
future internet

Article

Forecasting E-Commerce Products Prices by
Combining an Autoregressive Integrated Moving
Average (ARIMA) Model and Google Trends Data

Salvatore Carta, Andrea Medda, Alessio Pili , Diego Reforgiato Recupero * and Roberto Saia
Department of Mathematics and Computer Science, University of Cagliari, Palazzo delle Scienze,
Via Ospedale 72, 09124 Cagliari, Italy; salvatore@unica.it (S.C.); andrea.medda.uni@gmail.com (A.M.);
alessio.pili5@gmail.com (A.P.); roberto.saia@unica.it (R.S.)
* Correspondence: diego.reforgiato@unica.it; Tel.: +39-070-675-8537

Received: 22 November 2018; Accepted: 20 December 2018; Published: 24 December 2018 ����������
�������

Abstract: E-commerce is becoming more and more the main instrument for selling goods to the mass
market. This led to a growing interest in algorithms and techniques able to predict products future
prices, since they allow us to define smart systems able to improve the quality of life by suggesting
more affordable goods and services. The joint use of time series, reputation and sentiment analysis
clearly represents one important approach to this research issue. In this paper we present Price
Probe, a suite of software tools developed to perform forecasting on products’ prices. Its primary
aim is to predict the future price trend of products generating a customized forecast through the
exploitation of autoregressive integrated moving average (ARIMA) model. We experimented the
effectiveness of the proposed approach on one of the biggest E-commerce infrastructure in the world:
Amazon. We used specific APIs and dedicated crawlers to extract and collect information about
products and their related prices over time and, moreover, we extracted information from social media
and Google Trends that we used as exogenous features for the ARIMA model. We fine-estimated
ARIMA’s parameters and tried the different combinations of the exogenous features and noticed
through experimental analysis that the presence of Google Trends information significantly improved
the predictions.

Keywords: smart systems; time-series forecasting; ARIMA; machine learning; Amazon; Google Trends

1. Introduction

E-Shops are recently gaining more and more popularity among users. Amazon (https://www.
amazon.com/), Ebay (https://www.ebay.com/), Tesco (https://www.tesco.com/groceries/?icid=
dchp_groceriesshopgroceries) and others, are huge companies which sell any kind of products owing
therefore most of their success to online purchases, home delivery and low prices that they can offer.

In the past ten years, Amazon had an impressive growth that allowed building its own delivery
and data centers across the world in order to serve its users in the best possible way. The main
reasons for Amazon’s success is due to the amount of different products sold along with its customer
care, its advertisings, the respect and trust gained among users during the past years and, especially,
products’ prices. Without a doubt, Amazon has today become the number one online retailer for many
consumers. According to Morgan Stanley, Amazon’s cloud arm AWS (https://aws.amazon.com),
prime subscriptions, and advertising segment, greatly helped to make Amazon a 1 trillion company in
2018. Therefore, there is a lot of research related to Amazon services and price forecasting of Amazon
products is one direction where many researchers are headed.

Research has also brought to light new commercial services such as CamelCamelCamel
(https://camelcamelcamel.com) that earns from just showing a product’s trend over time.

Future Internet 2019, 11, 5; doi:10.3390/fi11010005 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0002-9450-9793
https://orcid.org/0000-0001-8646-6183
https://orcid.org/0000-0002-1734-0437
https://www.amazon.com/
https://www.amazon.com/
https://www.ebay.com/
https://www.tesco.com/groceries/?icid=dchp_groceriesshopgroceries
https://www.tesco.com/groceries/?icid=dchp_groceriesshopgroceries
https://aws.amazon.com
https://camelcamelcamel.com
http://dx.doi.org/10.3390/fi11010005
http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com/1999-5903/11/1/5?type=check_update&version=2

Future Internet 2019, 11, 5 2 of 19

CamelCamelCamel tracks every product’s price trend over time on different marketplaces. For each
product, it compares its trend history on each marketplace and alerts the interested user in a certain
product when its price gets lower than its average value or under a given chosen threshold. It tracks
marketplaces like Amazon and Google Shopping.

The prices of the products Amazon sells are influenced by several factors, most of which are
unknown. They can be influenced by inflation, by the amount of sales, by its popularity, by the
popularity of its manufacturer, by the popularity of its category, by the users reviews, by the holiday
periods and so on. Some of the information related to the products are unknown, such as the number
of their sales, since Amazon does not disclose this kind of data for strategic reasons. On the other
hand, some of the Amazon data related to its products can be gathered using Amazon APIs or can be
extracted using crawlers, scrapers and other techniques.

The goal of our work was to study and analyze how the historical information and external factors
might influence the future price trend of a given product and the impact of each of the external factors
on the forecast of the price of each product. We have used Amazon as platform to extract unstructured
products information and prices with the objective to perform the forecast of Amazon products’ prices
on data extracted with Amazon APIs and crawlers to understand whether external information, such
as those provided by Google Trends or customer reviews (the latter has already been verified bringing
effects on future product pricing and demand [1]), might bring benefits to the overall prediction.

We have represented the extracted data in form of time series and decided to use ARIMA
(Autoregressive Integrated Moving Average) for the forecast step. Out of all machine learning and
statistical methods that can be used for financial time series forecasting highlighted by the authors
in [2,3], the choice of using ARIMA depends on the fact that it is well suited for the data types we
have collected and allows working with exogenous variables, which consist of further data we can
feed to the model. A lot of the data we have extracted related to the Amazon products’ prices over
a wide interval time exhibit consistent pattern over time with a minimum amount of outliers. Basically,
the first thing we have analysed has been the stationarity of the data and we have noticed that most
of the prices of a given product remain at a fairly constant level over time. This happens for a lot of
products. There are also cases of non stationarity time series in our data and this is where we had to
perform some preprocessing steps. Our method can be applied to any kind of product as long as we
provide the price and the related date. ARIMA also works well in presence of several missing daily
tuples (price, date) among its inputs and that is also one more reason we chose it (as we had missing
data for certain products in certain interval times). Of course, the higher the number of entries per
each product, the more precise the forecast step will be.

Similar studies using ARIMA for price forecasting have been done in [4–11]. Other works focused
on the forecasting of e-commerce prices have been proposed in [12] where authors proposed LSTM
neural networks to obtain better prediction performances in daily phone prices in one particular
marketplace, amazon.fr. In one further work [13], researchers adopted a Stochastic Differential
Equations (SDE) approach to describe a plausible course of the online auction price. The proposed
model has several practical implications. First, an SDE model enables one to individually model
an online auction price curve in which the price dynamics can be determined by its own parameters.
Second, this approach facilitates the price prediction of an online auction, which can help improving
auction strategies.

Besides, several articles have used Google Trends to improve the forecasts of different
phenomena [14,15]. We have trained the ARIMA model with 90% of the data we collected and
predicted the prices of the remaining data. We had to fine-estimate the ARIMA parameters (p, q, d)
and performed the forecast with a low Mean Absolute Percentage Error Score. ARIMA depends on
different inputs such as ACF (AutoCorrelation Function) and PACF (Partial AutoCorrelation Function)
and, on the basis of the time series theory [16], it works well if the process is stationary. For this reason,
when it is non-stationary we introduce a preprocessing step.

Future Internet 2019, 11, 5 3 of 19

It should be observed that several studies in literature proved that many machine learning models
are able to get the same performance of ARIMA (i.e., in terms of forecasting performance) when they
involved a large number of time series [17,18]. We have chosen to exploit ARIMA models instead of
other machine learning ones for the following reasons: (i) differently from many machine learning
approaches, they provide good forecasting performance when a small/big number of data (i.e., time
series) is employed; (ii) in terms of short-run forecasting those models are relatively more robust and
efficient than more complex ones [19]; (iii) the strictly statistical method used by ARIMA only requires
the prior data of a time series in order to generalize the forecast, then it is able to increase its forecasting
accuracy by involving a minimum number of parameters [20].

More in detail, the scientific contribution of this paper is the following:

• First, this is the first work analyzing the correlation of Google Trends and products reviews
information with Amazon products’ prices, using huge amount of real world data. We have
developed crawlers that extracted about 9 millions of products and 96 millions of tuples with
information related to their prices, their manufacturers, categories they belong, Google Trends,
and reviews.

• Second, a deep analysis of how Google Trends information improved the forecast task when used
as exogenous variable within our ARIMA model is performed;

• Finally, we developed and made available an open source framework which allows downloading
and crawling of Amazon products information and the tuning and employment of the
ARIMA model.

• Last but not least, we built a database of a huge collection of Amazon products, their reviews,
their price over time and the related Google Trends information.

The rest of our paper is organized as follows. Section 2 presents some related works on the price
forecasting and the statistical tools and classifiers used for such a purpose. Section 3 details the data
we have used for our experiment. Section 4 describes Price Probe: how the data have been collected and
the suites of crawler we have developed for such a purpose. Section 5 describes the used methodology
and how we set the configuration parameters of the ARIMA model. Results we have obtained which
include a detailed performance evaluation are discussed in Section 6 whereas Section 7 ends the paper
with final remarks and directions where we are headed.

2. Related Work

Several researchers have employed ARIMA models for forecast of stock prices. As an example,
authors in [4,8] describe as ARIMA can easily handle such a data format and how it is well suited for
time series forecasting. One more example is represented by [21] where authors described an ARIMA
model with currency as exogenous feature used to forecast commodity prices. ARIMA has also been
employed within the agriculture domain where authors in [6] discussed how they have employed it
for forecasting crop prices, and results indicate very low error values in terms of MSE (Mean Squared
Error) and MAPE (Mean Absolute Percentage Error). Within the same domain, one more work is
represented by [7], where authors described how to employ ARIMA for forecast cloud coverage based
on ground-based cloud images. In particular, taking into account the correlation about cloud coverage
over time, authors obtained an approximate error of 8% of the predictions compared to real values.

Energy is one more domain of application for ARIMA. For example, work in [5] describes
an ARIMA model for forecasting electricity price during weeks, having as input wavelet transform
applied to time series related to electricity prices. The application of wavelet transform further reduces
the error of predictions performed by the model. In a similar way, other works related to the forecast
of energy have been discussed in [9], where the authors described an ARIMA model for forecast coal’s
consumption in China, and in [10] where authors used it to forecast energy consumption of Turkey.
One more example can be found in [11] where authors describe the use of exogenous variables for
residential low voltage distribution networks.

Future Internet 2019, 11, 5 4 of 19

It should be observed that, regardless the adopted model, when exogenous variables are not used,
there is a limit of predictability [18], whereas the appropriate selection of such variables leads towards
an improvement of the forecasting performance [22].

In literature, researchers have already tried to include values returned by Google Trends as
exogenous variables in ARIMA models for forecasting of oil consumption [23]. Also, authors in [24]
described an ARIMA model using Google Trends modified with Twitter’s sentiment score to estimate
consumption and sales for a particular business. In fact, Sentiment Analysis is one more domain
where ARIMA models have been employed. Moreover, authors in [25] have used sentiment analysis
of products users reviews in a time interval to build an ARIMA model to predict the amount of sales
of the products. Moreover, authors in [26] focused on forecasting the price of house property and
electronic products using sentiment news from Baidu, a well-known portal website in China analysing
news content and extracting key events related to the products. Results indicate that predicted prices of
products can be influenced by sentiment factors. Similarly, authors in [27], based on the user comments
data from a popular professional social networking site of China stock market called Xueqiu, calculated
the investor sentiment of each stock and performed their analysis based on the Thermal Optimal Path
method. The results show that the sentiment data was not always leading over stock market price but
it might be used to predict the stock price only when the stock had high investor attention.

Several works have tried to address the concept of stationarity, and seasonality of the input data
of an ARIMA model. More in general, authors in [28] described how the problem of time series
forecasting should be approached, focusing on the importance, for the forecasting, to remove trends
or seasonality of the considered time series. To check whether a given time series is stationary or not,
authors in [29] introduced the Adfuller Test. They also provided information related to the meaning
of stationary series, when they can be considered good for statistics analysis and prediction or not.
Similarly, authors in [30] described the Augmented Adfuller Test and discussed more deeply the concept
of stationarity of time series and how the choice of ARIMA’s parameter d is bound to the stationarity
of the time series. On top of that Ng and Perron in [31] introduced a modified unit root test showing
and proving that it was more powerful and reliable than the ADF test. Other works focused on the
tuning and the correct choice of the parameters needed for an ARIMA model to work. In particular,
authors in [32] described Box and Jenkins, a method used to calculate ARIMA’s input parameters (p, q,
d). This resource deeply explores and describes how to find (p, q, d), what they are and what their
value means. Another example is constituted by [33] where authors described ACF, PACF and other
techniques used in ARIMA. The authors in [34] described a python library employed to find PACF and
ACF values for a time series in order to detect, respectively, ARIMA’s p and q parameters. In this paper
we used much of the techniques introduced within this section. Our choice of using ARIMA as best
model for forecasting of products’ price is in line with the findings of previous work in literature and
also supported by the work of researchers that have compared the performances of ARIMA models
with ARMA (autoregressive-moving-average) models [35] and showed how the former has lower
error and higher accuracy.

Other recent work investigated whether measurements of collective emotional states derived
from large scale networks feeds are correlated with stock transaction data over time [36].

3. Data Description

In this section, we are going to detail the data used in this paper. Our data are stored in different
PostgreSQL tables reported as follows (please contact the authors if interested in obtaining the data).

• Products—which contains main information on the Amazon products;
• Manufacturers—which contains information about the manufacturers;
• Categories—which contains information about the categories of the products;
• Categories products—which contains the associations between products and categories;
• Prices—which contains information about the prices of the Amazon products;

Future Internet 2019, 11, 5 5 of 19

• reviews—which contains information about the reviews of the products.
• trends—which contains information about Google Trends on the manufacturers of the

Amazon products;

Figure 1 shows the tables mentioned above with their related fields and relations. The process of
extraction of all the data is detailed in Sections 4.1 and 4.2.

Figure 1. Data tables and their relationships.

3.1. Products

The table related to the products stores different information about each Amazon product.
The table includes an id, the manufacturer of the given product, the product’s URL, the product’s title
that appears on Amazon and the URL of its related image.

3.2. Manufacturers

This table stores the name related to the manufacturers of each product. This table has also been
employed to fetch Google Trends entries. For each manufacturer we extracted it Google Trends history.
We collected this information because we wanted to understand whether external data such Google
Trends might affect our forecast.

3.3. Categories

This table stores the name of each category. In particular, we stored categories of each product.
Each product can be associated with one or more categories. The rationale behind having the categories
was to test whether the forecast process was more precise for products of the same categories.

3.4. Categories Products

This table stores the associations (product, category) as each product may have multiple categories
and, vice-versa, each category can be assigned to several products.

Future Internet 2019, 11, 5 6 of 19

3.5. Prices

This table contains all the information about the prices of each product over time. We have about
9 millions of different products and about 90 millions of different prices taken within the interval time
from 2015 to 2016. Prices information are expressed in tuples (item, price, date). Each of such a tuple
is unique and, therefore, a given product has one price information in a given day. Certain products
have daily entries in consecutive days, others have not.

3.6. Reviews

This table stores information about reviews of products. Each element includes the product
that the review is referred to, a description of the review, the date when the review has been posted,
an integer number between−1 and +1 that corresponds to the sentiment on that product and a star field
including a vote expressed as several stars between 0 and 5. Not all the products have reviews. If they
have, they might have one or more reviews per day. The content of a given review includes a comment
posted by a user. We have collected this information because we wanted to understand whether the
reviews had an influence and could bring benefits for the forecast of the products’ prices. The domain
of Sentiment Analysis related to the reviews might be a bit tricky as more experienced users might
influence future users reviews on a same product or a user review might also be influenced by the
popularity of the underlying product’s manufacturer and the category maturity [37–39]. We followed
the same direction of a similar work that employed ARIMA within the Sentiment Analysis domain [25]
to understand whether or not a product would have success. For instance, we thought that many
negative reviews in terms of stars and sentiment score could lead to a price decrease; this has been
validated and highlighted by works such as [40] where authors stated that e-commerce success might
take decisions based on the social influence of its users.

3.7. Trends

This table stores information about trends that we extracted using Google Trends for each
manufacturer of the products we collected over time. A value between 0 and 100 expressed the
trend’s value where 100 indicates a strong trend whereas 0 indicates a weak trend on the given
product and date. For each manufacturer we extracted a Google Trends entry. Essentially, we have
a manufacturer popularity expressed as a pair (value, date). The idea was to collect this kind of data to
understand how the popularity of a given manufacturer might affect the forecast step. A similar work
has been conducted in [23] where authors employed Google Trend as a feature in ARIMA. Section 4.2
describes in detail how we have extracted Google Trend information for each manufacturer.

4. Price Probe

Our RESTful back-end of Price Probe collects and stores all the data in a relational database
so that it is easy to prepare queries for the forecast of an item. Our system is flexible enough and
allows collecting any sort of new external features: it is straightforward to extend our back-end
functionalities by adding new modules and REST (REpresentational State Transfer) handlers to it.
Moreover, our crawlers and tools are all small and independent microservices which share a common
configuration: anyone willing to develop a new crawler can extend the current pipeline and define
which features he/she wants to collect. The suite of software we have developed is easily deployable
using Docker-Compose (https://docs.docker.com/compose/).

The data used in our study have been collected using the APIs of Amazon and ad-hoc crawlers
we have developed within our suite of software that we propose. As such, this section describes the
suite of crawlers we have developed to extract, collect and process the data mentioned in Section 3 in
form of time series. Our crawlers are independent microservices that extract data calling external APIs
and services, processing the resulting information and adding it to our collection via REST calls to our
back-end. Our back-end has been written in Google’s Golang (https://golang.org/) and is available

https://docs.docker.com/compose/
https://golang.org/

Future Internet 2019, 11, 5 7 of 19

for free download (https://github.com/AndreaM16/go-storm). Figure 2 shows the architecture of
our crawling system.

Figure 2. Crawling Suite Architecture.

In the following, we will describe the data we have crawled from Amazon and Google Trends.
In particular, Section 4.1 covers the Amazon’s data collecting process whereas Section 4.2 describes the
Google Trends data collecting process.

4.1. Amazon

As stated in Section 3, originally, for each product we had only (price, date) tuples for a
total of about 90M unique tuples. These data have been crawled using Amazon Affiliation
APIs (https://docs.aws.amazon.com/AWSECommerceService/latest/GSG/GettingStarted.html).
On a daily basis, our crawlers collected the information about products and prices available on
Amazon. The time interval when we had run our crawlers and collected our data was between
2015 and 2016. This collection had several issues. Prices were represented in different formats
(text, double, uint, ...) and a pre-processing step was necessary. Using different tools such as AWK,
we were able to parse these heterogeneous data to a common format. For simplicity, we also formatted
all the date entries. After that, we uploaded the results to a PostgreSQL database. Additional data
such as manufacturers and reviews have been gathered by developing a microservice that performs
API calls to Amazon using Amazon Affiliation APIs. Such a microservice is freely available on
a GitHub repository (https://github.com/AndreaM16/go-amazon-itemlookup). These APIs expose
XML bodies describing a given product. This body contains different parameters such as product’s
manufacturer, categories, reviews page URL and so on. Unluckily, APIs do not expose any kind of
information about the reviews but only a URL that provides an HTML page containing paginated

https://github.com/AndreaM16/go-storm
https://docs.aws.amazon.com/AWSECommerceService/latest/GSG/GettingStarted.html
https://github.com/AndreaM16/go-amazon-itemlookup

Future Internet 2019, 11, 5 8 of 19

reviews. It was necessary to scrape this page to get reviews in form of content, stars and date. We found
out that for some products, APIs do not return any useful information. Therefore, for some products it
was impossible to fetch their manufacturer or reviews. The Polarized Sentiment Analysis was performed
on product’s content using Vader Sentiment Analysis (https://github.com/cjhutto/vaderSentiment)
and referenced here [41]. Concerning the reviews, as stated in Section 3.6, per each product, we found
up to n reviews (sometimes even zero). This was an issue when aggregating the data as performing
a join between the tuples (item, date, price) and (item, date, sentiment, stars), might have 0 or very
few rows. Thus, in order to have a more consistent number of reviews having at least one entry
per day when joining the prices data, we did the following. We wrote a small tool, available online
(https://github.com/AndreaM16/review-analyzer), that generated a list Rt of unique daily reviews.
If a certain day had more than one review, we calculated an average of their Sentiment and Stars and
inserting that in Rt. These Sentiment and Stars values were calculated following the formula:

sentimentday =

n−1
∑

i=0
sentimentdayi

n

starsday =

n−1
∑

i=0
starsdayi

n

where sentimentday and starsday are the averaged values obtained as new Sentiment and Stars values
for the resulting review that will be inserted in the daily reviews list Rt and related to day. Rt is a list
of consecutive days reviews so that datedayi

< datedayi+1
; i ∈ {1, · · · , n}; n = ‖Rt‖. On top of that,

we managed to fill the missing entries between two reviews belonging to Rt by making the average of
the two related entries, dayi and dayi+1.

The resulting review is inserted into a final list of daily consecutive reviews R f where
datedayi

< datedayi+1
; i ∈ {1, · · · , n}; n = ‖R f ‖. In this way, we had a unique review for each date

within the range that goes from the very first to the very last date of a given product. The reader
notices that it still might be possible for a given product to have a time series of (date, price) tuples
with some missing entries (missing values for some day of the reference interval time). The missing
reviews have been computed when for a given product we had (date, price) tuples information but not
its related review.

4.2. Google Trends

Google Trends data tracks the popularity of a manufacturer over time. Starting from
manufacturers, we fetched their Google Trends history from 2015 to the middle of 2016. To do
so, we built a crawler using Selenium Webdriver (http://www.seleniumhq.org/projects/webdriver/)
in Python and Golang that for a given manufacturer, looked for its trend, downloaded its csv data, parsed
and posted it to our back-end. We had to use Selenium because Google Trends does not have open
APIs to get a given text input’s popularity. Moreover, the downloaded csv file contained only weekly
(value, date) entries, hence, one entry per week. Since we needed external data to be in daily format
(as stated in Section 4.1), we had to process it and get an entry for each missing day. This has been
achieved by using the same approach used to fill the missing reviews. Given two consecutive date trend
entries ti and ti+1 belonging to Tt, so that, for each of them, dateti < dateti+1 ; i ∈ {1, . . . , n}; n = ‖Tt‖,
we get the missing days values (e.g., for ti) by calculating the average of ti−1 and ti+1. The reader
notices that the approach we have employed to solve missing values has been taken from [42]. As the
number of missing values (both for Google Trends information and reviews) were less than 2% for
each time series on each considered Amazon product, we did not include any sensitivity analysis.
We limited to report for completeness the method we have employed to fill missing values.

The resulting trend entry vti is inserted into a final list of daily trend entries Tf where
dateti < dateti+1 ; i ∈ {1, . . . , n}; n = ‖Tf ‖. In this way, we had a unique trend entry for each date
in the interval range of a given product. The result has been posted as the reputation over time

https://github.com/cjhutto/vaderSentiment
https://github.com/AndreaM16/review-analyzer
http://www.seleniumhq.org/projects/webdriver/

Future Internet 2019, 11, 5 9 of 19

of a given manufacturer in our back-end. Similarly as for the reviews, the missing Google Trends
information have been computed when, for a given product, we had (date, price) tuples information
but not Google Trends. The Selenium + Python code we developed is freely available at the following
GitHub repository (https://github.com/AndreaM16/yaggts-selenium). The code simply takes a text
as input, for instance Apple, and downloads a csv file containing its related weekly formatted entries.
The Golang code (https://github.com/AndreaM16/yaggts) calls the Python code sending an input
text, and waiting for the csv to be downloaded, parsed and processed as stated above. Results are then
posted to our back-end.

5. Our Approach

This section describes the prediction algorithm we have used and how we customize it to fit
our needs. Indeed, we built a general purpose algorithm applied to time series, that takes a set of
features (basic and exogenous variables), fine-estimate ARIMA’s parameters (p, d, q) keeping the
combination that outputs the lowest MAPE. In Section 5.1 we will give some definition of the ARIMA
model whereas in Section 5.2 we will show how ARIMA’s parameters have been calculated and the
features we have included as exogenous variables.

5.1. ARIMA

A time series is a sequence of measurements of the same variable(s) made over time. Usually the
measurements are made at evenly spaced times - for example, daily or monthly. An ARIMA (p, d, q)
(Autoregressive Integrated Moving Average) model, in time series analysis, is a stochastic process [16]
that fits to time series data, and predicts future points in the series. ARIMA is well suited for the
proposed use case because it allows working, not only with (price, date) tuples, but also with external
information included within the model as exogenous features. For instance, we can see if adding a new
exogenous feature improves the overall accuracy or not. This can be useful to understand how the
model reacts to different external features and how much they influence the precision of the forecast.
Since in our study we found out that an external feature like Product’s Manufacturer Popularity affects
the forecast, this particular functionality of the algorithm is quite useful. More information on ARIMA
can be found in literature [28,32]. The model is a combination of three parts AR, I, MA. These parts are
affected by the parameters (p, d, q). Below, we shortly explain each of them:

• AutoRegressive model (AR):
An autoregressive model AR(p) specifies that the output variable depends linearly on its own
previous values and on a stochastic term. The order of an autoregressive model is the number of
immediately preceding values in the series that are used to predict the value at the present time.
The notation AR(p) indicates an autoregressive model of order p. The AR(p) model is defined as:

Xt = c +
p

∑
i=1

ϕiXt−1 + εt

where ϕ1, . . . , ϕp are the parameters of the model, c is a constant and εt is white noise.
• Integrated (I):

It indicates the degree of differencing of order d of the series. Differencing in statistics is
a transformation applied to time series data in order to make it stationary. As formalized in [16],
a process {Yt} is stationary if the probability distributions of the random vectors (Yt1 , Yt2 , . . . , Ytn)

and (Yt1+1 , Yt2+l , . . . , Ytn+l) are the same arbitrary times t1, t2, . . . , tn, all n, and all lags or leads
l = 0,±1,±2, A stationary time series does not depend on the time at which the series is
observed. To differentiate the data, the difference between consecutive observations is computed.
Mathematically, this is shown as:

y′t = yt − yt−1

https://github.com/AndreaM16/yaggts-selenium
https://github.com/AndreaM16/yaggts

Future Internet 2019, 11, 5 10 of 19

where yt, yt−1 are the values of the series, respectively, at time t, t-1, and y′t is the differenced value
of the series at time t.

More formally, denoting as y the dth difference of Y, the forecasting equation can be defined
as follows:

I f d = 0 : yt = Yt

I f d = 1 : yt = Yt −Yt−1

I f d = 2 : yt = (Yt −Yt−1)− (Yt−1 −Yt−2) = Yt − 2Yt−1 + Yt−2

It should be noted that the second difference of Y (i.e., d = 2 case) does not represent the difference
from 2 periods ago but the first-difference-of-the-first difference, since it is the discrete analog of
a second derivative [43].

The ARIMA approach requires that the data are stationary. When the times series is already
stationary, then an ARMA model is estimated. On the contrary, if the time series is not stationary,
then the series must be transformed to become stationary (order of integration “I” meaning the
number of times that the series must be differentiated to get stationarity), and we work with an
ARIMA model. If a time series is stationary, then taking first-differences is not needed. The series
is integrated of order zero (d = 0), and we specify an ARMA model since differencing does not
eliminate the seasonal structure existing in the data. For time series forecasting, in ARIMA models
it is common to use the following transformation of the data:

∆yt = log(Yt)− log(Yt−1)

This transformation allows reducing the variability of the series, and the transformed variable can
be interpreted as an approximation of the growth rate. Further details can be found in [16] where
authors indicate the adoption of preprocessing approaches, such as the Seasonal Decomposition
one [44], in order to reduce seasonality.

• Moving Average model (MA):
In time series analysis, the moving-average MA(q) model is a common approach for modeling
univariate time series. The moving-average model specifies that the output variable depends
linearly on the current and various past values of a stochastic term. The notation MA(q) refers to
the moving average model of order q. The MA(q) model is defined as:

Xt = µ + εt + θ1εt−1 + · · ·+ θqεt−q

where µ is the mean of the series, θ1, . . . , θq are the parameters of the model and εt is white noise.

The reader notices that our procedure is not optimal for computational complexity reasons.
Basically we had many models that we fitted to the training set and then we chose that with the lowest
MSE. Firstly, the effect of overfitting is partially remedied by a priori restricting the values p and q
using the ACF and PACF. Probably, the later fitting procedure will prefer models with the highest
p and q. However, there exist also other more recent optimal methods [45] that might be used and,
as the computational complexity is not the focus of our paper, we have included that within the future
work sections.

5.2. Tuning ARIMA

In the following we will show how the basic ARIMA’s parameters (p, d, q) have been calculated [17].
A preprocessing step is needed to calculate the ARIMA’s parameters and to assess which combination
leads to the best results. Then we will show the algorithm we have employed to use ARIMA with
our data.

Future Internet 2019, 11, 5 11 of 19

As usually performed in order to use ARIMA models for forecasting tasks, we have set the
innovations equal to zero [16,46]. We make our predictions by using the multi-step ahead approach with
a direct (also called Independent) strategy, which consists of forecasting each horizon independently
from the others [47].

5.2.1. Preprocessing

The input of such a step is a properly formatted time series. We used a time series constituted by
(price, date) tuples with consecutive daily entries. We used these tuples to find out if a given time series
is stationary (d), the size of clusters of correlated entries (q) and partially correlated entries (p). In short,
if a time series is stationary, then taking first-differences is not needed. The series is integrated of
order zero, obtaining d = 0 and we specify an ARMA model. Conversely, if the series is not stationary,
further calculation is necessary. The parameters p and q, in short, tell us how big the clusters of entries
that have a similar behavior over time are. Parameters estimation can be done following the Box and
Jenkins method [32] in order to find the best fit in a time series using ARIMA. It consists of a model
identification step, a parameter estimation step and a model evaluation step.

• Model identification: The first step is to check the stationarity of the series, needed by the ARIMA
model. Based on some work in literature [31], we used the NG and Perron modified unit root
test as it has been proved to be more efficient than the ADF test. A time series has stationarity if
a shift in time does not cause a change in the shape of the distribution; unit roots are one cause
for non-stationarity.

According to the literature about probability theory and statistics, a unit root represents a feature
that in a stochastic process can lead toward problems in statistical inference when time series
models are involved. In our context, if a time series has a unit root, it is characterized by a
systematic pattern that is unpredictable [48], as it happens in the non-invertible processes [16,49].

The augmented Dickey-Fuller test is built with a null hypothesis that there is a unit root. The null
hypothesis could be rejected if the p-value of the test result is less than 5%. Furthermore,
we checked also that the Dickey-Fuller statistical value is more negative than the associated
t-distribution critical value; the more negative the statistical value, the more we can reject
the hypothesis that there is a unit root. If the test result shows that we cannot reject the
hypothesis, we have to differentiate the series and repeat the test again. Usually, differencing
more than twice a series means that the series is not good to fit into ARIMA. Figures 3 and 4
show examples of stationary and non-stationary time series of our data (Examples taken from
http://ciaranmonahan.com/supply-chain-models-arima-models-non-stationary-data/).

Figure 3. Example of a stationary time series.

http://ciaranmonahan.com/supply-chain-models-arima-models-non-stationary-data/

Future Internet 2019, 11, 5 12 of 19

Figure 4. Example of a not stationary time series.

• Parameters estimation: Within the domain of time series, two important functions deal with
lags. The first, the Partial AutoCorrelation Function (PACF), is the correlation between a time series
and its own lagged values. The other, the AutoCorrelation Function (ACF), defines how points
are correlated with each other, based on how many time steps they are separated by. These two
functions are necessary for time series analysis as they are able to identify the extent of the lag in
an autoregressive model (PACF) and in a moving average model (ACF) [50].

Figures 5 and 6 show an example of an ACF and PACF. The use of these functions was introduced
as part of the Box–Jenkins approach to time series modeling, where computing the partial
autocorrelation function could be determined by the appropriate lags p in an ARIMA (p, d,
q) model, and computing the autocorrelation function could be determined by the appropriate lag
q in an ARIMA (p, d, q) model. Because the (partial) autocorrelation of a MA(q) (AR(p)) process
is zero at lag q + 1 (p + 1) and higher, we take into account the sample (partial) autocorrelation
function to check where it becomes zero (any departure from zero). This is achieved by considering
a 95% confidence interval for the sample (partial) autocorrelation plot. The confidence band is
approximately ±2/

√
N, where N corresponds to the sample size.

Figure 5. Example of an ACF plot. This plot shows a spike for lag values less than 4, based on 95%
confidential criteria. So we choose a q value of 4 for the upper bound when we are searching for best
(p, d, q) configuration.

Future Internet 2019, 11, 5 13 of 19

Figure 6. Example of a PACF plot. This plot shows a spike for lag values less than 2, based on 95%
confidential criteria. So we choose a p value of 2 for the upper bound when we’re searching for best
(p, d, q) configuration.

More informations about p and q estimation and their importance is highlighted by authors in [33].

• Model evaluation: To determine the best ARIMA model for the Amazon products, we always
perform the following steps:

– check stationarity, with the Ng and Perron modified unit root test [31], useful also to find an
appropriate d value.

– find p and q based on PACF and ACF. The result on ACF and PACF gives us an upper bound
for iterating the fitting of the model, keeping the best (p, d, q) combination, based on the least
MSE value, described as:

MSE =
1
n
·

n

∑
i=1

(Yi − Ŷi)
2.

where Ŷ is a vector of n predictions, and Y is the vector of the observed values of the variable
being predicted.

5.2.2. Algorithm

This section describes how we applied ARIMA to our study. As mentioned above, we have
different features (as time series) that can be used as exogenous variables for our ARIMA model.
An exogenous variable would contain tuples in the form of (date, value). For instance, in terms of tuples,
when merging the Amazon products’ prices Basic data with Google Trends data we will have to join
(date, price) with (date, popularity) so that we will obtain (date, popularity, price) tuples that can be fed to
ARIMA. Thus, the algorithm we perform for each product of our collection is:

• calculate ARIMA’s parameters - (p, q, d) as stated in Section 5.2.1.
• perform data retrieving - Retrieve products’ external data. For instance, if a

product has Google Trends entries for its Manufacturer we retrieve that and add
it to the current external features.

• Model Fit - Fit a model for each combination of products’ available basic and
external features.

Formally we can express the points above as follows: given an item I, we retrieve its available
data (features) Fi that can be split in two subsets of features such that:

FBi ⊆ Fi
FEi ⊆ Fi

FBi

⋂
FEi = {date}

FBi

⋃
FEi = Fi

FBi = {date, price}
FEi ∈ P((Fi − FBi)

⋃{date})

Future Internet 2019, 11, 5 14 of 19

where P is a function that takes FBi and FEi as inputs and returns a new set of features FTi that contains
all the elements of FBi and a possible combination of FEi (also ∅). The function C returns all the possible
combinations of features in FEi :

C(FEi) = { fEi : fEi ∈ P(FEi)}
P(FBi , fEi) = FBi

⋃
fEi

FTi = {P(FBi , fEi) : fEi ∈ C(FEi)}

Once we obtain all the features combinations FTi we proceed to fit the ARIMA model with each
of the features combinations above coupled with their correlated MAPE and saving these results as
a (Map[Fitted Model, MAPE Score]) defined as m[MTi , ETi]. Let Oi be the real trend described by FBi .

Although in some studies, such as that in [51], the MAPE metric has been computed by using the
median instead of the mean, during the experiments we preferred to adopt its canonical formulation
(i.e., that based on the mean) in order to have the opportunity to compare our results to other works in
literature, since it represents the most widely used evaluation metric in forecasting fields [52,53].

MAPE is defined as:

MAPE =
100
n
·

n

∑
t=1

∣∣∣∣∣Otj − Rtj

Otj

∣∣∣∣∣
Taking a real price trend Ot and a forecast Rt makes the difference for each point with the same

date field by accessing them with an index j. It sums all of these differences and returns a percentage
error of the average difference between all the points considered. More about MAPE can be read
in [54].

To obtain the results, we simply look for the value in m having the lowest value. It means
that the key such that m[key] = min(value) is the best combination of features for the underlying
product. Thus, different Amazon products might have different combinations of features as best
configuration. The code we have developed to implement the proposed ARIMA model can be freely
downloaded (github.com/andream16/price-probe-ml).

6. Performance Evaluation

In this section, we will include the experiments we performed, and the results we obtained.

Methodology

For experiment purposes we considered the top 100,000 Amazon products with the highest
number of prices entries. We used three different test sizes, 10%, 20% and 30% related to the prices entries
of each product. Test size reflects the number of predictions made. Thus, for a given product having
a time series of 100 prices elements, if we have a test set size of 10%, we will use the first 90 elements to
train the model, and will perform the forecast on the last 10 elements left calculating the related MAPE.
We calculated the prediction for the other two test sizes (20% and 30%) similarly. For each percentage,
we have used the time series cross-validation function offered by scikit-learn Python library and
detailed here (https://towardsdatascience.com/time-series-nested-cross-validation-76adba623eb9)
and in compliance with research work performed by authors in [55]. We have used several
combinations of features as exogenous variables for products and in Table 1 we indicate how many
times a given feature has been found within the 100,000 Amazon products of our analysis.

Table 1. Occurrences of extracted features within 100,000 collected products and their percentage.

Extracted Features Occurrences Percentage

Manufacturer 36k 36%
Sentiment 55k 55.2%

Manufacturer, Google Trends 23k 23%
Manufacturer, Sentiment 33k 33.1%

Manufacturer, Google Trends, Sentiment 21k 21.1%

github.com/andream16/price-probe-ml
https://towardsdatascience.com/time-series-nested-cross-validation-76adba623eb9

Future Internet 2019, 11, 5 15 of 19

We recall that we used the manufacturer exclusively to extract the Google Trends time series of
the products. Therefore the manufacturer has not been used as an exogenous variable for the ARIMA
model whereas Google Trends has. Also, the reader might notice how the co-occurrences of multiple
features (e.g., (manufacturer, trend) or (manufacturer, sentiment)) is lower than that of single features.
In Table 2 we include the MAPE values for each combination of exogenous variables we used for the
three different test sets size.

Table 2. MAPE values for the three different test sets and their average for time series with
(date, price) tuples.

MAPE

Exogenous Variables Test 10% Test 20% Test 30% Average

None 2.31% 9.56% 9.25% 7.04%
Google Trends 1.98% 5.69% 6.64% 4.77%

Sentiment 1.83% 7.69% 7.9% 5.81%
Google Trends, Sentiment 3.59% 11.37% 10.65% 8.54%

In most of the cases, decreasing values for the test size corresponds to more accurate scores
of the prediction. In particular, we can observe that (price, date, Google Trends) combination (that
is, Google Trends represents the single exogenous variable) is the most promising setting, having
the lowest Average MAPE. We have carried out a statistical test using the Diebold-Mariano test [56]
(https://www.real-statistics.com/time-series-analysis/forecasting-accuracy/diebold-mariano-test/)
which confirmed that the MAPE results we obtained using Google Trends and Sentiment as exogenous
variables are better than those obtained using just Sentiment which is, in turn, better than the MAPEs
obtained using Google Trends as exogenous variable.

In support of that, in Table 3 we have highlighted the number of products out of 100,000 having
the manufacturer information, how many manufacturers have Google Trends information and how
many times the tuple (price, date, Google Trends) has been the best combination among the others
for our three test dataset size. The second and third columns are related to the entire collection of
100,000 products and, therefore, they have the same number of the three datasets. The last column
indicates how often (price, date, trend) combination has been the best with respect to the others.

Table 3. Manufacturer and Google Trends occurrences and percentage indicating how often Google
Trends has been the best exogenous variable.

Test Size N. of Products Having a
Manufacturer

N. of Products Having
Manufacturer and

Google Trends Entries

Percentage of How
Often (Price, Date,

Trend) Has Been the
Best Combination

in ARIMA

10%
36k 23k

61%
20% 56%
30% 43%

For the test size of 10% Google Trends as exogenous variable has been found the best combination
for 61% of the total products. This clearly indicates a strong correlation between Google Trends and the
price of Amazon products. By decreasing the size of the test set, ARIMA model is trained with a smaller
amount of data and, they are less robust to predict the remainder data with high accuracy. We have
also counted how many times the sentiment information brings benefit to the prediction process but
the numbers (the combination including sentiment information has been the best combination less than
4% of the times) indicate very low correlation showing a disconnection with Amazon products’ prices.

https://www.real-statistics.com/time-series-analysis/forecasting-accuracy/diebold-mariano-test/

Future Internet 2019, 11, 5 16 of 19

7. Conclusions and Future Directions

The number of online sales is growing quickly and customers do not have a clear idea of how
prices are influenced aside sale times. Having a way to predict such a thing would help customers
making better choices regarding which marketplace to use in order to purchase a certain product or
in which period. We have shown how Price Probe predicts Amazon prices, one of the biggest E-Shop
players, indicating high precision in the forecast through ARIMA, fine-tuning local parameters and
especially when using Google Trends as exogenous variable. Our method highly depends on how
external features have been chosen and collected. It would be interesting to use more external features
(for instance the popularity of a specific product on Twitter or the reviews given in Google products or
other website) about the product’s popularity over time, since we highlighted only how Google Trends
influences our results. The future of purchases relies on online marketplaces and Price Probe might be
used to predict when it might be more profitable to purchase a certain product. In addition, it should
be observed that our experiments involved a very large amount of data, with regard to similar works
in literature based on similar data dimensions [17,44].

As next steps, we aim at employing neural networks for a similar evaluation presented in this
paper although we will need to find a way to include information from Google Trends within the
layers of the network. Moreover, we would like to focus on problems within the financial technology
domain. In particular, one of the goals we aim to tackle is to analyse stock markets and their trends and
perform forecast of long and short operations by including information coming from social networks
(e.g., Facebook, Twitter, StockTwits, etc.), news and any other kind of data that can be extracted and
associated with the stock markets values that we already have (we are already using a platform known
as MultiCharts where we can extract all the time series of each stock market for every interval time
and for each granularity—starting from 5 minutes range). Moreover, one more direction is related to
the computational complexity: we would like to follow the work suggested in [45] for parameters
estimation in order to keep low the complexity of the problem.

Author Contributions: S.C. provided analysis and suggestions for the analysis of data. A.M. and A.P. worked on
the extraction of the data. R.S. tuned the ARIMA model and D.R.R. carried out the performance evaluation and
drafted the first version of the paper.

Funding: This research was funded by Regione Sardegna, CUP F74G14000200008 F19G14000910008.

Future Internet 2019, 11, 5 17 of 19

Acknowledgments: This research is partially funded by: Regione Sardegna under project Next generation
Open Mobile Apps Development (NOMAD), Pacchetti Integrati di Agevolazione (PIA)—Industria Artigianato e
Servizi—Annualità 2013; Italian Ministry of Education, University and Research—Program Smart Cities and
Communities and Social Innovation project ILEARNTV (D.D. n.1937 del 05.06.2014, CUP F74G14000200008
F19G14000910008).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zimmermann, S.; Herrmann, P.; Kundisch, D.; Nault, B. Decomposing the Variance of Consumer Ratings
and the Impact on Price and Demand. Inf. Syst. Res. 2018. [CrossRef]

2. Cavalcante, R.C.; Brasileiro, R.C.; Souza, V.L.; Nobrega, J.P.; Oliveira, A.L. Computational Intelligence and
Financial Markets: A Survey and Future Directions. Expert Syst. Appl. 2016, 55, 194–211. [CrossRef]

3. Atsalakis, G.S.; Valavanis, K.P. Surveying stock market forecasting techniques—Part II: Soft computing
methods. Expert Syst. Appl. 2009, 36, 5932–5941. [CrossRef]

4. Pai, P.F.; Lin, C.S. A hybrid ARIMA and support vector machines model in stock price forecasting. Omega
2005, 33, 497–505. [CrossRef]

5. Conejo, A.J.; Plazas, M.A.; Espinola, R.; Molina, A.B. Day-ahead electricity price forecasting using the
wavelet transform and ARIMA models. IEEE Trans. Power Syst. 2005, 20, 1035–1042. [CrossRef]

6. Jadhav, V.; Chinnappa Reddy, B.; Gaddi, G. Application of ARIMA model for forecasting agricultural prices.
J. Agric. Sci. Technol. 2017, 19, 981–992.

7. Wang, Y.; Wang, C.; Shi, C.; Xiao, B. Short-term cloud coverage prediction using the ARIMA time series
model. Remote Sens. Lett. 2018, 9, 274–283. [CrossRef]

8. Rangel-González, J.A.; Frausto-Solis, J.; Javier González-Barbosa, J.; Pazos-Rangel, R.A.; Fraire-Huacuja,
H.J. Comparative Study of ARIMA Methods for Forecasting Time Series of the Mexican Stock Exchange.
In Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications;
Castillo, O., Melin, P., Kacprzyk, J., Eds.; Springer: Cham, Germany, 2018; pp. 475–485. [CrossRef]

9. Jiang, S.; Yang, C.; Guo, J.; Ding, Z. ARIMA forecasting of China’s coal consumption, price and investment
by 2030. Energy Sources Part B Econ. Plan. Policy 2018, 13, 190–195. [CrossRef]

10. Ozturk, S.; Ozturk, F. Forecasting Energy Consumption of Turkey by Arima Model. J. Asian Sci. Res. 2018,
8, 52–60. [CrossRef]

11. Bennett, C.; Stewart, R.A.; Lu, J. Autoregressive with exogenous variables and neural network short-term
load forecast models for residential low voltage distribution networks. Energies 2014, 7, 2938–2960. [CrossRef]

12. Bakir, H.; Chniti, G.; Zaher, H. E-Commerce Price Forecasting Using LSTM Neural Networks. Int. J. Mach.
Learn. Comput. 2018, 8, 169–174. [CrossRef]

13. Liu, W.W.; Liu, Y.; Chan, N.H. Modeling eBay Price Using Stochastic Differential Equations. J. Forecast. 2018.
[CrossRef]

14. Hand, C.; Judge, G. Searching for the picture: forecasting UK cinema admissions using Google Trends data.
Appl. Econ. Lett. 2012, 19, 1051–1055. [CrossRef]

15. Bangwayo-Skeete, P.F.; Skeete, R.W. Can Google data improve the forecasting performance of tourist arrivals?
Mixed-data sampling approach. Tour. Manag. 2015, 46, 454–464. [CrossRef]

16. Wei, W.W.S. Time Series Analysis: Univariate and Multivariate Methods; Pearson Addison Wesley: Boston, MA,
USA, 2006.

17. Tyralis, H.; Papacharalampous, G. Variable selection in time series forecasting using random forests.
Algorithms 2017, 10, 114. [CrossRef]

18. Papacharalampous, G.; Tyralis, H.; Koutsoyiannis, D. One-step ahead forecasting of geophysical processes
within a purely statistical framework. Geosci. Lett. 2018, 5, 12. [CrossRef]

19. Meyler, A.; Kenny, G.; Quinn, T. Forecasting Irish Inflation Using ARIMA Models; Central Bank of Ireland:
Dublin, Ireland, 1998.

20. Geetha, A.; Nasira, G. Time-series modelling and forecasting: Modelling of rainfall prediction using ARIMA
model. Int. J. Soc. Syst. Sci. 2016, 8, 361–372. [CrossRef]

21. Pincheira, P.; Hardy, N. Forecasting Base Metal Prices with Commodity Currencies; MPRA Paper 83564;
University Library of Munich: Munich, Germany, 2018.

http://dx.doi.org/10.1287/isre.2017.0764
http://dx.doi.org/10.1016/j.eswa.2016.02.006
http://dx.doi.org/10.1016/j.eswa.2008.07.006
http://dx.doi.org/10.1016/j.omega.2004.07.024
http://dx.doi.org/10.1109/TPWRS.2005.846054
http://dx.doi.org/10.1080/2150704X.2017.1418992
http://dx.doi.org/10.1007/978-3-319-71008-2_34
http://dx.doi.org/10.1080/15567249.2017.1423413
http://dx.doi.org/10.18488/journal.2.2018.82.52.60
http://dx.doi.org/10.3390/en7052938
http://dx.doi.org/10.18178/ijmlc.2018.8.2.682
http://dx.doi.org/10.1002/for.2551
http://dx.doi.org/10.1080/13504851.2011.613744
http://dx.doi.org/10.1016/j.tourman.2014.07.014
http://dx.doi.org/10.3390/a10040114
http://dx.doi.org/10.1186/s40562-018-0111-1
http://dx.doi.org/10.1504/IJSSS.2016.081411

Future Internet 2019, 11, 5 18 of 19

22. Hong, T.; Fan, S. Probabilistic electric load forecasting: A tutorial review. Int. J. Forecast. 2016, 32, 914–938.
[CrossRef]

23. Yu, L.; Zhao, Y.; Tang, L.; Yang, Z. Online big data-driven oil consumption forecasting with Google trends.
Int. J. Forecast. 2018. [CrossRef]

24. Szczech, M.; Turetken, O. The Competitive Landscape of Mobile Communications Industry in Canada:
Predictive Analytic Modeling with Google Trends and Twitter. In Analytics and Data Science: Advances in
Research and Pedagogy; Deokar, A.V., Gupta, A., Iyer, L.S., Jones, M.C., Eds.; Springer: Cham, Germany, 2018;
pp. 143–162. [CrossRef]

25. Tuladhar, J.G.; Gupta, A.; Shrestha, S.; Bania, U.M.; Bhargavi, K. Predictive Analysis of E-Commerce
Products. In Intelligent Computing and Information and Communication; Bhalla, S., Bhateja, V., Chandavale, A.A.,
Hiwale, A.S., Satapathy, S.C., Eds.; Springer: Singapore, 2018; pp. 279–289.

26. Tseng, K.K.; Lin, R.F.Y.; Zhou, H.; Kurniajaya, K.J.; Li, Q. Price prediction of e-commerce products through
Internet sentiment analysis. Electron. Commer. Res. 2018, 18, 65–88. [CrossRef]

27. Guo, K.; Sun, Y.; Qian, X. Can investor sentiment be used to predict the stock price? Dynamic analysis based
on China stock market. Phys. A Stat. Mech. Appl. 2017, 469, 390–396. [CrossRef]

28. Brockwell, P.J.; Davis, R.A. Introduction. In Introduction to Time Series and Forecasting; Springer: Cham,
Germany, 2016; pp. 1–37. [CrossRef]

29. Dickey, D.A.; Fuller, W.A. Distribution of the Estimators for Autoregressive Time Series with a Unit Root.
J. Am. Stat. Assoc. 1979, 74, 427–431.

30. Dickey, D.A.; Fuller, W.A. Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root.
Econometrica 1981, 49, 1057–1072. [CrossRef]

31. Ng, S.; Perron, P. Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power.
Econometrica 2001, 69, 1519–1554. [CrossRef]

32. Box, G.E.P.; Jenkins, G. Time Series Analysis, Forecasting and Control; Holden-Day, Incorporated: San Francisco,
CA, USA, 1990.

33. Ke, Z.; Zhang, Z.J. Testing autocorrelation and partial autocorrelation: Asymptotic methods versus
resampling techniques. Br. J. Math. Stat. Psychol. 2018, 71, 96–116. [CrossRef] [PubMed]

34. Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with python. In Proceedings of
the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010.

35. Valipour, M.; Banihabib, M.E.; Behbahani, S.M.R. Comparison of the ARMA, ARIMA, and the autoregressive
artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 2013,
476, 433–441. [CrossRef]

36. Zhang, G.; Xu, L.; Xue, Y. Model and forecast stock market behavior integrating investor sentiment analysis
and transaction data. Clust. Comput. 2017, 20, 789–803. [CrossRef]

37. Ho-Dac, N.N.; Carson, S.J.; Moore, W.L. The effects of positive and negative online customer reviews:
Do brand strength and category maturity matter? J. Mark. 2013, 77, 37–53. [CrossRef]

38. Goh, K.Y.; Heng, C.S.; Lin, Z. Social media brand community and consumer behavior: Quantifying the
relative impact of user-and marketer-generated content. Inf. Syst. Res. 2013, 24, 88–107. [CrossRef]

39. Goes, P.B.; Lin, M.; Au Yeung, C.M. “Popularity effect” in user-generated content: Evidence from online
product reviews. Inf. Syst. Res. 2014, 25, 222–238. [CrossRef]

40. Kim, Y.; Srivastava, J. Impact of social influence in e-commerce decision making. In Proceedings of the Ninth
International Conference on Electronic Commerce, Minneapolis, MN, USA, 19–22 August 2007; pp. 293–302.

41. Gilbert, C.H.E. Vader: A parsimonious rule-based model for sentiment analysis of social media text.
In Proceedings of the Eighth International Conference on Weblogs and Social Media (ICWSM-14), Ann Arbor,
MI, USA, 1–4 June 2014. Available online: http://comp.social.gatech.edu/papers/icwsm14.vader.hutto.pdf
(accessed on 21 December 2018).

42. Velicer, W.F.; Colby, S.M. A Comparison of Missing-Data Procedures for Arima Time-Series Analysis. Educ.
Psychol. Meas. 2005, 65, 596–615. [CrossRef]

43. Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018.
44. Papacharalampous, G.; Tyralis, H.; Koutsoyiannis, D. Predictability of monthly temperature and precipitation

using automatic time series forecasting methods. Acta Geophys. 2018, 66, 807–831. [CrossRef]
45. Hyndman, R.J.; Khandakar, Y. Automatic Time Series Forecasting: The forecast Package for R. J. Stat. Softw.

2008, 27. [CrossRef]

http://dx.doi.org/10.1016/j.ijforecast.2015.11.011
http://dx.doi.org/10.1016/j.ijforecast.2017.11.005
http://dx.doi.org/10.1007/978-3-319-58097-5_11
http://dx.doi.org/10.1007/s10660-017-9272-9
http://dx.doi.org/10.1016/j.physa.2016.11.114
http://dx.doi.org/10.1007/978-3-319-29854-2_1
http://dx.doi.org/10.2307/1912517
http://dx.doi.org/10.1111/1468-0262.00256
http://dx.doi.org/10.1111/bmsp.12109
http://www.ncbi.nlm.nih.gov/pubmed/28898401
http://dx.doi.org/10.1016/j.jhydrol.2012.11.017
http://dx.doi.org/10.1007/s10586-017-0803-x
http://dx.doi.org/10.1509/jm.11.0011
http://dx.doi.org/10.1287/isre.1120.0469
http://dx.doi.org/10.1287/isre.2013.0512
http://comp. social. gatech.edu/papers/icwsm14.vader.hutto.pdf
http://dx.doi.org/10.1177/0013164404272502
http://dx.doi.org/10.1007/s11600-018-0120-7
http://dx.doi.org/10.18637/jss.v027.i03

Future Internet 2019, 11, 5 19 of 19

46. Box, G.E.; Jenkins, G.M. Some recent advances in forecasting and control. J. R. Stat. Soc. Ser. C (Appl. Stat.)
1968, 17, 91–109. [CrossRef]

47. Taieb, S.B.; Bontempi, G.; Atiya, A.F.; Sorjamaa, A. A review and comparison of strategies for multi-step
ahead time series forecasting based on the NN5 forecasting competition. Expert Syst. Appl. 2012,
39, 7067–7083. [CrossRef]

48. Khobai, H.; Chitauro, M. The Impact of Trade Liberalisation on Economic Growth in Switzerland. 2018.
Available online: https://mpra.ub.uni-muenchen.de/89884/ (accessed on 21 December 2018).

49. Lopes, S.R.C.; Olbermann, B.P.; Reisen, V.A. Non-stationary Gaussian ARFIMA processes: Estimation and
application. Braz. Rev. Econom. 2002, 22, 103–126. [CrossRef]

50. Flores, J.H.F.; Engel, P.M.; Pinto, R.C. Autocorrelation and partial autocorrelation functions to improve
neural networks models on univariate time series forecasting. In Proceedings of the 2012 International Joint
Conference on Neural Networks (IJCNN), Brisbane, Australia, 10–15 June 2012; pp. 1–8. [CrossRef]

51. Armstrong, J.S.; Collopy, F. Error measures for generalizing about forecasting methods: Empirical
comparisons. Int. J. Forecast. 1992, 8, 69–80. [CrossRef]

52. Yang, W.; Wang, J.; Niu, T.; Du, P. A hybrid forecasting system based on a dual decomposition strategy and
multi-objective optimization for electricity price forecasting. Appl. Energy 2019, 235, 1205–1225. [CrossRef]

53. Mehmanpazir, F.; Asadi, S. Development of an evolutionary fuzzy expert system for estimating future
behavior of stock price. J. Ind. Eng. Int. 2017, 13, 29–46. [CrossRef]

54. de Myttenaere, A.; Golden, B.; Grand, B.L.; Rossi, F. Mean Absolute Percentage Error for regression models.
Neurocomputing 2016, 192, 38–48. [CrossRef]

55. Afendras, G.; Markatou, M. Optimality of training/test size and resampling effectiveness in cross-validation.
J. Stat. Plan. Inference 2019, 199, 286–301. [CrossRef]

56. Diebold, F.X. Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and
Abuse of Diebold–Mariano Tests. J. Bus. Econ. Stat. 2015, 33, 1. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2307/2985674
http://dx.doi.org/10.1016/j.eswa.2012.01.039
https://mpra.ub.uni-muenchen.de/89884/
http://dx.doi.org/10.12660/bre.v22n12002.2746
http://dx.doi.org/10.1109/IJCNN.2012.6252470
http://dx.doi.org/10.1016/0169-2070(92)90008-W
http://dx.doi.org/10.1016/j.apenergy.2018.11.034
http://dx.doi.org/10.1007/s40092-016-0165-7
http://dx.doi.org/10.1016/j.neucom.2015.12.114
http://dx.doi.org/10.1016/j.jspi.2018.07.005
http://dx.doi.org/10.1080/07350015.2014.983236
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Data Description
	Products
	Manufacturers
	Categories
	Categories Products
	Prices
	Reviews
	Trends

	Price Probe
	Amazon
	Google Trends

	Our Approach
	ARIMA
	Tuning ARIMA

	Performance Evaluation
	Conclusions and Future Directions
	References

