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Abstract: Long Term Evolution networks, which are cellular networks, are subject to many
impairments due to the nature of the transmission channel used, i.e. the air. Intercell interference is
the main impairment faced by Long Term Evolution networks as it uses frequency reuse one scheme,
where the whole bandwidth is used in each cell. In this paper, we propose a full dynamic intercell
interference coordination scheme with no bandwidth partitioning for downlink Long Term Evolution
networks. We use a reinforcement learning approach. The proposed scheme is a joint resource
allocation and power allocation scheme and its purpose is to minimize intercell interference in Long
Term Evolution networks. Performances of proposed scheme shows quality of service improvement
in terms of SINR, packet loss and delay compared to other algorithms.

Keywords: intercell interference coordination; resource allocation; power allocation; reinforcement
learning; genetic algorithm; optimization

1. Introduction

Long Term Evolution (LTE) is the solution proposed by the 3GPP consortium to provide high
data rates to users in order to satisfy high bandwidth demand. LTE is a 4G technology and uses IP
technology for data transport. It supports 100 Mbps data rates in the downlink and 50 Mbps data
rates in the uplink [1]. LTE uses frequency reuse factor one that leads to intercell interference (ICI) [2].
LTE uses Orthogonal Frequency Division Multiplexing Access (OFDMA) in the downlink and Single
Carrier Frequency Division Multiplexing Access (SC-FDMA) in the uplink to eliminate intra-cell
interferences. The bandwidth is divided into orthogonal narrowband subcarriers of 180 kHz separated
by guard band of 15 kHz. The main radio impairment faced by LTE is intercell interference as it uses
frequency reuse one scheme where all frequencies are used by each cell. Cell edge users are likely to
suffer interference causing by neighboring cells transmitting at the same frequencies while receiving
weak signals from their serving cell due to the path loss that is higher with the distance to the serving
enodeB [3].

Intercell interference mitigation techniques are used to address the ICI problem. There are
three approaches to intercell mitigation defined by the 3GPP consortium: intercell interference
randomization, intercell interference cancellation and intercell-interference coordination/avoidance [4].
They can be combined in a system as their benefits are mutually exclusive [5]. The goal of intercell
interference randomization is randomizing the interfering signals with cell-specific scrambling,
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cell-specific interleaving or frequency hopping. Intercell interference cancellation goal is to suppress
interference at the user beyond what can be achieved by just exploiting the processing gain. This is
done by using multiple antennas at the user or by detection and subtraction of the intercell interference.
Intercell interference coordination/avoidance goal is to minimize intercell interference since it is
impossible to prevent it as LTE uses reuse frequency 1 (RF1) scheme. This technique applies restrictions
to the downlink resource management in a coordinated way between cells. Restrictions are made
on transmit power and resource allocation both in time and frequency domain. The effect of these
restrictions is the improvement of SINR, thus the data rate and coverage, especially for cell edges users.

Basic intercell interference coordination techniques use static schemes [6—8] where available
bandwidth is partitioned among users within each cell thanks to frequency reuse schemes.
This bandwidth partitioning divide users in cell edge users and cell center users. However, some
techniques combine dynamic schemes with static schemes [9-12], dynamic schemes being used for cell
edge users. Resources are likely to be waisted in some partitions if there are fewer users to use them,
while users in other partitions could use them.

In this paper, a full dynamic intercell interference coordination in a multi-cell environment scheme
that combines resource allocation and dynamic power control in the downlink using reinforcement
learning is proposed. The proposed scheme does not use bandwidth partitioning. Reinforcement
learning is a computational intelligence approach which belongs to machine learning and is used in
many areas. Among these area, we have robotics, games, control, and operations research [13,14]. It has
low computational requirements, medium memory requirements, high flexibility, and is optimal [15].
The proposed scheme has four steps: user selection, resource allocation, dynamic power control
and packet to retransmit identification. We introduce a new way of handling packet retransmission,
which, instead of waiting for a notification from the receiver, checks the channel conditions before
sending a packet. When channel conditions are bad, the packet is immediately transferred in
retransmission queue.

The rest of the paper is organized as follows. In Section 2, related woks on intercell interference
coordination are presented. In Section 3, the problem formulation is presented. The system model is
presented in Section 4. In Section 5, our proposed ICIC scheme is presented. In Section 6, results are
presented and the conclusion follows in Section 7.

2. Related Work

Intercell interference being the main problem in LTE networks, intensive research has been carried
out to address it. Surveys have been carried out on intercell interference mitigation techniques in LTE
downlink networks [16,17], on intercell interference coordination techniques in OFDMA-based cellular
networks [18] and on ICIC techniques in OFDMA based-cellular networks and LTE [19].

ICIC techniques can be classified in two groups [18]: static ICIC or frequency reuse based schemes
and dynamic ICIC or cell coordination schemes.

In static ICIC schemes, a common technique is Fractional Frequency Reuse (FFR). Users are
divided into two groups: cell edge users and center cell users. The available resources are divided
into two groups: one group for cell edge users and one group for center cell users. FFR is divided
into three main classes [18]: Partial Frequency Reuse (PFR) schemes, Soft Frequency Reuse (SFR)
schemes and intelligent reuse schemes. Performance of reuse-1, reuse-3, FFR, and SFR are investigated
regarding network load and user distribution in [20]. Some hybrid schemes associate a static scheme
to another techniques, for example in [21] where the authors proposed a hybrid mechanism using
Fractional Frequency Reuse (FFR) and Almost Blank Sub-frame (ABS) schemes to mitigate inter-cell
interference caused to Device-to-Device (DUE-Rxs) receivers by cellular user equipments (CUEs) in
sensor networks underlying LTE-A.

On the other side, coordination-based schemes can be categorized into four categories [18]:
centralized, semi-distributed, coordinated-distributed, and autonomous-distributed. The level of
coordination can be differentiated by four dimensions [18]: optimization objective, power control
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technique, channel allocation recommender and fairness to user. In [22], a joint resource block allocation
and transmission power allocation in the uplink communication for multi-cell D2D enabled networks
scheme is proposed. The proposed scheme uses bilateral symmetric interaction game for RB allocation
problem and linear programming for the power allocation problem. In [23], the authors proposed a
coordinated multi point interference mitigation scheme that uses destructive spatial phase coding as a
pre-coding scheme to reduce the SNR. The scheme is proposed for heterogeneous OFDM networks.

Intercell interference coordination is an optimization problem that can be better addressed using
computational intelligence (CI).

In this paper, we consider centralized cell coordination schemes. Obviously, the problem to
solve in coordination schemes is resources allocation in multi-cells networks. Most studies addressing
resource allocation found in the literature consider single cell networks. There are however some
studies that consider multi cell networks.

In [24], an ICIC technique based on user’s ratio and frequency allocation is proposed for OFDM
based networks. Cell-center users are allocated resources that are allocated to cell-edge users in
neighboring cells. In [25], an ICIC scheme using downlink multi-cell chunk allocation with dynamic
intercell coordination is proposed with two level-algorithm, at a base station and at a central controller.

In [26], a heuristic intercell coordination scheme for the uplink of LTE networks is proposed.
The proposed scheme is formulated as an integer programming problem. The basic idea of the
scheme is to switch users on and off to maximize a certain utility function. Coordination is carried
out between two cells at a time, and then iterative improvement is implemented for the whole
coordination. Power control is not done in this scheme. The scheme just mitigates the intercell
interference by resource allocation. The performance of the scheme has been evaluated in terms of
uplink average throughput and delay via Monte Carlo simulations with a two-cell network case.
The proposed scheme has been compared with no coordination schemes using proportional fairness
(PF) and round robin (RR) schedulers.

In [27], a joint resource block and transmit power allocation scheme in LTE downlink networks is
proposed. Resource blocks are allocated to users based on their priority measured by interference level,
quality of service and delay. The transmit power of enodeBs are then dynamically controlled using
fuzzy logic system, considering messages exchanged between enodeBs over X2 interface. The proposed
scheme has been compared to reuse factor one (RF1) SFR. In [28], a dynamic ICIC technique that
uses dynamic resource allocation is proposed with no cooperation between base stations. Evaluation
of the technique with a MATLAB®-based LTE downlink level simulator shows throughput fairness
improvement compared to the reuse-1, FFR and SFR models.

In [29], role game theory is applied to uplink power control and ICIC for LTE where users are
defined as having different roles within a cell of the LTE network. In [30], a genetic algorithm (GA)
approach is proposed to optimize the resource block allocation in a multi-cell network. The aim of the
approach is to minimize intercell interference by maximizing channel capacity in the resource allocation
process. The cells are grouped in independent clusters and the resource allocation optimization is
done cell by cell within a cluster. The authors exploited information exchanged over the X2 interface
between cells within a cluster. The article shows the efficiency of the methods. Simulation results
show that the interference of most users is decreased by 3 dB and the average throughput per cluster
is increased by 21 Mbps according to the universal frequency reuse in a few iterations. In [31],
a GA-based self-organized downlink resource allocation in a multi-cell LTE-Advanced Network is
proposed. The aim of the optimization method is to mitigate the intercell interference by maximizing
the throughput. The proposed algorithm is compared with the random allocation. A MATLAB®
simulation program is used. The article shows that the proposed algorithm outperforms in terms of
average user throughput and system fairness.

Listed related works use bandwidth partitioning, which distinguishes users based on their
position relative to enodeB within a cell. Users are divided into cell edge users and cell center users.
Portions of a bandwidth are reserved for users in coordination with neighboring cells. Basic ICIC
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schemes failed to consider real time services as they do not consider packet loss ratio as a property
but rather focus on throughput maximization Besides, packet retransmission is not considered in
the proposed schemes and most of them consider one step ICIC scheme like resource allocation or
power allocation.

In this study, we propose a new ICIC scheme that does not partition bandwidth. The whole
bandwidth is shared among users regardless for their position relative to the enodeB within serving
cell making resource allocation an optimization problem. Resource allocation optimization problem is
handled with the objective of minimizing intercell interference among neighboring cells. The proposed
ICIC scheme, which is a joint resource allocation and power control optimization, is intended for real
time services and consider packet retransmission.

3. Problem Formulation

Intercell interference is caused by multiple sources transmitting signals with the same subcarrier
and received by a receiver. A user receives signals from the serving cell and neighboring cells but at
different power levels due to the pathloss. The interference is measured by the Signal to interference
plus noise ratio (SINR).

SINR for a user UE; located on cell j can be expressed by [29]:
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where a is the path-loss exponent, p; is the transmit power of the serving enodeB j, n is the number of
neighboring enodeBs, py is the transmit power from the neighboring enodeBs, r; is the distance of the
user UE to the serving station, ry is the distance of the user UE to each of the neighboring stations,
and NjB is the background noise with Ny the thermal noise and B the system bandwidth.

Assuming a severe interference scenario, the background noise NyB can be ignored [29].
The expression of SINR can then be rewritten as:
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The expression of SINR shows that it depends on the distance between the user UE and the
transmitter. It clearly appears that SINR for cell edge users will be low as channel gain for neighboring
cells will be greater than transmit power of serving cell. In the case where each cell is transmitting
with the same power level, cell edge users will experience low SINR as the distance between serving
enodeB and some neighboring enodeBs are approximatively the same.

To ensure good quality signal received by a user, interference has to be minimized.
Minimizing interference is the same thing as maximizing SINR value. This becomes an
optimization problem.

From the expression of the SINR, it can be seen that it can be increased either by decreasing
transmit power from neighboring cells or by increasing transmit power from serving cell. This can be
done using power control by coordination between enodeBs through X2 interface.

The distance of a user from its serving enodeB and neighboring enodeBs also cannot be changed
but transmit power from serving enodeB and neighboring enodeBs can be assigned different values to
increase SINR value. Given that there are multiple neighboring enodeBs, it becomes mathematically
difficult to get a solution of finding transmit power of serving enodeB and neighboring enodeBs when
targeting a desired SINR value.

Heuristic methods are well suited for this kind of optimization problem. They use computational
intelligence to find solution to optimization problems. Some heuristic methods that use computational
intelligence are genetic algorithm (GA) [32], ant colony optimization (ACO) [33], swarm optimization
(PSO) [34], simulated annealing (SA) [35], reinforcement learning (RL) [13], and decision tree [36].



Future Internet 2019, 11, 19 5 of 23

A comparison of some CI approaches in [15] shows that reinforcement learning and swarm
optimization have low computational requirements, medium memory requirements, high flexibility,
and are optimal, thus are the best choices to consider for our optimization problem. Since LTE networks
offer online services to users to users, these approaches cannot be used on live LTE networks because
of the computation time they will require which will certainly lead to disasters. Reinforcement learning
however offers the advantage that it can learn the optimal solutions with data coming from real
networks through exploration process by simulating the real network [13] and can then be use online
using exploitation process. We thus chose reinforcement learning instead of swarm intelligence.

4. System Model

We consider a multi-cell LTE network. The bandwidth channel on each cell is divided into N
RBs to be allocated to M actives users attached to each enodeB. The users are randomly distributed in
the cells. Users are facing intercell interferences caused by neighboring cells. A central unit collects
channel state information from users. We assume perfect knowledge of channel state information. Each
user faces different levels of SINR on each RB. User mobility is considered and user speed is 3 km/h,
which means channel signals are assumed to be constant over 1 TTI (Time to Transmit interval). RBs
are allocated to actives users every TTI. A RB is allocated to only one UE and a UE can be allocated
more than one RB.

Each user has two queues of data. The first queue contains data for first transmission and the
second contains data for retransmission. The retransmission queue is considered here because of the
perturbed nature of the network since cell edge users are facing weak channel signals. The queues sizes
are considered to be finite. Asynchronous adaptive HARQ with 8 stop and wait parallel processes and
maximum retransmission number is set to 3 as specify in LTE standard for downlink [37] is considered.
One packet is transmitted on each allocated resource block for simplicity.

The queues and head of line delay (HoL) are updated accordingly. When queues are full of data,
older packets are discarded for that user. When maximum HoL delay is reached, older packets are
discarded for that user. Packet loss ratio is obtained at the end of the resource allocation process by
dividing the total number of discarded packets by the total number of packets that is left the buffers
either lost or effectively transmitted. When resource blocks are allocated to a user, the HoL delay of
that user is decreased. For users that have not been allocated resources blocks, HoL is increased.

We consider voice traffic. The assumptions of the system models are follows:

®  There is a fixed data block size (in the case of voice service, it is 40 bytes [37]).

e The data rate is represented by a Poisson distribution (one block every 20 ms for voice service [38]).
¢  The buffer size has a finite length.

¢ The process is initialized by allocating random buffer size and HoL delay.

e HARQ (Hybrid Automatic Repeat reQuest) is considered.

*  One packet is transmitted on each allocated resource block.

5. The Proposed ICIC Scheme

The flowchart of the whole scheme is shown in Figure 1.

Real time services are sensitive to delay and packet loss. The proposed scheme aims to keep delay
and packet loss under acceptable values specified by the QoS Class Identifier (QCI). According to
the standardized QCI [39], the acceptable delay for conversational voice service is 100 ms while the
acceptable packet loss is 1%.

In Step 1, users are selected based on user priority. The objective of the step is to minimize
delay, thus packet loss. We use HoL to give priority to users given that, if a packet wait for more than
acceptable delay, it will be discarded and packet loss will increase. Once users have been selected, RBs
are allocated in Step 2. In Step 3, the transmit power of each enodeB on each RB is determined to
maximize SINR value for each user on allocated RBs, which means minimizing intercell interference.
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In Step 4, packets to retransmit are identified based on the SINR value. There is no need to transmit
a packet if SINR value on allocated RB is so low that it will not be recovered. The packet is then
transferred to retransmission queue.

Each enodeB is responsible of RBs allocation within a cell while transmit power determination is
centralized. Position of selected users is subject to changes, which makes reinforcement learning a
good choice for its flexibility to topology changes [15].

Packets to retransmit
identification

Users selection Resource allocation Power allocation

Figure 1. Flowchart of the proposed ICIC scheme.

We use GA [32,40] as a policy search-based reinforcement learning for both resource allocation and
power control steps. GA is a method used in evolutionary algorithms (EARL) [41-49] for reinforcement
learning as a policy search method.

Reinforcement learning is learning what to do—how to map situations to actions—to maximize
a numerical reward signal [50]. A reinforcement learning system can be described by the following
elements: an agent, an environment, a policy, a reward function, a value function, and, optionally,
a model of the environment [50].

Genetic algorithm (GA) is an optimization and search technique based on the principles of genetics
and natural selection [42,51,52]. Genetic algorithms belong to meta heuristics family approaches of
solving problems and are inspired by the evolution.

5.1. User Selection Step

Users selection step is responsible for selecting users that are eligible for RBs allocation.
Users selection is done per cell.

Depending on the number of users, the number of possible combinations to have for allocating
resource blocks can be very high.

It does not make sense to allocate resource to users if there are no packets to be sent to them.
Packets should be sent within acceptable delay, otherwise they will be discarded. The selection process
then considers buffer status (transmission and retransmission queues) and head of line delay so that
only users having packets to receive will be selected. Users are selected in two phases to reduce the
state space for the resource allocation step.

In the first phase, users are sorted according to the buffer status. Since a resource block should
be allocated to users that may effectively use it in order to not waste it, only users that have data to
receive are eligible to be selected. Both transmission queues and retransmission queues are considered.
Two lists are obtained. The first list contains users having data in their transmission queue and the
second list contains users having data in their retransmission queue. The two lists are then combined
to make one list.

In the second step, users are selected based on their priority. The HoL defines the priority.
Users that have their HoL closed to the maximum allowed for the considered service are placed on the
top of the list. The number of users selected is greater than the number of resource blocks available.

The selection process is summarized in Algorithm 1.

Algorithm 1 not only cares about QoS but also cares about fairness, since, if a user is starving,
its head of line delay will become higher. It also cares about users with bad channel conditions since
users having traffic in their retransmission buffer are considered. Users having their HoL greater than
the maximum delay allowed will have some packets discarded in the frequency domain scheduler and
that action will lowered their HoL.
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Algorithm 1: Users selection

1 Identify users with packets in their transmission buffer

2 Identify users with packets in their retransmission buffer

3 for each user having packet in retransmission buffer do

4 for each packet in retransmission buffer do

5 if maximum retransmission attempt is reached for given packet then

6 ‘ remove packet from user’s retransmission buffer

7 end

8 if user is present in both lists then

9 ‘ packets in retransmission buffer will be transmitted over allocated RBs

10 else

1 ‘ packets in transmission buffer will be transmitted over allocated RBs
12 end

13 end

14 end

15 Sort these users according to their head of line delay (HoL)
16 Select users with older HoL

5.2. Resource Allocation Step

This step is responsible for allocating resource blocks to users selected in the previous step.

In this step, policy space based reinforcement learning is used instead of value function space to
allocate RBs to users selected in the previous step. Policy space search methods use explicit policies
and modify them through search operators [41]. We use GA as a policy space search, where a policy
is represented by a chromosome. An agent interacts with its environment and learns the best policy
to allocate RBs to users. The reinforcement learning agent-environment interaction [13] for resource
allocation is represented in Figure 2, where S; is a representation of the state at time t and A; represents
action taken by an agent at time f, which leads to the state S;; after receiving reward R;; at time
t 4+ 1. R; represents reward received from previous action. There are two possible rewards: —1 and 1.

e
- Packet scheduler
S .
+1 Allocate RBs
Overall packet 1
loss
S[ R A(
t
" - Active users
- Resource blocks availables
S, buffer status

_ head of line delay (HoL).

Figure 2. Reinforcement learning agent-environment interaction for resource allocation.

The environment is composed of the following parameters: user buffer status and user head of
line delay (HoL).

A state represents the number of users with their HoL, their buffer status, the overall packet loss
ratio, and the QoS bearers, as in [53].
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An agent is a packet scheduler located at each enodeB, thus we have a multi-agent environment.
A policy is an action taken by an agent in a given state. An action chooses for each RB a user that the
RB will be allocated to. For simplicity, a RB will carry one packet.

A reward is then associated on each action taken by the agent. If action taken by an agent increases
the packet loss ratio, a negative reward is given to the agent. If the action taken by an agent decreases
the packet loss ratio, a positive reward is given to the agent. The two reward values are —1 and +1.

A single policy represents a chromosome [41]. A good policy should have a fitness value below a
given threshold corresponding to the QoS requirements of a given service. The fitness function for the
resource allocation GA algorithm is the sum of HoL.

A RB represents a gene. Its value corresponds to a user that the RB have been allocated to.
A chromosome is a set of available RBs that are allocated each time to interval (TTI).

Each gene will be encoded in decimal to ease the computational process. The size of the population
will not vary.

Elitism strategy is used to keep the best solutions and the least feasible solutions are
been discarded.

A sample chromosome is shown in Figure 3 that represents a policy used for a sub agent located
in a cell with a bandwidth that have 25 RBs and 60 actives users. The numbers represent users.
We can see that User 60 has been allocated two non-contiguous RBs, User 9 has been allocated two
non-contiguous RBs, User 25 has been allocated two contiguous RBs, and User 16 has been allocated
two non-contiguous RBs.

[60]29] 41] 32] 9] 11] 54] 25] 18] 40] 16] 31] 57] 59] 17] 49] 48] 25] 56] 9] 42] 13] 33] 14] 60|

Figure 3. Policy example for 25 Resource Blocks and 60 active users. The numbers inside the blocks
indicate users.

The resource allocation can be modeled by a matrix where each row represents cells and each
column represents a resource block to be allocated. A sample resource allocation matrix can be seen
in Table 1 for a network composed of n cells and a bandwidth corresponding to m RBs where Cell;
identifies cells and RB; identifies resource blocks. For example, Cell; is the first cell and RBj is the first
resource block. UE;; represents user i in cell j. A vector is used for chromosome representation to ease
GA operations crossover and mutation.

Table 1. Resource allocation matrix.

RB; RB, RB,, 1 RB,,
C6111 uE11 uElz UEl(mfl) LIElm
Cell2 UE21 UEZZ UE2<m71) uEzm

Celly.1  UEy 1)1 UEy 12 - UEu pym-1) UEu 1w
Cell, UE,, UEp .. UE, ) UE

An initial population of policies is generated at the beginning of the reinforcement learning
process. An agent evaluates each policy through policy evaluation. A fitness function is used to do this.

Each policy is evaluated and improved to obtain the best policy. The best policy will be the
policy that delivers packet loss ratio value less than or equal to the value of the maximum packet loss
acceptable according to the QoS requirements [39]. The population of policies is modified through
crossover and mutation operations over a defined number of generations with the aim of solutions
converging to the best solution. This corresponds to the learning process during which policies
are improved.

During crossover operation, some chromosomes are selected according to the crossover probability
and divided into two groups. Pairs of chromosomes are composed by choosing one chromosome on
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each of the two groups to be crossed in order to produce new chromosomes. An example of crossover
operation is shown in Figure 4. The number of RBs of each chromosome is 25. In this example,
two chromosomes, namely Child 1 and Child 2, are obtained from two chromosomes, namely Parent 1
and Parent 2.

Parent1  [46[42[27] 8]59[30]26] 3] e[ 13]26] 20 6[51[ 21]38] 18[ 12[ 55] 57] 13] 43] 52] 13[ 25]
Parent 2 [24] 18] 7] 55] 42] 20] 47] 54] 45] 38] 18] 4] 7] 29] 18] 46] 23] 46] 56] 41] 44] 31] 21] 39] 22
chid1  (HEIEIETEIEeNEeNZs eI NeI AN e Z0[e] 2o] 18] 46] 23] 46] 5[ 1] 44 31 21 3] 22
Child 2 [2a] 18] 7[55] 42[ 20] 47] 54 45[ 38] 13] 4] 7[5i] 21| @8 48] 12] 55 57] 18] 48] 52| 18] 25|

Figure 4. Example of crossover operation.

During mutation operation, some chromosomes are selected according to the mutation probability
to be mutated. Six genes are randomly chosen to be mutated on each chromosome selected for mutation
to add diversity to population.

A gene value represents a user to whom the corresponding RB is allocated. Mutation of a gene
consists of changing its value. In other words, mutating a gene means deallocating a RB from a user
and allocating it to another user. The RB is allocated to a user in the waiting list, which contains users
selected in the first step of the proposed ICIC scheme but have not been selected to form the initial
population of chromosomes.

An example of mutation operation is shown in Figure 5. An initial chromosome is replaced
(mutated) to obtain a mutated chromosome by changing the color of genes, which means deallocating
RBs previously allocated to users associated to these genes from the initial chromosome and allocating
these RBs to users in the waiting list.

The best policy is obtained after selection, crossover, mutation and evaluation have been repeated
a certain number of generations, and then the learning process terminates.

Initial chromosome [ 25] 42 56] 15] 16[J8H 53] 28] 31] 48] 27] 43] 20] ol 34] o[l 37] 32[ 57] 28] 58] 53] 2|

Waiting list PR EER  EE )

Mutated chromosome [ 38] 42 56] 15] 15[ 53] 28] 31] 21] 27] 43] 20] |8 34] o[l 37] 32[ 57] 28] 58] 53] 5]

Figure 5. Example of mutation operation.

Elitism strategy is used for chromosomes selection and the population size is kept
constant. Chromosomes are sorted according to their fitness function value after crossover and
mutation operations. Since crossover and mutation operations increase the population number,
selection operation ignore will retain only a number of solutions equal to the number of the initial
population and discard the remaining solutions. Retained solutions are chosen among the best
solutions. The whole process is summarized in Algorithm 2. Details are shown in Algorithm 3.
Algorithm 4 details the update of buffers and HoL as well as packet loss calculation operation in
Algorithm 3.
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Algorithm 2: Resource allocation algorithm

1 Initialize user’s HoL vector

2 Initialize user’s transmission and retransmission buffers
3 Set packet inter arrival time

4 Set number of RBs to be allocated

5 Set size of policies population

6 Set generations number Set crossover rate

7 Set mutation rate

8 foreach TTI do

9 for each cell do
10 Generate initial population of policies with selected users in the user’s selection step
1 for each generation do
12 Select chromosomes to be crossed
13 Cross selected chromosomes
14 Select chromosomes to be mutated
15 Mutate selected chromosomes
16 Evaluate population of policies according to the fitness function
17 Select chromosomes for the next generation population
18 end
19 Choose the best chromosomes acording to the fitness function
20 Allocate RBs to users in best policy
21 for each user do
22 Discard packets that have reached maximum delay allowed
23 Discard packet that have reached maximum retransmission number
24 Update user’s HoL
25 Update user’s transmission buffer
26 Update user’s retransmission buffer
27 end
28 end

29 end
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Algorithm 3: Resource allocation algorithm details

1
2
3
4
5
6
7

8
9
10
11
12

13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36
37
38

39

for t + 1 to Simulation_time do

€

end

Packets_discarded < 0
Total_packets < 0
for p <+ 1 to Population_size do

for r < 1 to Resource_blocks_number do
chromosmelp|[r] <— random user in Selected_users
end

nd
for g <— 1 to Generations_number do

Number_of_chromosomes_to_be_crossed < crossover_rate *+ Population_size

for n <— 1 to Number_of_chromosomes_to_be_crossed do

1 < random number between 1 and Population_size Add chromosome[n,| to
chromosomes to be crossed

end
for n <— 1to Number_of_chromosomes_to_be_crossed /2 do
Cross chromosome[n] with

chromosome [Number_of_chromosomes_to_be_crossed/2 + n]

end

Add new Number_of_chromosomes_to_be_crossed children obtained to population

Number_of_chromosomes_to_be_mutate <— mutation_rate * Population_size

for n <— 1to Number_of_chromosomes_to_be_mutate do

ny < random number between 1 and Population_size Add chromosome[n,,] to
chromosomes to be mutate

end
for n <— 1to Number_of_chromosomes_to_be_mutate do
‘ Mutate chromosome[n]
end
Add new Number_of_chromosomes_to_be_mutate mutated chromosomes obtained to
population
for p < 1 to Population_size do
sum_HoL[p] < 0
for r < 1 to Resource_Blocs_number do
‘ sum_HoL[p] < sum_HoL[p] + Head_of_Line_delay[chromosome[p][r]]
end
end
Sort chromosome according to sum_HoL descending
Keep chromosome[1] to chromosome[Population_size] for next generation population

end
forr + 1to R do

Resource_Bloc[r] <— chromosome(1][r]

end
Update buffers and Head of Line delay of users
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Algorithm 4: Buffers and HoL update

1 for r <— 1 to Resource_Blocks_number do

2 ‘ Head_of_Line_delay[chromosome[1][r] <— HoL[chromosome[1][r] — 1
3 end

4 for u < 1to Number_of_user_in_the_cell do

5 ‘ HoL[u] - Head_of_Line_delay[u] + 1

6 end

7 for u <— 1 to Number_of_user_in_the_cell do

8 | while Head_of_Line_delay[u] > delay_threshold do

9 Transmission_Bu f fer[u] <— Transmission_Buf fer[u] — 1
Head_of _Line_delay[u] < Head_of_Line_delay[u] — 1
Packets_discarded <— Packets_discarded 4+ 1 Total_packets < Total_packets + 1
10 end
1 | while BSR[u| > buffer_size do
12 Transmission_Bu f fer[u] <— Transmission_Buf fer[u] — 1
Head_of Line_delay[u] < Head_of_Line_delay[u] — 1
Packets_discarded < Packets_discarded + 1
13 Total_packets < Total_packets + 1
14 end

Packet_discarded|u]
Total_packets|u]

15 Packet_loss +

16 end
17 forr < 1to R do
18 number_of_harq_process < 0 if Retransmission_Buf fer[chromosome[1][r]] > 0 then

19 if number_of_harq_process < 8 then
20 Retransmission_Buf fer[chromosome([1][r]] =
Retransmission_Buf fer[chromosome[1][r]] — 1
21 number_of_harq_process = number_of_harq_process
22 else
23 Transmission_Buf fer[chromosome[1][r]] =
Transmission_Bu f fer[chromosome[1][r]] — 1
24 end
25 else
26 Transmission_Bu f fer[chromosome[1][r]] = Transmission_Buf fer[chromosome[1][r]] — 1

Head_of_Line_delay[chromosomel[l][r]] =
Head_of_Line_delay[chromosomel[l][r]] — interarrival_time_of_packets

27 end
28 Total _Packets = Total_Packets + 1
29 end

5.3. Dynamic Power Allocation Step

An agent learns to find the best policy, which maximizes SINR values for each user on
each cell. The environment of the agent is a multi-cell network composed of enodeBs and users
geographic locations.

A state represents the location of a user and its SINR value. Only users that have been allocated
at least one physical resource block are considered.

The agent is located at a centralized unit that may be located on one of the enodeBs and collects
geographic location of users on each enodB. The agent learns the best policy to set transmit power for
each enodeB on each physical resource block allocated to users based on their locations.

7
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A reward is associated to each action taken by the agent. If the action taken by an agent is such
that the obtained SINR is less than the minimum SINR acceptable, a negative (—1) reward is given to
the agent. If the action taken by an agent is such that the obtained SINR is greater than the minimum
SINR, a positive reward (+1) is given to the agent.

The reinforcement learning agent-environment interaction [13] is presented in Figure 6 where S,
At, St41, Ri41 and Ry have been described in the resource allocation step.

f/
" Central unit
+1 AN . Set transmit Power
SINR for each enodeB on
-1 each RB
S, R A
R [ :
a1 EnodeBs location
- Selected users location
1 RBs allocated to selected users

A

Figure 6. Reinforcement learning agent-environment interaction of the power allocation problem.

A single policy represents a chromosome [41]. The transmit power of an enodeb on a RB represents
a gene. A chromosome is a set of transmit power on each enodeB on each RB.

Each policy is evaluated by the minimum SINR obtained with the corresponding enodeB’s
transmit power. A gene represents an enodeB transmit power on a RB. A chromosome sample is
shown in Table 2.

Table 2. Power allocation chromosome.

Py Py e Piyy Py e Py e Pp we Pup

The power allocation problem can be seen as a matrix represented in Table 3 for a network
composed by n cells with a bandwidth corresponding to m RBs. In Tables 2 and 3, P;; represents
transmit power of enodeB in cell i on resource block RB,. For example, Py; is the transmit power of
enodeBin cell 1 on the first resource block and P, is the transmit power of enodeBin cell 2 on the first

resource block.

Table 3. Power allocation matrix.

RBy RB, RBy,—1 RB,,

Celly Py Pip Pym-1) Pry

Cellz P21 Pzz PZ(m—l) sz
Celly 1 P(nfl)l P(n—l)z P(n—l)(mfl) P(n—l)m

Ce”n pnl pn2 P”<m,1) an

An initial population of policies is generated at the beginning of the learning process. Each gene
in a policy is assigned randomly a transmit power value between the minimum transmit power
and the maximum transmit power. An agent will evaluate each policy through policy evaluation.
The minimum SINR is used as fitness function of the power allocation GA. Precisely, the range of SINR
values is used as fitness function. To lower the computation process time, a SINR is calculated for each
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user only on RBs that have been allocated to the user. Each policy is evaluated during a process where
the initial population is modified through crossover and mutation operations. A good policy is the one
that has a minimum SINR value greater than the minimum acceptable SINR value. Policies evaluation
is repeated many times corresponding to a number of generations in order to find the best policy.
Policies are improved during policies evaluation.

Crossover operation is done similar to the one in resource allocation step. An example of crossover
operation is shown in Figure 7 for a power allocation in a network that has three cells and a bandwidth
of 5 MHz corresponding to 25 RBs.

37| 43| 39| 42| 40| 41| 41| 38| 40| 43| 42| 35| 42
Parent 2 43| 41| 42| 38| 36| 41| 40| 38| 36| 35| 41| 38| 42

36| 43| 43| 35| 37| 35| 43| 40| 42| 38| 37| 39| 40

37| 43| 39| 42| 40| 41| 41| 38| 40| 43| 42| 35| 42
Child 1 43| 41| 42| 38| 36| 41| 40| 38| 36| 35| 41| 38| 42

36| 43| 43| 35| 37| 35| 43| 40| 42| 38| 37| 39| 40
Child 2

Figure 7. Crossover operation for power allocation.

Mutation operation is done similar to the one in resource allocation step. An example of mutation
operation is shown in Figure 8 for a three-cell network with 25 RBs to allocate on each cell.

43] 35| 41] 39[ 40] 38] 37] 39( 40] 41 36] 35] 37] 39] 42 36] 37| 35] 43
Initial chromosome 39| 37| 36| 35 42| 40| 36 42| 35| 43] 39| 37| 40] 41| 43 37 36 40| 41
38| 38| 40| 35 38 37| 36| 38| 37 40| 37| 38 37| 40{ 37| 42| 36| 35

38] 35] 41] 39] 40 37] 39] 40] 37] 36] 35[ 37] 39[ 42| 36] 37[ 35] 43
Mutated chromosome | 38| 37| 36[740] 42| 40| 36| 42 35| 43] 39| 37| 40| 35) 43 37| 36| 40| 41
38| 38| 40| 35 38 38| 37 36| 38| 37| 40 37| 38] 37| 40| 37 42| 36| 35

Figure 8. Mutation operation for power allocation.

The whole process of dynamic power allocation is summarized in Algorithm 5. The algorithm
has some input parameters: users coordinates in the network, maximum and minimum transmit
power, population size, generations number, crossover rate, and mutation rate. Details of how
initial population is generated, and evaluation and selection of policies, and crossover and mutation
operations are done can be viewed in Algorithm 6.
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Algorithm 5: Power allocation summary algorithm

1 Set position of users in each cell

2 Set maximum transmit power value
3 Set Minimum transmit power value
4 Set size of policies population

5 Set generations number

6 Set crossover rate

7 Set mutation rate

8 foreach TTI do

9 | Generate initial policies population
10 for each generation do
11 Select chromosomes to be crossed
12 Cross selected chromosomes
13 Select chromosomes to be mutated
14 Mutate selected chromosomes
15 Select new policies for the next generation population
16 Evaluate policies population
17 end

18 Choose the best chromosome according to fitness function
19 for each enodeB do

20 for each RB do

21 Set transmit power value with corresponding value in best policy
22 end

23 end

2 end

5.4. Packet to Retransmit Identification Step

In this step, we identify which packets to retransmit. In the previous step, transmit power of each
enodeB on each RB have been set. A best solution solution may have some users still experiencing
high interference by getting low SINR. We assume a packet sent on the corresponding RBs might not
be correctly decoded at the receiver side and thus will be rejected. These packets should be transferred
in the retransmission queue of the corresponding user. The retransmission is handled by the HARQ
manager. There are eight parallel stop and wait (SAW) HARQ processes. The retransmission of packets
can occur at any time relative to the initial transmission since HARQ processes are asynchronous in
the LTE downlink. The step is summarized in Algorithm 7.
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Algorithm 6: Power allocation algorithm details

1 fort < 1to Simulation_time do
for p < 1to Population_size do
for ¢ <— 1 to Number_of_cells do

L . ]

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

end

end

end

end

end

for u < 1to Number_of_users_in_the_cell do
for r < 1 to Number_of_Resource_Blocks do
chromosome([p|[c][u][r] < random number between Minimum_transmit_Power and
Maximum_transmit_Power
end

end

for g < 1to Number_of_generations do

Number_of_chromosomes_to_be_crossed < crossover_rate x Population_size
for n <— 1 to Number_of_chromosomes_to_be_crossed do

end

1¢ < random number between 1 and Population_size Add chromosome[n] to chromosomes to be
crossed

for n <— 1 to Number_of_chromosomes_to_be_crossed /2 do

end

Cross chromosome[n] with chromosome[N;/2 + n|

Add new Number_of_chromosomes_to_be_crossed children obtained to population
Number_of_chromosomes_to_be_mutate <— mutation_rate = Population_size
for n < 1 to Number_of_chromosomes_to_be_mutate do

end

1y < random number between 1 and P Add chromosome[n,,] to chromosomes to be mutate

forn «+ 1to N, do

end

Mutate chromosome[n]

Add new Number_of_chromosomes_to_be_mutate mutated chromosomes obtained to population
for p <— 1 to Population_size do

end

for ¢ <— 1 to Number_of_cells do
for u < 1to Number_of_users_in_the_cell do
for r < 1 to Number_of_Resource_Blocks do
Calculate SINR(c][u][r] according to Formula (1)
end
end
end

Sort chromosome according to SINR descending
Keep chromosome[1] to chromosome[Population_size] for next generation population

for ¢ < 1to Number_of_cells do

for u <— 1 to Number_of_cells do

end

forr < 1 to Number_of_Resource_Blocks do
Transmit_Power|c][u][r] < chromosome[1][c][u][r]
end
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Algorithm 7: Packet to retransmit identification algorithm
1 Set minSINR

2 for each cell do
3 for each user do
4 for each RB do
5 if SINR < minSINR then
6 Transfer packet in retransmission queue of user
7 Update transmission Queue of user
8 end
end
10 end
11 end

6. Results and Discussions

To verify the effectiveness of our ICIC scheme, a Matlab® based simulation tool was implemented.

The simulation tool enables us to change system model and genetic algorithm parameters.
System model parameters that were changed are the number of cells, the bandwidth, the number
of active users, and the simulation time in terms of number of TTIs. Genetic algorithm parameters
that were changed are population size, selection rate, crossover rate, mutation rate and number
of generations.

We conducted simulations for an LTE network with 19 cells [16] with one enodeB located on each
cell; a bandwidth of 5 MHz [16], which corresponds to 25 RBs to share among users; and a simulation
time of 3000 TTIs. Different number of active users were taken (50, 150, 200, 2500, 300, 350, 400, 450, 500,
550 and 600) to observe the performance of the proposed method and its overhead. Each enodeB used
omnidirectional antenna. UEs were randomly distributed in each cell. Voice traffic was considered
with a Poisson distribution. Each user’s transmission queue was updated with a new packet every
20 ms corresponding to inter arrival time [38]. Head of line delay and buffer size were set according to
VoIP QoS requirements [39].

For the EARL parameters, we tried many combinations but, for results shown here, we used a
population size of 500, a selection rate of 0.5, a crossover rate of 0.4, a mutation rate of 0.1 and a number
of generations of 50. We choose maximum transmit power to 43 dBm [27] and we set minimum
transmit power to 35 dBm. The range of transmit power was [35 dBm, 43 dBm] for the proposed power
allocation algorithm, and 43 dBm for the uniform transmit power scenario. Note that, for uniform
transmit power, Equation (1) (Section 3) was used but all transmit power values were equal to 43 dBm.

System parameters are summarized in Table 4 while EARL parameters are summarized in Table 5.

For each active users number, we executed 100 simulation runs. At the beginning of each
simulation, each user’s position was randomly generated within a cell. Performance of proposed ICIC
scheme was evaluated in terms of average packet loss ratio, delay and SINR.

6.1. Average Packet Loss Ratio

The reinforcement learning agent converges after 50 generations for each TTI. Average packet
loss ratio results values were compared with values obtained with maximum throughput (MT),
Proportional Fairness (PF), Earlier Deadline First (EDF) and Largest Weighted Delay First (LWDF) [54]
algorithms, which results were calculated with a confidence interval of 95%, as shown in Figure 9.
We implemented these algorithms as well.
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Table 4. System model parameters.

Cells number 19

Cell radius 1 km

Interfered cells 6

Actives Users per cell 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600
User distribution randomly in entire network
System bandwidth 5 Mhz

Resource blocks per cell 25

TTI duration 1 ms

Simulation duration 3000 ms

HARQ type asynchronous

Number of HARQ processes 8

Retransmission interval any time

Interference model Explicit

Traffic model Limited buffer size

Traffic source Conversational voice
Traffic distribution Poisson distribution
Packet inter arrival time 20 ms

Cell layout Hexagonal grid

Antenna configuration omni-directional

Fading model Rayleigh fading

Channel Estimation Perfect channel estimation
Traffic type voice

Inter arrival time 20 ms

Maximum Hol Delay 100 ms

Transmission Queue size 100

Retransmission queue size 100

Tx power interval [35 dBm, 43 dBm]

Tx power for uniform allocation 43 dBm

Table 5. GA parameters.

Population size 500
Cross over method  one point
Mutation method  six points

Generation 50
Cross over rate 0.4
GA Mutation Rate 0.1
Selection rate 0.5

It can be seen from the figure that our proposed resource allocation algorithm showed the best
packet error loss ratio compared to MT, PE, EDF and LWDF resource allocation algorithms. The figure
shows that packet error loss ratio significantly increased with the number of served users. It is worth
nothing that our proposed resource allocation algorithm is the only algorithm that gave packet error
loss rate below conversational voice QoS requirement, which is 1% for packet error loss ratio [39].
The packet loss values of our proposed GA algorithm were between 0.03% and 0.67% while packet
loss values of other algorithms were between 2.7% and 7.3%, which are far greater than voice QoS
requirement. This difference can be explained by other algorithms using metrics that are mathematical
functions and the algorithm always being able allocate resources to users that have the maximum value
of corresponding metric. The advantage of the proposed GA algorithm is that it is a heuristic method.
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Figure 9. Overall average packet loss with 95% confidence interval. Proposed GA showed
better performances.

6.2. Delay

To compare performances of proposed GA algorithm, we considered cumulative distribution of
head of line delay at the end of each simulation. Figure 10 shows empirical cumulative distribution
function of user’s HoL at the end of a simulation for each algorithm. We plotted the figure for a maximum
active users equal to 600. Recall that HoL value is between 1 and 100 ms, such that, if a packet stays
longer in the buffer, the HoL increases and, when it reaches 100 ms, the last packet is discarded.

Empirical CDF
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Figure 10. Cumulative Distribution function of delay. Proposed GA showed better performances than
other algorithms.
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It can be seen in the figure that our proposed resource allocation algorithm showed the best delay
distribution compared to MT, PF, EDF and LWDEF resource allocation algorithms. The Figure shows
that, at the end of the simulation, HoL value of our proposed GA were between 0 ms and 20 ms, while
HoL values of other algorithms were between 0 ms and 80 ms. We can see that 50% of users had HoL
values between 0 ms and 40 ms and 50% of users had HoL values between 40 ms and 80 ms, which
means HoL values of other algorithms tended to reach maximum HoL value leading to packets being
discarded. This confirm results in shown in Figure 9.

6.3. SINR

Figure 11 presents performance of the proposed ICIC scheme in term of SINR. The figure also
shows performance of RF1, SFR, fuzzy logic system [27] and uniform transmit power schemes for
comparison. We chose to present SINR performance as cumulative distributions that show the range
in which SINR values belong. Recall that SINR is calculated according to Equation (1) (Section 3).
The thermal noise was —174 dBm. We drew the cumulative distribution functions of SINR for these
methods from results shown in [27].

The figure clearly shows that our proposed ICIC scheme performed better than the other ICIC
schemes with SINR values in the range [-90, —40]. Fuzzy logic system scheme followed with most
SINR values in the range [—90, —80]. Fuzzy logic system outperformed RF1 and SFR, which had SINR
values in the range [-90, —87]. However, SFR had better performance than RF1. Uniform transmit
power scheme had the worst performance among the all of the schemes.

RF1, SFR and Fuzzy logic system have in common the partitioning of the bandwidth, which has a
disadvantage. A user may not be allocated a resource block because there is no resource block available
in its area, while at the same time a resource block may be unused in another area. This will negatively
impact the performance of the network in terms of packet loss.

Empirical CDF
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Figure 11. Cumulative Distribution function of SINR. Proposed ICIC scheme was clearly suboptimal.
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7. Conclusions

In this paper, an intercell interference coordination scheme for downlink LTE networks that aims
to minimize intercell interference is proposed. The proposed scheme combines resource allocation and
dynamic power control using genetic algorithm as policy space search reinforcement learning.

Simulations results show the effectiveness of our proposed ICIC scheme. The proposed resource
allocation algorithm gives more than seven times less packet loss ratio and delay performance
compared to maximum throughput (MT), Proportional Fairness (PF), Earlier Deadline First (EDF) and
Largest Weighted Delay First (LWDEF).

Our proposed power allocation scheme effectively minimizes intercell interference by increasing
SINR compared to RF1, SFR, fuzzy logic system [27] and uniform transmit power schemes.

The next steps for future research direction would be to use real data from real LTE networks to
learn solutions offline through exploration process and to use results obtained for online exploitation.
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