, M.; Arndt, N.; Tramp, S.; Petersen, N. Publish and Subscribe for RDF in Enterprise Value
Networks. In Proceedings of the Workshop on Linked Data on the Web co-located with 25th International
World Wide Web Conference (WWW 2016), Montreal, Canada, 11–15 April 2016.

51. Passant, A.; Mendes, P.N. SparqlPuSH: Proactive Notification of Data Updates in RDF Stores Using
PubSubHubbub. In Proceedings of the Sixth Workshop on Scripting and Development for the Semantic
Web, co-located with the European Semantic Web Conference 2010 (ESWC 2010), Crete, Greece, 31 May 2010;
Volume 699.

http://dx.doi.org/10.1016/0004-3702(82)90020-0


Future Internet 2018, 10, 36 32 of 33

52. Avižienis, A.; Laprie, J.C.; Randell, B. Dependability and Its Threats: A Taxonomy. In Proceedings of the
Building the Information Society, Toulouse, France, 22–27 August 2004; Jacquart, R., Ed.; Springer: Boston,
MA, USA, 2004; pp. 91–120.

53. Rinne, M.; Nuutila, E.; Törmä, S. INSTANS: High-performance event processing with standard RDF and
SPARQL. In Proceedings of the ISWC 2012 Posters and Demonstrations Track, Boston, MA, USA, 13–15
November 2012; Volume 914.

54. Dividino, R.; Gröner, G. Which of the Following SPARQL Queries Are Similar? Why? In Proceedings of the
First International Conference on Linked Data for Information Extraction, Sydney, Australia, 21 October
2013; CEUR-WS.org: Aachen, Germany, 2013; Volume 1057, pp. 2–13.

55. Viola, F.; D’Elia, A.; Roffia, L.; Salmon Cinotti, T. Performance Evaluation Suite for Semantic Publish-Subscribe
Message-oriented Middlewares. In Proceedings of the UBICOMM 2016, The Tenth International Conference
on Mobile Ubiquitous Computing, Systems, Services and Technologies, Venice, Italy, 9–13 October 2016;
pp. 190–196.

56. Beel, J.; Gipp, B.; Langer, S.; Breitinger, C. Research-paper recommender systems: A literature survey. Int. J.
Digit. Libr. 2016, 17, 305–338.[CrossRef]

57. Tanuja, L.; Sandhya, G.; Shilpi, A. Using Semantic Recommenders for Personalized Recommendations. Int. J.
Recent Innov. Trends Comput. Commun. 2017, 5, 151–154.

58. Yang, R.; Hu, W.; Qu, Y. Using Semantic Technology to Improve Recommender Systems Based on Slope One.
In Semantic Web and Web Science; Li, J., Qi, G., Zhao, D., Nejdl, W., Zheng, H.T., Eds.; Springer: New York, NY,
USA, 2013; pp. 11–23.

59. Felfernig, A.; Friedrich, G.; Jannach, D.; Stumptner, M.; Zanker, M. Configuration knowledge representations
for Semantic Web applications. Artif. Intell. Eng. Des. Anal. Manuf. 2003, 17, 31–50.[CrossRef]

60. Felfernig, A.; Erdeniz, S.P.; Jeran, M.; Akcay, A.; Azzoni, P.; Maiero, M.; Doukas, C. Recommendation
Technologies for IoT Edge Devices. In Proceedings of the 14th International Conference on Mobile
Systems and Pervasive Computing (MobiSPC 2017)/12th International Conference on Future Networks and
Communications (FNC 2017)/Affiliated Workshops, Leuven, Belgium, 24–26 July 2017; pp. 504–509.

61. Ostrowski, D.; Rychtyckyj, N.; MacNeille, P.; Kim, M. Integration of Big Data Using Semantic Web
Technologies. In Proceedings of the 2016 IEEE Tenth International Conference on Semantic Computing
(ICSC), Laguna Hills, CA, USA, 4–6 February 2016; pp. 382–385.

62. Ordóñez de Pablos, P. Cases on Open-Linked Data and Semantic Web Applications; Information Science Reference;
IGI Global: Hershey, PA, USA, 2013.

63. Garcia, R. Semantic Web for Business: Cases and Applications; Advances in E-Business Research: Information
Science Reference; IGI Global: Hershey, PA, USA, 2008.

64. Lenzerini, M. Data Integration: A Theoretical Perspective. In Proceedings of the Twenty-first ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Madison, Wisconsin, 3–5 June
2002; ACM: New York, NY, USA, 2002; pp. 233–246.

65. Hohenecker, P.; Lukasiewicz, T. Deep Learning for Ontology Reasoning. arXiv 2017, arXiv:1705.10342.
66. Raimond, Y.; Scott, T.; Oliver, S.; Sinclair, P.; Smethurst, M. Use of Semantic Web technologies on the BBC

Web Sites. In Linking Enterprise Data; Springer US: Boston, MA, USA, 2010; pp. 263–283.
67. Raimond, Y.; Smethurst, M.; McParland, A.; Lowis, C. Using the Past to Explain the Present: Interlinking

Current Affairs with Archives via the Semantic Web. In Proceedings of the Semantic Web–ISWC 2013, Sydney,
NSW, Australia, 21–25 October 2013; Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X.,
Aroyo, L., Noy, N., Welty, C., Janowicz, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 146–161.

68. Mauthe, A.; Thomas, P. Professional Content Management Systems: Handling Digital Media Assets; Wiley:
Hoboken, NJ, USA, 2005.

69. Rinne, M.; Nuutila, E. Constructing Event Processing Systems of Layered and Heterogeneous Events with
SPARQL. J. Data Semant. 2017, 6, 57–69.[CrossRef]

70. D’Elia, A.; Perilli, L.; Viola, F.; Roffia, L.; Antoniazzi, F.; Canegallo, R.; Salmon Cinotti, T. A self-powered
WSAN for energy efficient heat distribution. In Proceedings of the SAS 2016—Sensors Applications
Symposium, Catania, Italy, 20–22 April 2016; pp. 1–6.

http://dx.doi.org/10.1007/s00799-015-0156-0
http://dx.doi.org/10.1017/S0890060403171041
http://dx.doi.org/10.1007/s13740-016-0073-4


Future Internet 2018, 10, 36 33 of 33

71. Pizzotti, M.; Perilli, L.; del Prete, M.; Fabbri, D.; Canegallo, R.; Dini, M.; Masotti, D.; Costanzo, A.;
Franchi Scarselli, E.; Romani, A. A Long-Distance RF-Powered Sensor Node with Adaptive Power Management
for IoT Applications. Sensors 2017, 17, 1732.[CrossRef]

72. Maarala, A.I.; Su, X.; Riekki, J. Semantic data provisioning and reasoning for the Internet of Things.
In Proceedings of the 2014 IEEE International Conference on the Internet of Things (IOT 2014), Cambridge,
MA, USA, 6–8 October 2014; pp. 67–72.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s17081732
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	SPARQL 1.1 Secure Event Protocol and Subscribe Language
	Subscribe Primitive
	Unsubscribe Primitive
	Notification
	Client Registration
	Client Authentication
	Secure Primitives: Query, Update, Subscribe and Unsubscribe
	Error Responses

	Broker Design
	Protocols And Dependability
	Requests Scheduling and Responses Dispatching
	Processing
	Subscription Processing Unit Manager 

	Application Design Pattern
	Application Domains
	Software Framework and Application Design Pattern
	The JSON SPARQL Application Profile
	Examples of the Design of a SEPA Application
	Experimental Evaluation and Preliminary Results 

	Conclusions
	SPARQL 1.1 SE Protocol and Subscribe Language
	JSON SPARQL Application Profile
	JSAP of the Chat and MQTT Examples
	References

