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Abstract: One of the most important research topics nowadays is human action recognition, which is
of significant interest to the computer vision and machine learning communities. Some of the factors
that hamper it include changes in postures and shapes and the memory space and time required to
gather, store, label, and process the pictures. During our research, we noted a considerable complexity
to recognize human actions from different viewpoints, and this can be explained by the position and
orientation of the viewer related to the position of the subject. We attempted to address this issue
in this paper by learning different special view-invariant facets that are robust to view variations.
Moreover, we focused on providing a solution to this challenge by exploring view-specific as well
as view-shared facets utilizing a novel deep model called the sample-affinity matrix (SAM). These
models can accurately determine the similarities among samples of videos in diverse angles of
the camera and enable us to precisely fine-tune transfer between various views and learn more
detailed shared facets found in cross-view action identification. Additionally, we proposed a novel
view-invariant facets algorithm that enabled us to better comprehend the internal processes of our
project. Using a series of experiments applied on INRIA Xmas Motion Acquisition Sequences (IXMAS)
and the Northwestern–UCLA Multi-view Action 3D (NUMA) datasets, we were able to show that
our technique performs much better than state-of-the-art techniques.

Keywords: action recognition; perspective; sample-affinity matrix; cross-view actions; NUMA; IXMAS

1. Introduction

Human action data are all-encompassing, which is why such data are of significant interest to
the computer vision [1,2] as well as machine learning communities [3,4]. There are various views
through which we can study human action data. One example is a group of dynamic actions captured
by different views of the camera, as shown in Figure 1. Classifying this kind of data is quite difficult in
a cross-view situation because the raw data are captured at varying locations by different cameras and,
thus, could look completely different. A perfect example is represented in Figure 1a, where the action
captured from a top view appears different from the one captured from a side view. This implies that
features obtained from a single camera view cannot provide enough discriminative aspects to classify
actions in another camera view. Many studies concentrate on ways of developing view-invariant
pictures for action recognition [5,6], where all the actions captured on video are treated as frame time
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series. Many approaches have utilized a self-similarity matrix (SSM) descriptor [5,7] to replay actions
and have proven to be robust in cross-view outlines. Information shared among camera views are each
kept and transferred to all the views [7,8]. It is assumed that the shared features contribute equally
with samples from different views. Through our research, we found that this assumption is not true
because the discriminative parameters of one of the views could be very far away from the parameters
of other views. Therefore, this may result in a misunderstanding by classifiers, as they do not control
the sharing of data between action categories, which would result in an incorrect model result.
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Figure 1. The figure shows a multi-view situation where (a) shows how human actions are captured
from different perspectives, while (b) shows how various sensors are connected on the body of a
human being so as to gather enough action data (images from Google Images).

As a response to the assumption of the equal contribution of share features, in this paper, we put
forward original networks that can learn view-invariant features for cross-view action categorization,
and we have introduced a novel sample-affinity matrix (SAM) that can accurately determine similarities
of video samples. By encouraging incoherence between shared and private features, we learned
discriminative view-invariant information. Our approaches retain two types of features—strong
private features as well as shared features across views acquired by a single autoencoder. SAM focuses
on the resemblance between samples, but SSM concentrates on the video frames. The vanity between
these facets was achieved by strengthening the coherence between the mapping matrices. In addition,
in a layer-wise fashion, we piled several layers of features in order to learn them. After a set of
experiments was carried out on three multi-view sets of data, we found out that our method performs
much better than state-of-the-art methods. The following pieces of information are covered in the next
sections of this paper. We first analyze works related to our topic and follow this with an analysis
of view-invariant features. Then, we present a detailed description of the structure of our method
together with the algorithm used. Finally, through a set of experiments, we show that our method
performs much better than state-of-the-art methods.

2. Research Problem Definition

It is difficult for various view-invariant methods to find similarity among various frames captured
from different RGB camera (standard CMOS sensor camera) views at the same time. However, with an
RGB-D camera (depth sensor added), this is not an issue because the camera provides a powerful
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feature that allows for easy extraction of the required feature from the plan (Figure 2). The only
challenge is generating artificial views that have all the facets necessary for understanding the action.
In this paper, we also introduce a novel algorithm based on sample affine matrix (SAM) and various
powerful autoencoders that allows for extraction of shared and unshared facets needed for identifying
human action.
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3. Related Research

A multi-view study, as cited in [4], establishes the similarities between two different views.
There are several other published methods used to serve the same purpose. These methods have been
published with the intention of concentrating their interest on expressive as well as discriminative facets
from low-level observations [9–14]. Similarly, [15] entirely used the intrinsic characteristics extracted
from the views by combining color and depth information, which resulted in the improvement of
their perspective-invariant feature transform (PIFT) for RGB-D images. However, [15] focused on
the combined used of the RGB and depth component and gave less attention to the features (shared
and global) to be extracted from each viewpoint. Zhang et al. [16] obtained a dictionary that can be
used to convert 2D video to a view-invariant sparse representation, as well as a classifier to recognize
actions with an arbitrary view by using an end-to-end framework to learn view invariance jointly.
The authors of [16] also introduced a 3D trajectory which can describe the action better; however,
it does not emphasize the percentage of contribution of each view to that trajectory. Kerola et al. [17]
took a temporal sequence of graphs as an illustration of a graph representation action and used that to
create a feature descriptor by applying a spectral graph wavelet transform. The authors of [17] also
emphasized two well-known types of view-invariant graphs—key point-based and skeleton-based
graphs. Rahmani et al. [18] devised a histogram of oriented principal components (HOPC) that is
robust to noise. Unlike several articles, [18] obtained cloud points by directly dealing with point
clouds for cross-view action recognition from unknown and unseen views. Also, [19] proposed a
different approach when extracted functionality is needed. Hsu et al. [19] used the Euclidean distance
between the spatiotemporal characteristic vectors represented in a spatiotemporal matrix (STM).
Daumé and Kumar [20] presented a cotraining technique that trains various learning algorithms for
every view and determines a certain correlation between two pairs of information among various views.
Zhang et al. [21] and He et al. [22] introduced another approach called canonical correlation analysis
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(CCA) that helps in monitoring a common space among various views. Moreover, in [23], a challenge
was encountered when studying an incomplete view owing to an assumption that multiple views are
created from a shared space. Kumar et al. [24] provided another approach called generalized multi-view
analysis (GMA). According to Liu et al. [11], which found that matrix factorization was applicable
in the clustering of multiple views, [10] was introduced alongside the collective matrix factorization
(CMF) method, which learns relationships between feature matrices. Similarly, Ding et al. [14] came
up with a low-rank controlled matrix factorization model that provides a solution to the challenge
faced in the multi-view learning. Various studies have tried to provide solutions to the challenges
associated with view-invariant action recognition. One of these challenges is related to the generation
of action labels in a scenario where multiple views are involved. Özuysal et al. [25] introduced an
approach that offers a structured categorization of the 3D histogram of oriented gradients (HOG) and
local separation with an intention to represent successive images. Dexter and colleagues [5,26] showed
an SSM-based approach that extracts view-invariant descriptors in a log-polar block of the matrix by
determining a frame-wise resemblance matrix in a video. However, a multitask learning technique can
be used to enhance the SSM power of the representation [7]. This technique comprises shared facets
among different views as examined in [6,8,27,28], where more explicit approaches exist. Gao et al. [6]
used an MRM-Lasso method to keep latent adjustment through various views. This was achieved by
examining a lowly ranked matrix comprising weights of specific patterns. However, Jiang et al. [8]
and Jiang and Zheng [29] introduced handy dictionary pairs that support the sparse common feature
space. Compared to other methods [20,22,23,30], our approach enables us to keep multiple layers of
learners and to examine view-invariant facets more effectively. In addition, it enables us to record
complicated movements that exist in certain views. Our approach uses private facets and supports
the inconsistencies among shared as well as private facets. Compared to other methods of sharing
knowledge [6,8,27,31,32], our approach achieves the sharing of information among different views
as per sample similarities. Since samples of data can appear the same in some views, our method
provides a solution that enables us to distinguish different classes. While [30] calculated between
and within classes of Laplacian matrices, SAM Z approach takes directly within and between classes.
Moreover, the space between two views of one sample is determined using SAM Z. Such a distance
cannot be encoded by [30].

4. Sharp Study of View-Invariant Features

4.1. Sample-Affinity Matrix (SAM)

SAM is used here to determine the similarities among views (a pair of videos). Assume we have as
input two training videos with N views: {Xt,yt}t

N=1, where the data of the view frame at the interval of
time t, Xt has of N actions videos Xt = [x1

t, ···, xt
N] ∈ Rd×N with their associate labels yt = [yt

1, ···, yt
N].

SAM Z ∈ RV N×V N shows as a block diagonal matrix:

Z = diag(Z1, . . . , ZN), Zi =


0 Z12

i . . . Z1V
i

Z21
i 0 . . . Z2V

i
...

...
. . .

...
ZV1

i ZV2
i . . . 0

 (1)

NB: dial(.) generates a diagonal matrix, and Zmn
i shows the space between two view frames in the

ith sample obtained by Zmn
i = exp(|| Xn – Xm||/2c) parameterized by c. In different views within one

class, the appearance of variations is characterized by the block Zi in Z. This illustrates clearly how an
action might be seen differently from different viewpoints and allows us to share information between
views that results in the construction of robust cross-view features. Furthermore, the presence of 0 on
the off-diagonal blocks in our SAM Z limits the transfer of information between classes in the same
view, with the direct impact of encouraging the distance between the features from various classes
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having the same view frame. It also gives us the possibility of differentiating multiple action categories
if they seem similar in some view frames.

4.2. Preliminary on Autoencoders

Based on popular deep learning approaches [33–35], we have built an autoencoder (AE) that links
the raw input X to hidden unit H using a powerful “encoder” e1(.): H = e1(X) and uses the “decoder”
e2(.): O = e2(H) to connect the concealed units to outputs. The objective of studying AE is to strengthen
matching or related input and output pairs where the restoration failure is decreased once decoding
is over:

min ∑N
i=1 ‖ Xi− e2(e1(Xi)) ‖ 2 (2)

where N is the number of training samples. As the process of reconstruction keeps track of incoming
information, neurons in the latent layer represent the inputs. On the other hand, the two-phase coding
and decoding in autoencoders [33] is emphasized on the marginalized stacked denoising autoencoder
(mSDA), which is used to reap the ruined information by use of one mapping W:

min ∑N
i=1 ‖ Yi− ãi ‖ 2 (3)

where ã represents the corrupted version of our Yi and computes by assigning 0 to each feature with
a given probability p. Regarding the mSDA method, let us understand that for achieving a better
result, it needs to pass n times over the training set with a different corruption each time. This causes a
nonconformity regularization [36]. In the objective to achieve a robust transformation matrix W, n is
set as n→ ∞ so that mSDA will effectively use an infinite number of noisy data copies. Furthermore,
mSDA is solved in closed form and is also stackable.

4.3. Single-Layer Feature Learning

As mentioned so far, our proposed method is based on mSDA. We aimed to get the shared facets
among private features, especially those that belong to a single view frame and multiple view frames
for cross-view action recognition categorization. Furthermore, in order to construct more robust
features that are aware of the very large motion difference in diverse view frames, we introduced SAM
Z to learn shared facets with the objective of equating information among view frames.

By the help of the objective function below, we have learned private and shared features:

min
W,{Gv}

∆, ∆=
∣∣∣∣∣∣WX̃− XZ

∣∣∣∣∣∣2
F
+∑v[ ∝

∣∣∣∣∣∣GvX̃v − Xv
∣∣∣∣∣∣2

F
+ β

∣∣∣∣WTGv
∣∣∣∣2

F+

δ Tr
(

PvXvLXvT PvT)] (4)

where W and {Gv}V
v=1 are, respectively, the mapping matrix used to learn shared features and a

collection of mapping matrices used to learn private features of each view frame, and pv can be

expressed as pv = (W;Gv). Equation (4) Consists of four expressions: ψ =
∣∣∣∣∣∣WX̃− XZ

∣∣∣∣∣∣2
F

is used to
learn shared features (SF) among view frames. SF view is particularly used in the reconstruction
process of the action data taken from a single view frame with the help of the data extracted
from other view frames. To ascertain certain unshared facets that seem similar to shared features,

the second terms is φv =
∣∣∣∣∣∣GvX̃v − Xv

∣∣∣∣∣∣2
F
. Nevertheless, r1v =

∣∣∣∣WTGv
∣∣∣∣ 2

F, the third term, minimizes
redundancies between the mapping matrices, and r2v = Tr (Pv Xv LXvT PvT), as the fourth term,
emphasizes the similarity of the private and shared features belonging to the same class and view
frame. The parameters α, β, and γ are discussed below. However, we can introduce them as elements
used to balance the components discussed beforehand. It is important to note that data obtained from
all view frames in cross-view action recognition are availed in training so that our model can learn
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private and shared features. However, with the testing phase, data collected from some view frames
are not present.

4.3.1. Shared Features

The action recognition ability found in humans is easily understood from a single view, but does
how the action appear if observed from multiple views? This is possible, since we regularly observe
the same action from several views. This problem is one of the reasons why we tried to restore the
action data view from one point with the help of action data from multiple views. Considering ψ,
the disparity between the data of all the V source views and the data of the vth target view can be
expressed as:

ψ = ∑N
i=1 ∑V

v=1

∣∣∣∣∣∣WX̃v
i −∑u Xu

i Zuv
i

∣∣∣∣∣∣2 =
∣∣∣∣∣∣WX̃ − X Z

∣∣∣∣∣∣2
F

(5)

where Zuv
i represents the value measuring the endowment of the u-th view action in the remodeling of

the sample Xv
i of the vth view frame. Also, W is a single linear mapping for the corrupted input X̃v

i of
all the views frames with W ∈ Rd∗d. From the sample-affinity matrix, which encodes all the values
{Zuv

i }, also called weights, we have Z ∈ RVN∗VN . It is good to mention that the corrupted version
of X matrices, which is X̃ ∈ Rd∗VN [33], performs a drop out regularization on the model [33,36].
Furthermore, to accurately regulate the information transfer among view frames and learn more easily
discriminative shared features, SAM Z is used. As an alternative of using equal values (weights) [8],
all the samples are used, so that we remodel the i-th training sample taking from the vth view. Let us
note, by the help of Figure 3, a greater similarity will be found between a sample of side view frame
(S1) and side view t (which is the target view) compared to the one found between S1 and top view
frame (S2). These result in the increase of weight for S1 with the objective to learn more expressive
features for t.
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4.3.2. Private Features

Selective information can still be found in each view despite the information shared across view
frames. By improving the robustness of that information, in [33], we have used robust feature learning,
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and by using a matrix Gv ∈ Rd∗d, we have “learned view specific private features” for the samples in
vth view frame:

∅v = ∑N
i=1

∣∣∣∣∣∣ GvX̃v
i − Xv

∣∣∣∣∣∣2= ∣∣∣∣∣∣ GvX̃v
i − Xv

∣∣∣∣∣∣2
F

(6)

where the feature matrix Xv has for corrupted version X̃v of the vth view. Using associate inputs of
different view frames, we obtained the V mapping matrices {Gv}V

v=1. We should take into consideration
that Equation (6) can keep some redundant shared information from vth view, but by promoting the
inconsistency among the view-specific mapping matrix Gv and view-shared mapping matrix W,
we reduce some redundancy in our project:

r1v =
∣∣∣∣∣∣WTGv

∣∣∣∣∣∣2
F

(7)

4.3.3. Label Information

We should keep in mind that action data collected from different viewpoints may come with a
considerable proportion of posture and motion variations. Thus, features (private and shared) collected
by applying Equations (5) and (7) could appear not sufficiently selective for classifying action with
considerable variation. Facing this issue, our approach leads to the same view and the same class to
enforce similarity between private and shared features. To normalize view-specific mapping matrix
Gv and view-shared mapping matrix W, we have defined a “within class” and “within view frame”
variance as:

r2v = ∑N
i=1 ∑N

j=1

[∣∣∣∣∣∣GvXv
i − GvXv

j

∣∣∣∣∣∣2 + ∣∣∣∣∣∣WXv
i −WXv

j

∣∣∣∣∣∣2]
= Tr

(
GvXvLXvTGvT ) + Tr

(
WXvLXvTWT)

= Tr
(

PvXvLXvT PvT) (8)

where L ∈ RN∗N and L = D − A is label view the Laplacian matrix with degree matrix D(i,j) = ∑N
i=1 a(i,j)

and the adjacent matrix A. Note that the (i,j)-th element: a(i,j) in A is 1 if yi = yj or 0 , if yi 6= yj.
As we have implicitly required facets from various view frames to be similar in Equation (5), we do
not need it here. Furthermore, by using facets from different view frames of a given sample, we can
better illustrate expected facets of a given sample. This can be possible due to the mapping function
(based on mapping matrix W) applied on the shared features (SF) so that the SF is mapped to a new
space. Base on label information results obtained from Equation (8), in a supervised approach (SA) and
by considering γ = 0, we can derive an unsupervised equation. In the following lines, a supervised
approach is renaming.

4.4. Learning Process

Using a coordinate convergent algorithm, we are able to optimize parameters W and the V mapping
matrices {Gv}V

v=1. Our process resolves the optimization problem in Equation (5). Furthermore, after
determining the derivative of ∆w.r.t to the parameter and allocating 0 to it, one parameter matrix within
every step is updated by setting the others. First of all, we update W by fixing the derivative, d∆

dW = 0 as:

W =
[
∑v

(
βXvLGvT + γGvGvT + I

)]−1
(XZX̃T)[X̃X̃T + I]−1 (9)

Keep in mind that in updating W, matrices {Gv}V
v=1 are fixed; also by performing m→ ∞ times

the corruption, we obtain after computation F1 and F2 for X̃X̃T and XZX̃T , respectively. As referred to
in [33], the weak law of large numbers applied on X̃X̃T and XZX̃T gave us the computation values:
F1 = Ep (X̃X̃T) and F2 = Ep (XZX̃T), where p is the corruption probability.
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Similar to the previous update schema, by fixing the derivative d∆
dGv = 0, parameter Gv is updated

with {Gu}V
u=1,u 6=1 and W sets with default value. Furthermore, XvX̃vT and X̃vX̃vT computation values

are obtained by applying Ep (expectation with corruption p):

Gv=
(

βXvLXvT + γW WT + I
)−1

(µXvX̃vT)[µX̃vX̃vT + I]−1 (10)

As a resolution approach of Equation (1)’s problem, let us subdivide it into V + 1 subproblems,
where by considering one variable, each one is a convex problem. Thus, an optimal solution to each
subproblem is surely found by using the learning algorithm which will consequently converge to a
local solution.

Every mentioned method has some advantages and disadvantages where need to be taken into
account when designing solution as shown in table (Table 1). We are also defining our own approach
as the alternative.

Table 1. Advantages and disadvantages of used approaches.

Approach Advantages Disadvantages

Multi-view learning
approach [9–14] Focuses on expressive and discriminative features Does not focus much on private features

Cotraining method [20]
Trains various learning algorithms for every view and
finds explicit correlation of two pairs of information
among various views

Cannot handle more than two views
simultaneously

[21,22]
Maintains common distance between views, and utilizes
the two projection matrices on a common feature space
in order to map multimodal information

Has little interest in private features

[25] method It achieves a structured categorization of the 3D
histogram of oriented gradients (HOG). It does not keep enough layers of learners.

[30] method Calculates between-class as well as within-class
Laplacian matrices

Does not measure the space between two
views of the same sample.

Our approach

It can keep several layers of learners so as to study
view-invariant features in a more effective manner

Because of the large amount of
computation involved, the approach can
process fewer views

It equipoises the sharing of information among views,
as per sample similarities Requires the use of various computer

resources.
Measures the distance between two views using SAM Z

5. The Design of the Proposed Approach—Deep Architecture

From the papers [33,37], we find a deep model developed by piling multiple layers facets discussed
earlier in single layer feature learning where we utilized the nonlinear feature mapping function θ(.)
on the output of every layer, so that for Cv

g = θ(XvGv) and Cw = θ(XW), the outcome is a series
of matrices of latent features. We utilized a “layer wise” training approach to train the networks{

Gv
k
}V,K

v=1, k=1 and {Wk}K
k=1 that have K layers. It is imperative to note that the input of the (k + 1)th

layer is the output of the nth layer Cv
kg and Ckw . This gives the input of our matrix

{
Gv

k+1

}V

v=1
and

Wk+1. Moreover, since k = 0 (implying layer 1 because there are K layers), X and Xv have for raw
features Cv

0g and C0w in that order.

5.1. Flow Chart of our Project

Figure 3 shows the steps of our project. These steps are described below:

• Take three videos from different perspectives at the same time: Here, we try to capture images
of a person from varying angles.

• We then obtain key features from the captured pictures by utilizing Equations (5)–(7): The pictures
obviously have various features in common because they belong to one subject and they were
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taken at the same time. These features are called shared features, while the unique features that
every picture has are called private features. We submit these two types of features to the next
component as input.

• Applying a novel invariant feature algorithm: This step is a learning point pertinent for
the process.

• Create the target views: In this step, we solve the sample-affinity matrix Z for every arrow.
We also solve the W mapping matrix and create the target view having all the relevant features
that will help in understanding the action.

• Allocate a label and an explanation of the action taking place.

5.2. Novel View-Invariant Features Algorithm

While in this paper we are targeting to present a powerful view-invariant feature, considering
two subjects acting in the same environment as shown in figure (Figure 4a), our algorithm selects the
zone of interest, extracts share, and private features as shown in figure (Figure 4b). It uses SAM to
determine the similarities among views (a pair of videos). Additionally, figure (Figure 4c) shows a
Clear mapping among view as described by our computed W mapping matrix.

Using our supervising technique, we determined the similarity between our target view and
source views (Figure 5). A view shared mapping matrix W can be used to accomplish this process.
The matrix is incorporated into Equation (5) to calculate weight value (Z) and get the shared feature.
The arrow with the largest weight is the one situated between our target view and source view.

Here (Figure 6), we derived a supervised approach from our previous one. W is the mapping
matrix updated through several iterations (as show in our algorithm), while the shared and private
features are determined. We aimed through our approach to determine or generate a target view
(obtained from several viewpoints after applying W matrix) accurate enough so that the weight (Z) of
the arrow will be same as the one obtained after applying Equation (5):

Input:
{(

Xv
i , yi

)}V,N
v=1,i=i

Output: {Gv
k}

V,K
v=1,k=1, {Wk}K

k=1
i← 0
While Layer i ≤ k do

Input Cwi for learning Wk.
Input Cv

gi for learning Gv
k

Do
Update Wk applying (9);
Update {Gv

k}
V
v=1 applying (10);

While converge
Compute Cwk by : Cwk = ϑ(CwiWi).
Compute {Gv

gk}
V
v=1

by: Cv
ig = ϑ(Cv

giG
v
i ).

i ← i + 1
end while
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Figure 6. Extraction of features of sources view followed by the computation of the mapping matrix
(W) as well as the target view (t) (image obtained from a public dataset [38]).

In opposite of [3,6,8,27,28] where features extracted from views are used individually, we further
process those features, and we derive a target view which contends the combined relevant features.

As specified in (Figures 4 and 6). Our approach achieves state of the art result because we apply
the recognition algorithm on the target view. Thus, it is done at this level as we have a single viewpoint.

6. Experiment

We evaluated our method using three multi-view datasets and the Daily and Sports Activities
(DSA) dataset [3], multi-view IXMAS dataset [39], and the Northwestern–UCLA Multi-view Action 3D
(NUMA) dataset [40]). It is important to note that the datasets we used were also used in many studies,
such as [3,6,8,27,28]. Many-to-one and one-to-one were treated here as two cross-view categorization
situations. The first was trained on one view and examined another view, but the second was trained
on V-1 views and examined the remaining views. The corresponding Xv ← 0 in Equation (5) was used
for the vth view meant for testing. In addition, we employed the intersection kernel support vector
machine (IKSVM) as our classifier with parameters C = 1. γ = 1, β = 1, α = 1, p = 0, and K = 1 were
default parameters with the default number of layers being 1. We also took into consideration NUMA
and IXMAS. These are datasets for multiple camera view video. We acquired the first from three Kinect
sensors in five scenarios comprising 10 human actions, while the second was taken from one top-view
camera, and four side-view cameras. In addition, we employed a k-means clustering approach to create
video words and quantize the descriptors. This led to the likelihood of using a histogram of the feature
to represent a given video. As a further contribution, we were curious to see how our model would
react if the recording was not done continuously for the performing action; that is, will it be possible for
our model to keep the same accuracy if we remove some frame of the video? As described in Section 4.1,
for an interval of time t, we have N actions. If we pause the recording during a small period (p << t),
we can still see a flow described by feature points of the target view, as shown in Figure 7.
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Figure 7. Three-dimensional dense trajectories of the target view obtained by following each feature
point during the interval of time t. This can be further interpreted as the set of positions occupied by
each feature point of the target view [16].

It is also worth noting that V feature vectors constituted a representation of an action taken from
V camera angles.

6.1. Using the IXMAS Dataset

Just like in [33], we obtained a histogram of intense trajectory and slanting optical flow and a
dictionary for every feature was obtained by making use of k-means. In addition, a bag-of-words
model was used to turn every video into a feature and encode each of the features. A “leave one
action class out” training scheme was used to obtain a reasonable concurrence, just like in [8] and [28].
A single action class was used every time we needed to test. Moreover, we removed all videos from
the feature steps of learning in order to examine the ability of our method to transfer information,
and we introduced a fifth component, which was the result of our method when we performed several
p pauses (p << t) (Table 2).

Table 2. One-to-one cross-view recognition outcome for different controlled methods on the IXMAS
dataset. The values enclosed in brackets are the recognition accuracies for [8,29,41,42] and our
supervised method (with and without the p pause).

TEST VIEW 0 TEST VIEW 1 TEST VIEW 2 TEST VIEW 3 TEST VIEW 4

TRAINING VIEW 0 (71, 99.4, 99.1,
100, 97.6)

(82, 96.4, 99.3,
100, 86.8) NA (76, 97.3, 100,

100, 94.2)
(72, 90.0, 96.4,

100, 88.1)

TRAINING VIEW 1 (80, 85.8, 99.7,
100, 94.3)

(77, T81.5, 98.3,
100, 88.2)

(73, 93.3, 97.0,
100, 92.1)

(72, 83.9, 98.9,
100, 96.3) NA

TRAINING VIEW 2 (75, 98.2, 90.0,
100, 94.8)

(75, 97.6, 99.7,
100, 91.3)

(73, 99.7, 98.2,
99.4, 98.1) NA (76, 90.0, 96.4,

100, 89.5)

TRAINING VIEW 3 (72, 98.8, 100,
100, 94.2) NA (74, 99.7, 97.0,

99.7, 96.3)
(70, 92.7, 89.7,

100, 87.9)
(66, 90.6, 100,

99.7, 89.7)

TRAINING VIEW 4 NA (79, 98.8, 98.5,
100, 93.2)

(79, 99.1, 99.7,
99.7, 93.5)

(68, 99.4, 99.7,
100, 97.2)

(76, 92.7, 99.7,
100, 84.9)

Average (74, 95.5, 97.2,
100, 95.2)

(77, 93.6, 98.3,
100, 89.4)

(76, 98.0, 98.7,
99.7, 95)

(73, 93.3, 97.0,
100, 93.9)

(72, 92.4, 98.9,
99.9, 88)

6.1.1. Many-to-One Cross-View Action Recognition

A single view was used in our experiment as a test view, while all other views were used for
training. The experiment enabled us to evaluate our method of learning shared and private features.

The renowned methods in [5,25,28,29] were compared with our method and it was found that
approximately 99.9% was achieved by our method, as shown in Table 3. Our method Seb1 achieved
a better performance compared to the other approaches, which illustrates the benefit of using our
private and shared feature approach in our paper. To determine the resemblance among video samples
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across camera views, our method implements the sample-affinity matrix with the direct consequence
of accurate characterization of the similitude across views by the learned shared features. Furthermore,
the learned private features become more edifying for categorization, as the redundancy between
private and shared features is reduced.

Table 3. One-to-one cross-view recognition results of various unsupervised approaches on the IXMAS
dataset. The results in brackets are the recognition accuracies of [8,27–29,43], and our unsupervised
approach, respectively.

Test View 0 Test View 1 Test View 2 Test View 3 Test View 4

Training view 0 (79.6, 92.1, 99.4,
82.4, 72.1, 100)

(76.6, 89.7, 97.6,
79.4, 86.1, 99.7) NA (79.8, 94.9, 91.2,

85.8, 77.3, 100)
(72.8, 89.1, 100,
71.5, 62.7, 99.7)

Training view 1 (82.0, 83.0, 87.3,
57.1, 48.8, 99.7)

(68.3, 70.6, 87.8,
48.5, 40.9, 100)

(74.0, 89.7, 92.1,
78.8, 70.3, 100)

(71.1, 83.7, 90.0,
51.2, 49.4, 100) NA

Training view 2 (73.0, 97.0, 87.6,
82.4, 82.4, 100)

(74.1, 94.2, 98.2,
80.9, 79.7, 100)

(74.0, 96.7, 99.4,
82.7, 70.9, 100) NA (66.9, 83.9, 95.4,

44.2, 37.9, 100)

Training view 3 (81.2, 97.3, 97.8,
95.5, 90.6, 100) NA (75.8, 96.4, 91.2,

77.6, 79.7, 99.7)
(78.0, 89.7, 78.4,
86.1, 79.1, 99.4)

(70.4, 81.2, 88.4,
40.9, 30.6, 99.7)

Training view 4 NA (79.9, 96.7, 99.1,
92.7, 94.8, 99.7)

(76.8, 97.9, 90.9,
84.2, 69.1, 99.7)

(76.8, 97.6, 88.7,
83.9, 98.9)

(74.8, 84.9, 95.5,
44.2, 39.1, 99.4)

Average (79.0, 94.4, 93.0,
79.4, 74.5, 99.9)

(74.7, 87.8, 95.6,
75.4, 75.4, 99.9)

(75.2, 95.1, 93.4,
80.8, 72.5, 99.9)

(76.4, 91.2, 87.1,
76.8, 72.4, 99.9)

(71.2, 84.8, 95.1,
50.2, 42.6, 99.7)

6.1.2. One-to-One View Action Recognition

In this experiment, we trained our model with information from a single camera view and we
performed the test based on the data extracted from another view. The private features were discarded
here and only learned shared features were utilized since private features of one view do not suffice.

By doing a comparison between our approach (Seb1) and the reported recognition results in
Table 4 of [8,29,44], we can say that our method performed best in 18 out of 20 combinations, which is
considerably better than all the other methods. Again, our approach reached 99.8% in 16 instances,
showing the potency of the learned shared features. Due to the importance of discriminative information
obtained from the label information and the learned shared features, our approach is resistant enough
to viewpoint variation and demonstrates high performance that is cross-view invariant.

Table 4. Many-to-one cross-view action recognition results on the IXMAS dataset, where each column
corresponds to a test view.

Methods Test View 1 Test View 2 Test View 3 Test View 4 Test View 5

Yan et al. [7] 91.2 87.7 82.1 81.5 79.1
Liu et al. [28] 86.1 81.1 80.1 83.6 82.8

Zheng and Jiang [29] 97.0 99.7 97.2 98.0 97.3
Zheng and Jiang [29]-2 99.7 99.7 98.8 99.4 99.1

Zheng et al. [8] 98.5 99.1 99.1 100 90.3
Liu and Shah [44] 76.7 73.3 72.0 73.0 N/A

Weinland et al. [25] 86.7 89.9 86.4 87.6 66.4
Our supervised method 100 99.7 99.5 100 100

6.2. Use of NUMA 3D Dataset

6.2.1. Many-to-One Cross-View Action Recognition

It is good to keep in mind that the features used here are similar to those of the IXMAS dataset.
As mentioned in [40], many-to-one cross-view recognition accuracy in three cross-view scenarios can
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be expressed as cross-camera view, cross-subject, and cross-environment. Following [40], our approach
is compared with [31,40,45–47].

Table 5 shows that our approach is better than [40] Low-resolution visual features (LowR) by
10.4% and 3.9% in cross-environment and cross-view scenario, respectively. Furthermore, in the
cross-subject scenario, it reaches an incredible performance with LowR added to [40]. A close look at the
different comparison shows that the most important gain of performance of Seb1 in cross-environment,
cross-subject, and cross-view scenarios are, respectively, 62.3% (over [48]), 30.4% (over [48]), and 32.0%
(over [31]). This shows an incredible gain of performance obtained by the Seb1 approach due to the
use of SAM to determine similarities of samples in different views and shared and private facts for
modeling cross-view data.

Table 5. Cross-view, cross-environment, and cross-subject action recognition outcomes on the
NUMA dataset.

Methods Cross-Subject Crossview Cross-Environ

Sadanad and Corso [45] 24.6 17.6 N/A
Li et al. [31] 54.2 45.2 28.6

Li and Zickler [38] 50.7 47.8 27.4
Felzenszwalb et al. [47] 74.8 46.1 68.8
Wan et al., LowR + [40] 81.6 73.3 79.3

Wang et al. [40] 78.9 65.3 71.9
Maji et al. [46] 54.9 24.5 48.5

Our supervised method 83.2 77.3 89.8

6.2.2. Parameter Analysis

Let us evaluate the sensibility of our method when we applied α, β, and γ parameters, as shown
in Figure 8. We can observe the mean performance of many-to-one cross-view action recognition given
values of 0.001, 0.01, 0.1, 1, 10, and 100 of parameters α, β, and γ. We concluded that our approach is
insensible to that variation (parameter values). Despite the 2% observed as the large performance gap
when parameters α, β, and γ were set, we came again to the conclusion that our method is robust.
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7. Conclusions

In this paper, we proposed an approach that can label human actions from cross views. Our research
focuses on two new methods using unshared and shared facets to precisely classify human action with
varying appearances and viewpoints. We have introduced a sample-affinity matrix that is used to
determine similarities across views. This matrix has also been used in the monitoring of shared features
as well as in controlling the transfer of information so that the contribution of every sample can be
measured accurately. Our methods can keep several layers of learners to study view-invariant features
more efficiently. It equipoises the sharing of information among views as per sample similarities
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and can measure the distance between two views using SAM Z. We also found that our method is
robust to some variation in the recording time, as shown in Table 2. However, we noticed during
our experiments that our approach required the use of various computer resources. We will further
improve our model so that it uses fewer computational resources. To also help in measuring the
contribution of every sample precisely, we carried out a series of experiments in NUMA and IXMAS,
where we found out that our methods performed well when it came to the categorization of cross-view
actions. We have also seen the potentials of our approach, and we now intend to handle image extract
flow and space-time instead of taking it during a time t in order to handle activities. We also intend to
adjust our model and algorithm in a way based on our previous projects [49] so that they enable us to
capture many activities in a more accurate manner.
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