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Abstract: Recently, mobility support has become an important requirement in various Wireless
Sensor Networks (WSNs). Low-power and Lossy Networks (LLNs) are a special type of WSNss
that tolerate a certain degree of packet loss. However, due to the strict resource constraints in the
computation, energy, and memory of LLNs, most routing protocols only support static network
topologies. Data collection and data dissemination are two basic traffic modes in LLNs. Unlike data
collection, data dissemination is less investigated in LLNs. There are two sorts of data-dissemination
methods: point-to-multipoint and point-to-point. In this paper, we focus on the point-to-point
method, which requires the source node to build routes to reach the destination node. We propose an
adaptive routing protocol that integrates together point-to-point traffic and data-collection traffic,
and supports highly mobile scenarios. This protocol quickly reacts to the movement of nodes to
make faster decisions for the next-hop selection in data collection and dynamically build routes for
point-to-point traffic. Results obtained through simulation show that our work outperforms two
generic ad hoc routing protocols AODV and flooding on different performance metrics. Results also
show the efficiency of our work in highly mobile scenarios with multiple traffic patterns.

Keywords: LLN; WSN; routing; mobility

1. Introduction

Wireless Sensor Networks (WSNs) have been widely developed in the last decade, and new
applications are emerging rapidly. Most of these applications are used for surveillance and recording
environmental or physical conditions [1]. In these applications, data collection is the basic traffic mode,
where all traffic in the network is destined to a predefined destination called the sink node. We use the
word upward to describe the transmission direction of packets from sensor nodes towards the sink.
Thus data collection is also called upward routing in this paper. If we consider the Internet of Things
(IoT) application domains, upward routing is not the only traffic mode in the network. The sink node
needs to send commands to certain sensor or actuator nodes to perform actions according to received
information. In these applications, another traffic mode coexists with the upward routing which is
from the sink node to certain sensor nodes, which we call downward routing.

Compared with upward routing, downward routing is much less studied in WSNs. The major
downstream methods use flooding as the basic dissemination method, which propagates data or control
messages to the entire network. This operation costs a lot of resources (energy, bandwidth, computation,
etc.) during transmission and causes network congestion. Some routing protocols, like Routing
Protocol for Low-Power and Lossy Networks (RPL), support downward routing by unicasting data to
the destination through a route path embedded in data-packet headers [2]. Our proposal is based on a
similar technique.
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Nowadays, mobility is an important requirement in many applications. In a monitoring
application, if the observed object is mobile, the network topology is dynamic. In our previous
work [3], we have already proven that traditional upward routing protocols do not support mobility
well. Due to the movement of nodes, topology continuously changes and links between nodes are
unstable. Nodes need to quickly react to adapt to the movement before making a decision for the
next-hop. It is also a hard task for downward routing to cope with mobility. Each time the topology
changes, most of the paths to reach every node by the sink are different. Thus, the sink needs to quickly
reconstruct the topology and rebuild the routes to reach every node in the network, or data are delayed
or lost.

In this paper, we concentrate on mobile scenarios where all nodes except the sink are free to
move, and need to send periodic data to the sink. Simultaneously, the sink needs to periodically
send command packets to randomly selected nodes in the network. We propose a routing protocol,
Adaptive Downward /Upward Protocol (ADUP), which supports both upward and downward routing.
Mobility support of upward routing is achieved according to RRD+ (RSSI, Rank and Dynamic) [4].

The remainder of the paper is organized as follows. In Section 2, we present related work
concerning downward routing in WSNs. Section 3 describes our contribution: the ADUP protocol.
In Section 4, we present and analyze simulation results that show the efficiency of ADUP. Finally,
we conclude the paper and give some future investigations in Section 5.

2. Related Work

Downward routing is less studied than upward routing in WSNs. It can be mainly classified into
three categories: broadcast-based, unicast-based, and broadcast- and unicast-based. Most of these
protocols are proposed for static scenarios and only few of them can cope with mobile scenarios.

Glossy [5] and LWB [6] are broadcast-based routing protocols that use flooding as the basic
dissemination method for propagating data to the entire network. Ferrari et al. [5] proposed a
flooding and time synchronized protocol for WSNs called Glossy. Glossy exploits the flooding
mechanism to implicitly synchronize the network. According to clock values embedded in flooding
packets, all receivers synchronize relatively to the clock of the initiator. Each packet also embeds a
relay counter value, which represents how many times a packet has been relayed. Nodes always
concurrently transmit packets with the same relay counter. Benefiting from concurrent transmission
and synchronization, Glossy avoids interference during flooding and profit from constructive
interference. However, Glossy highly relies on concurrent transmissions and actuation of initiators,
and this results in Glossy not supporting data-collection scenarios, since too many initiators cause
serious congestion in the network and congestion induces inaccurate synchronization. In order to
obtain precise synchronization, Glossy also has a very strict packet-size limit during transmission and
this makes the propagation of variable-sized packets impossible. Low-Power Wireless Bus (LWB) is an
updated version of Glossy, which concurrently supports one-to-many, many-to-one, and many-to-many
traffic. Unlike Glossy, which is simply driven by the events of initiators, LWB appoints a node in
the network to work as a controller and it sends schedules of each initiator. Although LWB reduces
congestion using a central control method, it still meets the same problems of a limited number of
initiators and packet sizes as Glossy. In addition, neither Glossy nor LWB supports mobility.

RPL is a unicast-based routing protocol for Lossy and Low Power Networks (LLNs) that supports
upward and downward traffic patterns. RPL supports two modes of downward traffic: Nonstoring
mode and Storing mode. In Nonstoring mode, Destination Advertisement Object (DAQO) messages are
directly sent to the Destination-Oriented Directed Acyclic Graph (DODAG) root along a default route.
The root establishes source-routing table entries for destinations learned from DAOs. Before sending
a data packet, the root uses source routing to completely specify the route of the packet. In Storing
mode, DAOs are sent to all parent nodes to inform them of the existence of a child node. Once a
data packet is sent by the DODAG root, it must be sent to all one-hop neighbors first. Afterward,
the data packet is sent hop by hop until it reaches its destination or hop limit. In our previous work [4],
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we already showed that RPL does not support upward routing well in mobility. It is also hard for RPL
to support downward routing well in mobility. Due to topology changes in mobility, parent nodes
change frequently. This requires RPL to send DAOs on time in order to keep the downward routing
table up to date, which costs too much overhead. Otherwise, packets are lost due to outdated path
information. Carels et al. [7] proposed a new mechanism to improve RPL downward route updating
of Nonstoring mode in mobility. Instead of sending a no-path DAO to a mobile parent node, a child
node sends a DAO containing no-path information to a static parent node to reach root. However, this
method suffers from high overhead and it relies on the presence of fixed nodes. This means that this
method cannot operate in a scenario where all nodes are mobile.

Due to the inefficiency of DAOs in downward routing, Duquennoy et al. [8] proposed an
opportunistic routing protocol called Opportunistic RPL (ORPL), which is built on-top of RPL. ORPL
deactivates DAO and simply uses the broadcasting of DODAG Information Object (DIO). Each node
owns a routing set that is a set of nodes with lower ranks and this set is propagated inside DIO
messages. The routing set allows nodes to know whether a node is on a path to the destination or not.
ORPL uses anycast instead of unicast to propagate a data packet. Nodes that receive the packet decide
whether to forward it or not. If the destination of a packet is in the routing set, this packet continues
to be relayed; otherwise, the packet is dropped. ORPL is proposed for static scenarios only. When
considering mobility, rank and routing sets need to be updated on time according to the movement of
nodes. Moreover, due to the fact that the updating of routing sets depends on the propagation of DIOs,
timely updating costs too much overhead and is not practical.

Dynamic Source Routing (DSR) and Ad hoc On-Demand Distance Vector (AODV) are
unicast-based downward routing protocols. They both employ flooding methods to support
route discovery and route maintenance. Compared with DSR, AODV further supports periodic
advertisements and distance vector routing, which is more adaptive to dynamic scenarios. However,
both DSR and AODYV need to run route discovery and route maintenance very often in order to update
routing tables in a timely manner in mobile scenarios. In this process, the flooding of requests causes
congestion in the network, and route discovery and maintenance cannot run well. Improving AODV
based on restricted broadcasting is a common method proposed in References [9,10] for vehicular
networks. However, these methods use geographic positions to assist broadcasting reduce the number
of retransmissions, and thus require each node to be equipped with a Global Positioning System
transceiver, which is difficult to achieve in WSNs and LLNs.

Opportunistic source routing (OSR) [11] is a broadcast- and unicast-based downward routing
protocol that introduces opportunistic routing into traditional source routing. OSR uses a bloom-filter
mechanism to encode a downward source route, which reduces the length of a packet header while
processing source routing. OSR uses multiple traffic-flow patterns, unicast, multicast, and broadcast.
Unicast and multicast are the main ways to propagate information. In the case of failure of unicast and
multicast, broadcast is used. OSR achieves a reduction in transmission count and a gain in reliability
compared to standard RPL. However, OSR also needs route discovery and maintenance to deal with
mobile scenarios, which meets congestion problems, similarly to DSR and AODV.

3. Adaptive Downward/Upward Protocol

In this paper, we consider upward and downward routing in mobile scenarios. In these scenarios,
we suppose that all nodes are free to move except the sink node. In upward routing, every node
periodically generates data that are destined to the sink at a constant rate. Before sending packets,
each node selects a next-hop from its neighbors based on RRD+. RRD+ helps to cope with the
frequent-topology-changes problem in mobility. In downward routing, the sink periodically sends
command packets to nodes. Due to the movement of nodes, routes from the sink to sensor nodes
do not stay the same. If route information cannot be updated on time, packets may be lost. In what
follows, we present our method, which is an extension of RRD+ that copes with downward routing in
mobility.



Future Internet 2019, 11, 18 40f 13

3.1. Overview of RRD+ Mechanism

We integrated downward routing in RRD+, which was originally designed for upward routing.
RRD+ is a routing mechanism that can be used by hierarchical routing protocols to cope with mobility
in convergecast data-collection scenarios. It is based on link quality monitoring and Rank value
updating to better adapt to movement, and makes fast decisions on selecting next-hop neighbors.
Moreover, RRD+ supports a dynamic management of control messages in order to reduce the overhead
in the network. In what follows, we describe the different aspects of RRD+.

3.1.1. Movement Direction Monitoring

RRD+ uses variation of Received Signal Strength Indicator (RSSI) to monitor movement direction.
Nodes obtain RSSI values from acknowledgement (ACK) messages and control messages. A node
manages two RSSI values for each parent node, Old RSSI value and New RSSI value. Old RSSI is
retrieved from the previous ACK or control message, and New RSSI value is obtained from currently
received ACK or control message. According to the variation of New RSSI value with regards to Old
RSSI value, RRD+ estimates and monitors the movement direction of nodes. When a New RSSI value
is lower than an Old RSSI value, RRD+ considers that the node is moving away from its parent node.
Otherwise, RRD+ considers that the node is moving closer to its parent node.

3.1.2. Link-Quality Monitoring

Due to unpredictable path attenuations, RSSI values might vary even when neither node moves.
In order to take this phenomenon into account, we introduce two RSSI thresholds: Safety Threshold
and Hysteresis Threshold, where the Safety Threshold is larger than the Hysteresis Threshold, as shown
in Figure 1. We used a dotted line for Safety Threshold, and a dashed line for Hysteresis Threshold.
Note that, due to the nature of wireless-signal propagation, in reality both RSSI thresholds and
transmission range are most likely to look like a cloud and in our simulation model we used a
probabilistic propagation model to take into account coverage-zone instability.

~ -

~—_ -

Danger zone

Transmission range of P
““““ SAFE_THRESHOLD of P
— — — - HYST THRESHOLD of P

Figure 1. Node P is the parent node of nodes A, B, and C. A is in the Safety zone of node P. B is in the
Hysteresis zone of node P. C is in the Danger zone of node P.
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When New RSSI is higher than or equal to Safety Threshold, the node is considered to be in
the Safety zone of its parent node, and it has good link quality with it; this is the case of node A in
Figure 1. When New RSSI is smaller than Safety Threshold but higher than Hysteresis Threshold,
which is the case of node B in Figure 1, we need to first detect movement direction and then consider
whether to stop using the link or not. In order to reduce coverage-zone variation influence, we add
a hysteresis value to Old RSSI when comparing it to New RSSI. When New RSSI is smaller than
Hysteresis Threshold, which is the case of node C in Figure 1, only New RSSI and Old RSSI are used to
estimate direction without using hysteresis.

3.1.3. Rank Updating

Rank mechanism, which is proposed by RPL, is also an important part of RRD+. The Rank of a
node is a value that defines the position of the node with respect to the sink in terms of routing metrics.
The Rank of the sink node is ROOT_RANK and MinHopRanklIncrease is the minimum increase of
the Rank between a node and any of its parent nodes. The rank value is proportional to the increase
of the metric contained in control messages; therefore, the Rank of a node is calculated as shown in
Equation (1).

Rank = ROOT_RANK + axMinHopRankIncrease 1)

where a is a value included in control messages that come from lower rank nodes.

A node is not allowed to send data packets to neighbors with higher or equal Ranks, which is an
effective way to avoid loops in the network. In mobility scenarios, the position of a node frequently
changes. The original Rank mechanism does not offer methods to update the Rank in a timely manner.
This causes loops when a parent node becomes a descendant node. RRD+ monitors link existence and
movement direction to allow nodes to update their Ranks in a timely manner. The goal is to update
the Rank of a node when it is about to lose its link with its current parent node based on the link
quality-monitoring mechanism.

3.1.4. Dynamic Control Message Management

In mobile scenarios, propagation of control messages needs to be more frequent in order to adapt
to topology changes. Maintaining up-to-date information about topology causes high overhead. In our
case, similarly to RPL, control messages are broadcast by the sink node and propagated by other
nodes until they reach leaf nodes. In RRD+, we designed a dynamic control message management
according to Rank values in order to reduce overhead. Nodes that are closer to the sink should send
control messages more frequently and the frequency is reduced for nodes with higher Ranks. Control
messages coming from lower Rank nodes will help more nodes find parent nodes. When a node
changes its Rank value, it automatically adapts its control message interval. The control message
interval calculation is shown in Equation (2).

Interval = Base_interval + RankxTime_unit 2)

where Interval dynamically changes due to the change of Rank of nodes in mobility. Base_interval is
the smallest Interval. Rank stands for the current Rank value of the node. Time_unit is the incremental
step in the control message frequency. Base_interval and Time_unit can be fixed according to the
application needs. High densities and high speeds would require smaller values of Interval.

3.2. Dynamic Next-Hop Table

In RRD+, all neighbors with lower Ranks form a set that we call a parent set. In a data-collection
process, before sending a packet, a node needs to select a next-hop from its parents set. In ADUP,
the ID of this next-hop is included into data packets and sent to the sink. Instead of storing the entire
addresses of next-hop nodes in data packets, we only use 1 byte to store the ID of the next-hop node of
the source node. Due to the fact that the upper limit value of 1 byte is 255, the maximum number of
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nodes in the network cannot exceed 255. Figure 2 shows the fields of upward data packets. When the
sink receives data packets, it builds a next-hop table as shown in Figure 3. The first column of this
table stands for the ID of nodes, except the sink, in the network. We consider that there are n nodes
and one sink in the topology. We define the ID of each node as ID; € {IDy, ID1,ID;, ..., 1Dy}, where
IDg stands for the ID of sink. The second column stands for the ID of best next-hop for each node
referred to as N(ID;). Note that N(X) € {IDy, ID1,ID;, ..., ID,} and X € {ID,ID;,...,ID;}.

128 Bytes
0-29 | 30-31 32-33 34 35-36 | 37-127
Sender | Receiver | ID of next- | Packet
Data address | address hop Id Idle

Figure 2. Fields of upward data packets.

ID Nexthop
ID, N(D,)
ID, N(D,)
ID, N(D,)

Figure 3. Dynamic next-hop table of the sink node.

RRD+ updates the Rank value of each node according to link quality and movement direction.
Nodes in a parents set are automatically removed or added based on the variation of Rank values.
Thus, the next-hop of each node also dynamically changes according to movement. Due to the fact that
each node periodically sends packets to the sink, the next-hop table periodically adapts to mobility.

3.3. Route Building in Downward Routing

In order to reach the destination through multiple hops, the sink needs to build a route before
sending a packet. Algorithm 1 depicts the route-building process. We use 1D, to stand for the ID of
the destination node which is put into the route first. The sink extracts the preferred next-hop of ID,
from the dynamic next-hop table. If N(ID,;) equals 1Dy, this means that the sink can directly reach
node IDy, and the building process immediately stops. In case N(IDy) is not 1Dy, the sink continues
the route-building process. For any entry in the first column of dynamic next-hop table, the entry
ID; that equals N(IDy) is put into the route, and its next-hop N(ID;) needs to be compared to ID.
The building process stops when the next-hop of item ID; is IDy. The building process of a route is
done from the destination to the sink, the route we get is in reverse order, and it is thus reversed before
it is used as a path.

Figure 4 shows how Algorithm 1 works. ID; is put into the route first. During this process,
the numbers of ID; are put in the route until the next-hop of IDy is found to be IDy. At the end,
the route needs to be reversed.

We consider that there are m nodes in the route. Before sending a data packet, the sink needs to
store the IDs of these nodes in the data packet as shown in Figure 5. Every time the data packet is
relayed, the route offset will be increased to help relay nodes to find the next-hop within m bytes until
reaching the destination.
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D, N(ID,)
i ID, N(ID,)
! I
| |
| : | ID ID,
| ! | !
| |
! : ! : l
Route ID, D, ID,
¢ Reversal
Route ID, . 1D, ID,
Figure 4. Route-building process.
Algorithm 1: Route building.
Input: ID,
Output: Route
begin
Put ID, in the Route;
Nexthop = N(IDy);
while Nexthop does not equal to IDy do
for each item i in ID; do
if ID; = Nexthop then
Nexthop = N(ID;);
Put ID; in the Route;
end
end
end
Reverse(Route);
end
128 Bytes
0-29 [ 30-31 32-33 34 35-(35+m) | 35+m+1 | 35+tm+2-127
Sender | Receiver [ Route Packet
Data address | address | offeset Route path Id dle
m Bytes
35 oo | 35+m-1) | 35+m
D, D, D,

Route
offeset

Figure 5. Fields of downward data packets.
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4. Simulation Environment and Performance Evaluation

In this section, we describe our simulation setup and present the evaluation results.

4.1. Simulations Parameters

We evaluated the performance of ADUP by doing simulations using the Cooja simulator [12].
There are four propagation models in Cooja [13], and we used Multipath Ray-tracer Medium (MRM),
which simulates real environments with realistic unstable link qualities. In order to make it more
suitable for urban and unstable environments, we included random behavior to path-loss calculation
of MRM. Indeed, we added a Gaussian random variable in the path-loss formula to simulate the
instability of the radio links. We calibrated the randomness to make transmission range randomly
fluctuate between 30 and 50 m, independently for each transmission.

At the beginning of the simulation, all nodes are randomly deployed within a 200 x 200 m area,
and they are free to move within this area. Every 5 s, velocity is randomly chosen from [1, 3 m/s],
and the direction of nodes changes by choosing a random destination position inside the deployment
area. Under this mobility model, we set the minimum control message interval as 2 s according to the
experimental test, which means the minimum topology update interval is 2 s. In order to make sure
that ID of next-hop updates can be sent to the sink on time, the upward transmission interval should
be shorter than 2 s. We set the upward transmission rate to 1 pkt/s. Every 1 s, all nodes except the sink
generate a data packet to the sink. Meanwhile, the sink generates command packets to a randomly
chosen node in the network every 1 s. Every scenario simulates 5 min of network activity. Table 1
summarizes the simulation settings.

Table 1. Simulation setup.

Item Parameters
Network simulator Cooja under contiki OS (3.0)
Radio propagation model MRM with random behavior
Medium access control CSMA/CA
Simulation time 5 min
Emulated platform Sky starter platform
Sensor Nodes Deployment Random Deployment
Data size 30 Bytes
Packet queue size 16
Upward transmission rate 1 pkt/s
Downward transmission rate 1 pkt/s
Transmission power —20 dBm
Transmission range [30 m, 50 m]
Number of nodes 20, 40, 60
Area of deployment 200 m x 200 m
Frequency range 2.4 GHz
Mobility model Random Waypoint
Minimum speed 1m/s
Maximum speed 3m/s
Speed-changing interval 5s
New location pause time 5s

4.2. Simulation Results

In order to assess the efficiency of ADUP in dealing with mobility, we compared it to two other
existing protocols that cope with mobility: AODV and Flooding. In addition, AODV and Flooding are
generic protocols that are designed for any application scenario containing upstream and downstream
traffic. As we introduced in Section 2, AODV is a typical unicast-based routing protocol. It uses route
discovery and route maintenance to support dynamic topologies. Furthermore, it is based on periodic
advertisements and distance vector routing, which is more adaptive to mobile scenarios compared
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to DSR for example. Flooding is a broadcast-based routing protocol that is not sensitive to mobility.
It may support mobile scenarios well with few transmission events. It is also interesting to estimate
the performance of Flooding in mobile scenarios with different traffic patterns. In order to limit the
number of transmissions using Flooding routing protocol, nodes only route the same packet once.
We used unique identifiers for packets in order to manage this issue.

Note that in this paper we did not compare ADUP to RPL because in previous papers we showed
that RPL does not cope well with mobility, and that RRD+ outperforms RPL.

We used four performance metrics to evaluate the efficiency of these protocols: (i) packet-delivery
ratio, (ii) average end-to-end delay, (iii) dropped packet ratio, and (iv) number of control packets.
For each network size, we generated 10 different random mobility scenarios. Each performance metric
was averaged over 10 iterations for each network size.

4.2.1. Packet-Delivery Ratio

Packet delivery ratio is the ratio between the number of received data packets at the destination
and the number of generated packets by the source nodes. Figure 6 shows packet delivery ratio based
on different traffic patterns.

Figure 6a shows that ADUP outperforms AODV and Flooding in terms of packet-delivery ratio
for upstream traffic. ADUP has about 10% improvement over AODV. This is mainly due to the fact
that, in upward routing, ADUP only needs to update next-hops rather than whole path routes, which
helps adapt faster to mobility. Moreover, ADUP and AODV are much better than Flooding because it
uses broadcasting as a basic traffic pattern, which causes serious network congestion, especially when
the number of senders is high.

100 100

ADUP mmmm ADUP mmm
AODV === AODV ==
Flooding —— Flooding ——

80 80
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~— ~—
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> >
Yt St
o 3]
2 2
E 40 = g 40 |- =1
g g
2 B 2
W) 20 ﬂ W) 20

0 0

20 40 60 20 40 60
Number of nodes Number of nodes
(a) Packet-delivery ratio (upstream traffic) (b) Packet-delivery ratio (downstream traffic)

Figure 6. Packet delivery ratio.

Figure 6b shows that ADUP is much better than AODV and Flooding for downstream traffic.
This is mainly due to the fact that benefiting from upstream traffic ADUP allows the sink to update the
path to reach any node in the network in a timely manner. Results also show that the packet-delivery
ratio of AODYV decreases when the number of nodes increases. The reason is that, with more nodes,
upstream traffic is higher, which causes more congestion and a higher risk of collisions. Affected
by upstream traffic, the downstream traffic of AODV would lose more packets during transmission.
However, unlike AODYV, the packet-delivery ratio of Flooding on downstream traffic first increases
for 40 nodes, and then decreases for 60 nodes. This is mainly due to the fact that Flooding uses
broadcasting rather than unicasting. When the number of nodes increases, broadcasting would help
the same packet being relayed more times, which would increase the opportunity of successfully
sending a packet to reach the destination. This allows Flooding to increase its packet-delivery ratio of
downstream traffic with 40 nodes. However, the downstream traffic of Flooding is also affected by the
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upstream traffic. When there is serious network congestion caused by the upstream traffic of 60 nodes,
the packet-delivery ratio of downstream traffic decreases.

4.2.2. Average End-To-End Delay

End-to-end delay is the duration between the instant the packet is generated by a node and the
instant this packet is received by the sink node. Figure 7 shows the average end-to-end delay based on
different traffic patterns. The average end-to-end delay is calculated over the total received packets
only. This means that these results do not include the end-to-end delay of packets that are lost in
the network.

Figure 7a shows that ADUP outperforms AODV on average end-to-end delay for upstream
traffic. This is mainly due to the fact that ADUP can quickly adapt to mobility and dynamically
update parents set according to the movement of nodes, which reduces time interval before sending a
packet. However, AODV needs to build routes before transmission. This process is more frequent in
mobility, since link failure happens more often, which results in longer delays before sending a packet
with AODV. Compared with ADUP and AODYV, the average end-to-end delay of Flooding increases
exponentially when the number of nodes increases. The reason is that Flooding broadcasts packets
to the entire network which causes network congestion. Congestion causes packets to be delayed at
each hop until they reach the sink. It is worth noting that, although ADUP and AODV achieve similar
average end-to-end, ADUP was able to reach that delay for a higher packet-delivery ratio.

Figure 7b shows that the average end-to-end delay of ADUP outperforms that of AODV and
Flooding for downstream traffic. This is mainly due to the fact that upstream traffic helps ADUP
quickly update route information. Packets sent by the sink are relayed to the destination in a timely
manner. The same as upstream traffic, the average end-to-end delay of Flooding on downstream
increases exponentially as well. Network congestion caused by upstream traffic is also the reason.
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(a) Average end-to-end delay (upstream traffic) (b) Average end-to-end delay (downstream traffic)
Figure 7. Average end-to-end delay.

4.2.3. Dropped Packets Ratio

The number of dropped packets is the number of packets that are dropped after exceeding the
maximum number of retransmission attempts. Dropped-packets ratio is the ratio between the number
of dropped packets and the number of generated packets. Figure 8 shows the dropped-packets ratio
for different traffic patterns. Due to the fact that Flooding directly broadcasts packets, there are no
retransmissions and thus no dropped packets. Hence, in Figure 8 we only show a comparison between
ADUP and AODV.

Figure 8a shows that ADUP outperforms AODV in terms of dropped packets ratio for upstream
traffic. This is mainly due to the fact that link quality monitoring and rank updating helps ADUP detect
movement in advance and select next-hop nodes with good link quality. This increases the success
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rate of sending a packet and reduces the number of dropped packets. Results also show that dropped
packets ratio of ADUP and AODV for upstream traffic first increases with 40 nodes and then decreases
with 60 nodes. When the number of nodes increase from 20 to 40, there is more upstream traffic, which
causes more collisions and retransmissions. Thus, the dropped-packets ratio increases with 40 nodes.
However, when the number of nodes continues to increase, network density becomes higher. A node
would have more available next-hops to select from. This helps nodes to select next-hops with better
link quality, which results in fewer dropped packets.

Figure 8b shows that ADUP also outperforms AODV in terms of dropped packets for downstream
traffic, and the ratio of ADUP even decreases when the number of nodes increases. Benefiting from
upstream traffic and route building in downward routing, ADUP helps the sink node build downward
routes to reach any node in the network. When the number of nodes increases, the density of nodes
increases. Next-hop nodes with better link quality would be used by the sink, and this would enhance
the path quality between the sink and the destinations. This also helps reducing the number of
dropped packets. However, unlike ADUP, the dropped-packets ratio of AODV for downstream traffic
increases slightly when the number of nodes increases. This is mainly due to the fact that AODV
is a reactive protocol and it builds routes only when there is data to be transmitted. This process
delays transmission, which results in AODV not being able to update topology in a timely manner.
This causes packet loss due to inappropriate next-hop selection.
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Figure 8. Dropped-packets ratio.
4.2.4. Number of Control Packets

The number of control packets is the sum of control packets that are sent during the simulation by
the routing protocol. ADUP only contains one type of control message that is broadcast by the sink
node and propagated by other nodes until it reaches the leaf nodes. AODV generates three types of
control messages: Route Request (RREQ) messages, Route Reply (RREP) messages, and Route Error
(RERR) messages. RREQ is used in route-discovery processes in order to build a route to reach the
destination node. RREP is sent once the destination node receives a RREQ or an intermediate node has
an active route to the destination. RERR is sent whenever a node detects a link failure or does not have
an active route to the destination. Flooding only uses broadcasting as traffic patten, and it does not
need any additional control packets. Thus, in Figure 9 we only show a comparison between ADUP
and AODV.

Figure 9 shows that ADUP has very low overhead compared to AODYV, especially when the
number of nodes increases. This is due to two reasons. First, ADUP uses dynamic control message
management to reduce the number of control packets used by upstream traffic, which helps to save
overhead for upstream traffic. Second, ADUP embeds next-hop information in data packets destined
for the sink. This allows the sink to build routes for downstream traffic without generating additional
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control traffic. Moreover, AODV broadcasts RREQ to ask for a route, which adds more overhead to the
network, especially when the number of nodes increases.

ADUP mmm
10000 H{ AODV =1 .

8000

6000
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L mm W8

20

Number of control packets

40 60
Number of nodes

Figure 9. Number of control packets.

5. Conclusions

In this paper, we proposed ADUP, a routing protocol that concurrently supports upward and
downward routing in mobile scenarios. It is suitable for application where all nodes are mobile
and send periodical data packets to a control station that is called the sink. In addition, this sink
needs to periodically contact other nodes of the network. This is the case for many monitoring and
surveillance applications.

The support of upward routing in mobility is based on our previous work, RRD+, which copes
well with mobility and helps nodes make decisions on the selection of next-hops. The support of
downward routing in mobility is extension work on RRD+. Nodes embed the best next-hop of nodes in
the packet headers and send it to the sink inside the periodical data packets. Once the sink receives the
data packets, it builds a next-hop table. Based on this table, the sink is able to build the route to reach
any node in the network. Due to the fact that the best next-hop is periodically selected from a dynamic
parent set, the next-hop table is also dynamic and could adapt to mobility in a timely manner. The end
result for downward routing is low on overhead because the only overhead is from the embedded
information in the headers of collected data packets.

We implemented our work in Cooja and compared it with two other generic routing protocols,
AODV and Flooding. Results show that ADUP outperformed AODV and Flooding on different
performance metrics in mobility scenarios. Results also show that ADUP simultaneously supports
upward and downward routing in dense and highly mobile scenarios. In the upward-routing process,
ADUP helps nodes detect next-hops with good link quality. In the downward-routing process, ADUP
helps the sink node build routes to reach any node in the network (given that this node is generating
traffic towards the sink).

In our future work, we plan to implement ADUP on a testbed or in a real outdoor scenario in order
to test its efficiency when faced with real-life radio-link conditions. Even though we included link
instability in our simulator in order to emulate real-life links, in a real scenario nodes also suffer from
interference coming from other nearby active technologies. Emulating interference in the simulator is
a difficult challenge and it will be interesting to see how ADUP reacts to this in real life. Moreover,
in order to support large-scale networks with hundreds of nodes, it is necessary to introduce a similar
mechanism to bloom filter in order to encode downward routes in ADUP, which could reduce the
length of packet headers. In addition, we plan on supporting duty cycling and evaluating the impact
of energy saving on network performance.
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