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Abstract: In this article, we work toward the answer to the question “is it worth processing a data
stream on the device that collected it or should we send it somewhere else?”. As it is often the case
in computer science, the response is “it depends”. To find out the cases where it is more profitable
to stay in the device (which is part of the fog) or to go to a different one (for example, a device in
the cloud), we propose two models that intend to help the user evaluate the cost of performing a
certain computation on the fog or sending all the data to be handled by the cloud. In our generic
mathematical model, the user can define a cost type (e.g., number of instructions, execution time,
energy consumption) and plug in values to analyze test cases. As filters have a very important role
in the future of the Internet of Things and can be implemented as lightweight programs capable
of running on resource-constrained devices, this kind of procedure is the main focus of our study.
Furthermore, our visual model guides the user in their decision by aiding the visualization of the
proposed linear equations and their slope, which allows them to find if either fog or cloud computing
is more profitable for their specific scenario. We validated our models by analyzing four benchmark
instances (two applications using two different sets of parameters each) being executed on five
datasets. We use execution time and energy consumption as the cost types for this investigation.

Keywords: fog computing; cloud computing; IoT; processing cost trade-off; platform modeling;
resource-constrained devices

1. Introduction

Current prospects indicate that the number of devices connected to the Internet of Things (IoT)
will reach the mark of 75 billion within the next decade [1], and this huge increase in scale will certainly
bring new challenges with it. We can expect that when facing a scenario where several petabytes
of data are produced every day, the massive volume of information will make transmitting it all to
the cloud prohibitively costly in terms of time, money, and energy consumption. Thus, this outlook
encourages us to examine current solutions and re-evaluate their potential in light of the new demands
coming ahead.

As is often the case with big data, a possible way to meet these anticipated requirements is to not
send every single byte to be processed by machines that are far from the data source, but instead bring
the computation closer to where the information already is. Based on this concept, the recent paradigm
called fog computing [2] was created and named after the idea that the fog can be seen as a cloud
that is close to the ground. When working with fog computing, we can employ network edge devices
(e.g., gateways, switches, and routers) and possibly the devices that are collecting data themselves to
process the information.
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Enabling computation to be performed near the data source has many advantages, such as
allowing us to address issues related to transmission latency and network congestion. Moreover,
it creates a window for new possibilities: filtering and discarding unnecessary information, analyzing
readings in search of outliers that can be reported, combining readings from different sensors,
and actual real-time response to local queries, among other applications. On the other hand, working
with devices that are close to the edge of the network also means that we must handle IoT hardware
with limited memory and processing power, energy consumption constraints, and new security,
management, and standardization requirements [3].

With this trade-off in mind, we see that leveraging fog computing may become an appealing
option for both academia and industry, as this would allow processes such as data analytics to benefit
from working with more data. This could lead to data scientists not only being able to better understand
the world we live in, but also making more accurate predictions and creating improved systems based
on people’s behaviors and tastes.

However, even if fog computing is a very interesting choice in many situations, it is not the best
solution in every possible case. For instance, if the computation that we are performing in the fog takes
a long time to be completed when compared to the time that it takes for a value to be sent to the cloud,
it might be more profitable to send the data to be processed by the more robust cloud servers instead
of executing the program locally.

Considering this, we propose two models that aim at helping the user analyze the scenario that
they are working with in order to decide whether fog or cloud computing is more profitable for them.
The main contributions of this investigation are:

• A generic mathematical model that enables the calculation of fog and cloud computing costs
based on a certain metric (e.g., number of instructions, execution time, energy consumed);

• A visual model that aids the comparison between fog and cloud costs and a threshold that defines
which one should be chosen for a given set of parameters;

• A study of different approaches to estimate one of the parameters of the mathematical model and
the impact of each approach on the performance of the test cases.

• An analysis of the proposed models using two different data filters as applications, with test
cases for two distinct instances of each program being executed on five datasets (four containing
real-wold data and one with artificial data). To this end, we consider the metrics execution time
and energy consumption;

• A case study that explores how changing the parameters of our test cases would affect the decision
between fog and cloud computing.

This article expands our previous work by presenting an investigation of different approaches
to estimate one of the parameters of our mathematical model, as well as how this estimate affects
performance; adding four real-world datasets to our tests; and including the analysis of energy
consumption as a metric for our model. We now also discuss more studies related to ours in Section 2.

This text is organized as follows: Section 2 discusses other studies that also address system
modeling. Section 3 presents our mathematical and visual models and describes how we can use them
to choose between fog and cloud computing given a certain set of parameters. Section 4 has our test
case analysis, where we investigate different approaches to estimating one of the parameters of the
model, then go through the decision process with the help of our models, and finally simulate other
values to study different scenarios. Lastly, Section 5 presents our conclusions and possibilities for
future work.

2. Related Work

Mathematical models are an effective way to describe the behavior of systems and help users to
better understand and optimize system performance. Therefore, many models have been proposed
to estimate costs related to computing and transferring data. These costs, however, are dependent
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on the execution behavior of the task being considered and the highly-variable performance of the
underlying resources. As such, remote execution systems must employ sophisticated prediction
techniques that accurately guide computation offloading. These models are even more important for
offloading systems, as they may need to decide whether or not it is worth sending a computation to
other devices. To this end, many works have been proposed. However, they are usually complex,
computationally expensive, or specific for some metric. We divided these works into general offloading
schemes (Section 2.1) and fog-/cloud-aware schemes (Section 2.2).

2.1. Computation Offloading Schemes

Li, Wang, and Xu [4] considered offloading media encoding and compression computation
from a small handheld device to a desktop via wireless LAN. They used profiling information from
applications to construct cost graphs, which were then statically partitioned, and each part was set
to run on either the small or the large device. The results showed considerable energy savings by
offloading computation following that partition scheme. In another work [5], the authors tested the
same infrastructure with benchmarks from the Mediabench suite using a Compaq iPAQ. Their scheme
significantly saved energy in 13 of the 17 programs tested. Later, Li and Xu [6] considered the
impact of adding security to the offload process for the same infrastructure. They added secure
mechanisms such as SSL in all the offloaded wireless communication and concluded that despite the
extra overhead, offloading remained quite effective as a method to reduce program execution time and
energy consumption.

Kremer, Hicks, and Rehg [7] presented a prototype for an energy-aware compiler, which
automatically generates client and server versions of the application. The client version runs on small
devices, offloading computation to the server when necessary. The client also supports checkpoints to
allow server progress monitoring and to recover from connection failures. They tested this compiler
with multiple programs and mobile devices, measuring the energy consumption by actual power
measurements, and showed that they could save up to one order of magnitude of energy in the small
devices.

Rong and Pedram [8] built a stochastic model for a client-server system based on the theory of
continuous-time Markovian decision processes and solved the offloaded dynamic-power management
problem by using linear programming. Starting with the optimal solution constructed off-line,
they proposed an online heuristic to update the policy based on the channel conditions and the
server behavior, resulting in optimum energy consumption in the client and outperforming any
existing heuristic proposed until the publication of their work by 35%.

Chen et al. [9] presented a framework that uses Java object serialization to allow the offloading of
method execution as bytecode-to-native code compilation (just-in-time compilation). The framework
takes into account communication, computation, and compilation energies to decide where to compile
and execute a method (locally or remotely). As many of these variables vary based on external
conditions, the decision is made dynamically as the methods are called. Finally, they tested the
framework in a simulator and showed that the technique is very effective at conserving the energy of
the mobile client.

O’Hara et al. [10] presented a system-wide model to characterize energy consumption in
distributed robot systems’ computation and communication. With the model, they showed that it was
possible to make better decisions of where to deploy each software and how to do the communication
between robots. They tested this on a simulator and showed that for a search-and-rescue mission,
there are several counterintuitive energy trade-offs, and by using their cost model scheme, AutoPower,
they were able to improve by up to 57% over the baseline energy consumption.

Different from the others, Xian, Lu, and Li [11] chose to offload computation from one device
to another by using a timeout approach instead of analyzing the software statically or dynamically.
They set a specific amount of time in which the application would be allowed to run on the client and
after a timeout, the program execution was entirely offloaded to the server. They showed that the
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heuristic works well and that it can save up to 17% more energy than approaches that tried to compute
beforehand the execution time of the application.

Hong, Kumar, and Lu [12] showed a method to save energy in mobile systems that perform
content-based image retrieval (CBIR). They proposed three offloading schemes for these applications
(local search, remove extraction, and remote search) and physically measured that their approaches
were able to save energy on an HP iPAQ hw6945 running CBIR applications.

Gu et al. [13] presented a dynamic partition scheme to decide when and which parts of a program
to offload to nearby surrogates. They took into consideration both application execution patterns and
resources fluctuations to use a fuzzy control policy model. They ran an extensive number of tests,
measuring the total overhead, the average interaction delay (time to send and receive requested data),
and the total bandwidth required. The results showed that their model was effective as an offloading
inference engine.

Gurun, Krintz, and Wolski [14] argued that offloading systems must predict the cost of execution
both locally and remotely. Moreover, these techniques must be efficient, i.e., they cannot consume
significant resources, e.g., energy, execution time, etc., since they are performed on the mobile device.
Thus, the authors proposed NWSLite, a predictor of resource consumption for mobile devices.
They empirically analyzed and compared both the prediction accuracy and the cost of NWSLite
and a number of different forecasting methods from existing remote execution systems, showing its
advantages over the other systems.

Wang and Li [15] used parametric analysis to deal with the issue of programs having different
execution behaviors for different input instances. They proposed a cost analysis for computation and
communication of a program that generates a function of the program’s inputs. With this approach,
better decisions can be made when partitioning a program and making offload decisions based on the
program input.

Wolski et al. [16] proposed a method to make offloading decisions in grid settings by using
statistical methods. When only considering the network bandwidth of the system, they showed that a
Bayesian approach can be superior to prior methods.

Nimmagadda et al. [17] showed that offloading mechanisms can even be feasible in real-time
scenarios such as real-time moving object recognition and tracking. They considered the real-time
constraints when building the offloading decision system and tested motion detection and object
recognition using offloading in multiple network and server configurations.

2.2. Fog/Cloud Aware

Jayaraman et al. [18] presented equations for a cost model that focuses on energy usage and
evaluates the energy gain of their approach when compared to sending all the raw data to the cloud.
They also introduced the CARDAP platform, which was implemented for Android devices with the
aim of distributing mobile analytics applications in an energy efficient way among mobile devices in
the fog.

Deng et al. [19] investigated the trade-off between power consumption and transmission delay in
fog-cloud computing systems. Their model was formulated as a workload allocation problem where
the optimal workload allocations between fog and cloud intended to minimize power consumption
given a constrained service delay. Their aim was to provide guidance to other researchers studying the
interaction and cooperation between the fog and cloud.

Xu and Ren [20] analyzed an edge system consisting of a base station and a set of edge servers
that depend on renewable power sources. Their models considered workload, power, battery, and
delay cost, and they used them to formulate the dynamic offloading and autoscaling problem as an
online learning problem in order to minimize the system cost.

Liu et al. [21] used queuing theory to study a mobile fog computing system. Their model
was formulated as a multi-objective optimization problem with a joint objective to minimize energy
consumption, execution delay, and payment cost by finding the optimal offloading probability and
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transmission power for each mobile device. They addressed the multi-objective optimization problem
with an interior point method-based algorithm.

2.3. Our Approach

This article presents a general mathematical model and a visual model created to assist the analysis
of the fog-cloud computing cost trade-off. Therefore, we note that our main goal is different from that
of other mentioned works, given that we intend to enable users to select the most profitable platform
according to a metric of their choosing, while the other studies focus on optimizing specific metrics
(mostly time and energy). Another example of a visual approach is the roofline model introduced by
Williams, Waterman, and Patterson [22], which served as inspiration for our model.

Furthermore, the presented model is simple enough such that its implementation can run on
resource-constrained devices, which is not the case for most of the models listed in this section.
Although some approaches such as NWSLite [14] also discuss the cost model needing to be small and
constrained, it is still far more complex than our approach and far too large to be used in the constrained
devices with which we work. We consider this to be a relevant distinction, as constrained devices
will have a growing importance in the Internet of Things due to having low power consumption and
reduced cost, size, and weight.

3. Modeling Platforms

When working with sensors, it is common for users to need to transform the raw collected data
into something else before storing the final values. For example, they may wish to standardize or clean
the data (parsing), discard unwanted readings (filtering), or generate knowledge (predicting).

With the task at hand, they will then need to decide where to execute it, and there are a few
options to choose from: they can process the data on the same device that collected the values; they
can send the data to other nearby devices, among which the task may be split; or they can send the
data to be processed by more powerful and distant devices, such as cloud data centers.

In this article, we discuss the first and third cases, with the second one being left to future work.
Therefore, our main goal will be working toward the answer to the question “is it worth processing a
data stream on the device that collected it or should we send it somewhere else?”. In a way, looking for
the answer to this question is akin to a search for cases where fog computing (performing computation
close to the data source) is more profitable than cloud computing (sending data to be processed by
faraway devices).

For the purpose of this analysis, we consider that we are working with devices that are capable
of executing custom code, connected to the Internet, and able to send packets to other devices.
Furthermore, we assume that we are handling non-empty data streams with a limited size (i.e., the
stream size is neither zero, nor infinite).

3.1. General Equations

First, we look at the cost of performing the task on the device itself, which we call fog computing
cost (C f ). We model this cost with regard to the steps that must be executed to complete the
computation. We start by reading the sensor value (cost r). Then, we perform a custom code operation
(cost t). We are particularly interested in filtering procedures, as these can be simple enough to run
on resource-constrained devices [23] and have the potential to decrease the amount of data sent to
the cloud drastically, a situation that is posed to become a problem with the large-scale adoption of
technologies such as the Internet of Things. For that reason, in this investigation, we consider that our
custom operations are filters, that is, operations that decide whether or not each stream value should
be sent to the cloud. In this case, we must also consider the cost of sending the data to the cloud (s)
and the probability that the value will pass the filter in question ( f ). After completing the operation,
the device is then idle until a new reading comes along (cost i). If we are working with a data stream
of size z, Equation (1) shows the fog computing cost. We are only dealing with cases where there is
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no overlap between processing and transferring the data, and accounting for this approach will be a
future extension of our model.

C f = (r + t + s · f + i) · z (1)

Next, we look at the cost of performing the task in the cloud. As some of the resources used by
the cloud are not under the user’s control, from the point of view of the device that is collecting the
data, the cloud computing cost (Cc) only includes, for each of the z values in the data stream, reading
(r), sending (s), and being idle (i), as shown by Equation (2).

Cc = (r + s + i) · z (2)

Given that these are generic models, it is possible to plug in values to calculate different types
of costs (e.g., number of instructions, execution time, energy consumed). We will use this approach
in Section 4 to analyze a few test cases. We note that we are considering that all of the values are
positive, with the exception of f , which is a probability and, as a result, a number between zero and
one. Table A1 in Appendix A has a summary of the notation introduced in this subsection.

In order to answer our question, we would like to choose situations where the fog computing cost
is less than or equal to the cloud computing cost (we use the fact that processing data locally decreases
network traffic congestion as a tiebreaker in favor of fog computing when fog and cloud costs are the
same). Thus, in the cases where C f ≤ Cc, we have:

(r + t + s · f + i) · z ≤ (r + s + i) · z

1− f ≥ t
s

(3)

Since f is the probability of a value passing the filter, 1− f is the probability of a value being
filtered out. Therefore, from Equation (3), we have that the probability that a value will be filtered
must be greater than or equal to t/s for us to choose fog computing in this cost model.

3.2. Estimating f

We can find s and t by measuring the hardware and software infrastructures according to the
type of cost for which we are looking. However, f also depends on the data, so it cannot be as easily
calculated unless we know all data points in advance. What we can do instead is estimate f by looking
at a subset of the values.

We can start by plotting a graph to guide our analysis of the relationship between C f and Cc.
In this graph, the horizontal axis represents the fog computing cost as a function of the number of
stream values being processed in the fog. Therefore, a case where all z data points are processed in
the fog would be represented by a point crossing this axis. The value of this point, which we call C f 0,
can be calculated by Equation (1). In the same way, the vertical axis represents the cloud computing
cost from the point of view of the device as a function of the number of stream values being processed
in the cloud, and a case where all values are handled by the cloud is represented by a point crossing
this axis. The value of this point, which we call Cc0, can be found with the help of Equation (2).

We can also add more points to the graph by considering the cases where part of the data is
processed by the fog, while the rest is processed by the cloud. For each additional sensor reading that
we process in the fog instead of just sending to the cloud, we add r + t + s · f + i to the value in the
horizontal axis and subtract r + s + i from the value in the vertical axis. It is possible to repeat this
process until all possibilities are represented in the graph.

Lastly, we draw a line that passes through these points, which will give us the linear equation
represented in Equation (4).

Cc − Cc0 = −Cc0

C f 0
· C f (4)



Future Internet 2019, 11, 34 7 of 31

Figure 1 shows an example of a graph constructed with the method described in this section.
In this graph, z = 10 and all the lines have the same values for all variables, except f .

Figure 1. Graph of the relationship between fog and cloud computing costs.

Considering that we are estimating f on the device itself while it is collecting and processing the
data, we do not need to worry about situations where C f ≤ Cc, as the values are processed on the
device before we make our decision and nothing will change if fog computing is considered to be
more profitable. To evaluate the scenario where C f > Cc, we can think about the worst-case scenario
of f = 1 (i.e., all data are passing the filter) and determine the size of the penalty that we are willing to
pay to be able to make a more informed decision about the value of f . First, we calculate the penalty
(p) of processing each additional value on the fog when it would be more profitable to do so on the
cloud using Equation (5). This value is a percentage of increase in cost.

p =

C f 0
Cc0
− 1

z
(5)

As C f > Cc, C f 0/Cc0 > 1, and thus, p is always positive. Then, we can establish a threshold for
the maximum penalty that we are willing to pay. For example, if p = 0.0175, each additional point
processed in the fog will increase the computational cost by 1.75%. Therefore, if we are willing to risk
up to a 10% increase in cost, we can test if the first v = b10/1.75c = 5 data points pass the filter or not.
In this case, if n = 3 out of the five values pass the filter, we can estimate that f = n/v = 3/5 = 0.6
and then plug this value into Equation (3) to make our decision. It is up to the user to define what is
a reasonable trade-off given the parameters of their specific scenario. Table A1 in Appendix A has a
summary of the notation introduced in this subsection.

Examining Equation (4) and Figure 1 also gives us additional insights when we evaluate the
slope of the line, which is −Cc0/C f 0. When C f = Cc, the slope is −1 (as is the case of the gray line
with circular markers). If C f < Cc, the slope is less than −1 (green line with square markers), and for
C f > Cc, it is greater than −1 (blue line with triangular markers). From that, we have the following:

−1 = −Cc0

C f 0

−1 = − (r + s + i) · z
(r + t + s · f + i) · z

t + s · f = s (6)
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Considering that all values are positive (or possibly zero in the case of f ), we can follow a similar
logic for the cases where C f < Cc and C f > Cc. We see that Equation (6) is analogous to Equation (3),
but in this case, it helps us notice that the values of r, i, and z do not affect the comparison between
the slope and −1. Therefore, we can look only at the values of f , s, and t when deciding whether to
perform the computation on the fog or the cloud using our cost model. We will use this simplification
for our analysis in Section 4.

4. Analyzing Test Cases

We will now put our theory to practice by applying it to some test cases used in previous
studies [23,24]. Namely, the MinMax and Outlier benchmarks. MinMax is a simple filter, which
only allows numbers outside of a certain range to pass, and Outlier is a procedure that executes
Tukey’s test [25] to detect outliers in a window of values. We chose four instances of the benchmarks:
MinMax [−15, 15], which filters out numbers in the [−15, 15] range; MinMax [−5, 5], the same
program, but using the [−5, 5] range instead; Outlier 16, which finds outliers in a window of 16
values; and Outlier 256, the same program, but with a window of 256 values instead. The parameters
of each benchmark were selected due to previous work that showed that these four instances filter out
very different percentages of stream values [23].

We executed these benchmarks for five different datasets: four real-world datasets downloaded
from the United States National Oceanic and Atmospheric Administration’s National Centers for
Environmental Information website [26] and an artificial dataset, which represents a stream of
sensor readings [23]. The four real datasets are a subset of the hourly local climatological data
collected at Chicago O’Hare International Airport between September 2008 and August 2018 and
are named HOURLYRelativeHumidity (HRelHumidity, the relative humidity given to the nearest
whole percentage, with values between 16 and 100), HOURLYVISIBILITY (HVisibility, the horizontal
distance an object can be seen and identified given in whole miles, with values between 0 and 10),
HOURLYWETBULBTEMPC (HWBTempC, the wet-bulb temperature given in tenths of a degree
Celsius, with values between −27.3 and 27.4), and HOURLYWindSpeed (HWindSpeed, the speed of
the wind at the time of observation given in miles per hour, with values between 0 and 55). We call
the artificial dataset Synthetic, and its values are random floating-point numbers between −84.05 and
85.07. These values were generated by using the sine function combined with a Gaussian error.

In our tests, we used the stream size z = 65,536, which is one of the stream sizes analyzed in
previous work [23], while also being a reasonably large stream size for which our test cases can be
executed in a feasible time.

As we have the infrastructure to measure the execution time of our benchmarks on a NodeMCU
device [23], we used time as one of the cost types for this analysis. The other cost type is energy
consumption, which we obtained in two different ways: the first way was by combining the NodeMCU
execution times with electric current and voltage information to calculate the energy consumption
of executing the benchmarks on this device; the second way was to use the number of instructions,
host per guest instruction, and average cycles per instruction combined with electric current, voltage,
and clock rate information to calculate the energy consumption of executing the benchmarks on other
devices, such as a Raspberry Pi 3. Section 4.3 has a more detailed explanation of these two approaches.

For the results reported in this article, we used the execution time and energy consumption values
as the input for simulations that calculate the fog and cloud computing costs according to our model,
but we intend to implement a system that uses our model to choose between processing values in the
fog or the cloud as future work.

We divided our analysis into four parts. As we need the value of f in order to calculate the
fog computing cost, Section 4.1 investigates different ways to implement the estimation approach
described in Section 3.2. Section 4.2 then uses the result of the previous subsection to calculate the
fog and cloud computing costs using execution time as the cost type. Similarly, Section 4.3 presents
the costs regarding energy consumption. These two subsections evaluate the efficiency of the chosen
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estimation technique and how well our model employs it to choose between processing values in the
fog or in the cloud. Finally, Section 4.4 describes a way to use our model to simulate different scenarios,
allowing us to observe how changing the values of our parameters would affect the decision between
fog and cloud.

4.1. Choosing an Approach to Estimate f

When following the steps presented in Section 3.2 to estimate the probability that a value passes
the filter ( f ), we come across the question of whether it would be more profitable to make a decision
at the beginning of the stream and then process the values accordingly or to make several decisions
along the stream with the intent of accounting for possible changes in data patterns.

In order to evaluate the possibility of making several decisions along the stream, we implemented
two different estimation procedures, which we call Local and Cumulative. In both approaches, we first
divide our stream into a certain number of blocks (b). As the number of values we are allowed to test
(v) is still the same, we can now check bv/bc values in the first b− 1 blocks and v− (b− 1)× bv/bc
values in the last block. The total number of elements in each block depends on the stream size (z) and
can be calculated as bz/bc for the first b− 1 blocks and z− (b− 1)× bz/bc for the last one.

In the Local approach, we leverage the information obtained by testing local values in order to try
to better estimate f for each block. To that end, we test the values at the beginning of each block and
count how many of them passed the filter, then divide this number by the number of tested values.
Continuing the example from Section 3.2, for b = 4, we would be able to check b5/4c = 1 data point
in each of the first three blocks and 5− 3× b5/4c = 2 data points in the last one. If the number of
values that passed the filter (n) was one in each of the first and second blocks, none passed the filter in
the third, and one passed it in the fourth, we would have f = 1/1 = 1, f = 1/1 = 1, f = 0/1 = 0,
and f = 1/2 = 0.5 for each block, respectively.

In the Cumulative approach, we attempt to use the results from all previously-tested blocks in
order to make a more informed estimate using a larger number of data points. In this case, we also
test the values at the beginning of each block and count how many passed the filter, but we then
accumulate the number of both tested and passed values with the count from previous blocks. In our
example, that would lead to f = 1/1 = 1 for the first block, f = (1 + 1)/(1 + 1) = 1 for the second
block, f = (1 + 1 + 0)/(1 + 1 + 1) = 0.67 for the third, and f = (1 + 1 + 0 + 1)/(1 + 1 + 1 + 2) = 0.6
for last block.

Using these two approaches to estimate f , we calculated the costs in terms of execution time
for all benchmarks and datasets using the simplified versions of Equations (1) and (2) obtained in
Section 3.2 (i.e., C f = t + s · f and Cc = s). The figures in this subsection present a summary of these
results. For the sake of simplicity, we did not include all possible combinations between datasets and
applications, as some of the graphs are very similar to the ones shown. All figures employ the same
values for stream size (z = 65,536) and custom execution code cost (t, shown in Tables A2 and A3 in
Appendix B), but Figures 2–5 use the measured time of 7.3 ms [24] as the cost of sending data to the
cloud (s), while Figures 6–9 show what the costs would be like if s was ten times smaller (0.73 ms).
In the first case, the results are fog-prone, that is, the fog is more likely to be profitable, as s is about one
order of magnitude larger than t. On the other hand, the results in the second case are cloud-prone,
as the cloud is more likely to be profitable when we have close values for s and t.

These figures compare the cost of processing all data in the cloud (Cloud); processing all data in
the fog (Fog); the cost of using the Local and Cumulative approaches to estimate f and then decide
where the data should be processed in each block (Local and Cumulative, respectively); what the cost
would be if there was a procedure that always chose correctly between the fog and the cloud after
testing the values at the beginning of each block (Always right); and what the cost would be if we
knew where to process the data in each block without any testing (Oracle). The red line in each graph
shows the minimum estimated cost among all the tested numbers of blocks for a certain combination
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of dataset and benchmark, considering only Local and Cumulative estimates. The red arrows point to
all Local and Cumulative bars that have the same value as the minimum cost.

We start by analyzing the fog-prone results. The graphs for the MinMax [−15, 15] benchmark
present three different sets of characteristics. The first can be seen in Figure 2a. Despite being fog-prone,
the most profitable choice in this case is the cloud. The division into 1024 blocks gives us the best
estimate, increasing the cost by 0.44% in comparison to sending all values to the cloud. However,
we note that the estimate obtained by using one block increases the cost by only 0.50%.
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Figure 2. Summary of the results for MinMax [−15, 15] fog-prone test cases. Blk., block(s).

The second case is the one shown in Figure 2b, which is similar to the results for the HWindSpeed
and Synthetic datasets (the difference being that the cost values are around 100 ms and 300 ms for these
two datasets, respectively). Here, all the divisions result in the same estimate for both the Local and
Cumulative approaches. For HWindSpeed and Synthetic datasets, the Cumulative approach results
in the same estimate for all values, with Local starting to have increasingly worse estimates with 256
blocks and 512 blocks, respectively.

The third case is the one depicted in Figure 2c. Although the Cumulative approach shows good
estimates for a higher number of blocks, we see that both Local and Cumulative obtain the minimum
cost value for one and eight blocks, as well.

The graphs for MinMax [−5, 5] show two sets of characteristics. Figure 3a illustrates the first
one, which is a similar result to that of Figure 2a, and Figure 3b depicts the second, which is akin
to the graphs for the HVisibility, HWBTempC, and Synthetic benchmarks. In this case, dividing the
stream into only one block results in the minimum cost value for all benchmarks except HWBTempC,
for which the Cumulative approach reduces the cloud cost by 22.20% when dividing by 128 blocks,
compared to 22.03% for just one block.
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Figure 3. Summary of the results for MinMax [−5, 5] fog-prone test cases.

All graphs for the Outlier 16 benchmark are similar to Figure 4, with every estimate resulting
in the minimum cost apart from the Local approach using 1024 blocks (for the Synthetic benchmark,
even this case results in the minimum cost).
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Figure 4. Summary of the results for Outlier 16 fog-prone test cases (HVisibility).

For Outlier 256, most graphs look like Figure 5a, where dividing by up to 32 blocks in both
approaches results in the minimum cost. Unlike the other datasets, HVisibility allows us to test the
division by 1024 blocks, as seen in Figure 5b, given that the number of values we can test in this case is
larger than 1024, and therefore there is at least one value per block.
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Figure 5. Summary of the results for Outlier 256 fog-prone test cases.
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Analyzing these results, we observe that in most cases, changing the number of blocks or the
estimation procedure only affects the costs by a slight margin, with the difference between the fog and
cloud computing costs being much more prominent.

We now look at the cloud-prone results. Figure 6a has the results for the MinMax [−15, 15]
benchmark running on the HRelHumidity dataset. All estimates result in the minimum cost, which is
an increase of 0.5% over the cost of processing all data in the cloud.
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(b) HVisibility.
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(d) HWindSpeed.

Figure 6. Summary of the results for MinMax [−15, 15] cloud-prone test cases.

While the results shown in Figure 6b are cloud-prone, we see that in fact, the fog is more profitable
when executing the MinMax [−15, 15] benchmark on the HVisibility dataset, with all estimates having
approximately the same cost as processing all values in the fog (less than a 0.01% difference).

Figure 6c also shows one of the datasets for the MinMax [−15, 15] benchmark, HWBTempC.
This result is somewhat similar to that of the Synthetic dataset in the sense that the cloud is more
profitable in both cases; the Local approach presents a few estimates with high cost (with two and
eight blocks for HWBTempC and with 128 and 256 blocks for Synthetic), and only one estimate has the
lowest cost value (Local with 256 blocks for HWBTempC and Cumulative with 64 blocks for Synthetic).

Figure 6d displays the final dataset for the MinMax [−15, 15] benchmark. Similar to Figure 6b,
this test also presents a lower cost for processing all data in the fog. However, the difference between
cloud and fog costs is much smaller in this case, and the best estimate (Local with 64 blocks) reduces
the cost of processing all data in the fog by 1.85%.

Figure 7 illustrates the results for MinMax [−5, 5], which are similar for all datasets. In this
benchmark, processing all the data in the cloud costs much less than doing so in the fog, and the
Local approach usually yields higher estimates for several block numbers (with the exception of
HRelHumidity, where all estimates are the same in both approaches). Using only one block results
in the minimum cost for the HRelHumidity and HWindSpeed datasets, but the difference in cost of
using only one block when compared to the minimum cost in the other datasets is only 0.03%, 0.23%,
and 0.01% for HVisibility, HWBTempC, and Synthetic, respectively.
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Figure 7. Summary of the results for MinMax [−5, 5] cloud-prone test cases (HWBTempC).

As we can see in Figure 8, the values for the cost of processing all data in the cloud and in
the fog are very similar for Outlier 16. This is the case for all datasets in this benchmark, but the
minimum value is achieved by different numbers of blocks in distinct datasets. For HRelHumidity
and HWBTempC, the minimum is obtained by using one block; for HWindSpeed, two; for Synthetic,
eight; and for HVisibility, 256. Both Local and Cumulative approaches present the same results for the
minimum cost case in all datasets except HVisibility, where the Local approach presents a lower cost.
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Figure 8. Summary of the results for Outlier 16 cloud-prone test cases (HWBTempC).

Similarly to Figure 5a,b, most of the graphs for the Outlier 256 benchmark apart from the dataset
HVisibility (Figure 9a) look like the one in Figure 9b. Again, this is due to the fact that only the
HVisibility dataset allows us to test at least one value per block, in this case for 128 blocks. In all
cases, dividing by one or two blocks results in the minimum cost for both the Local and Cumulative
approaches. For HWBTempC, dividing by eight blocks also yields this result.

Again, we can see that in most cases, changing the number of blocks or the estimation procedure
does not have a large impact on the cost, and simply choosing correctly between the fog and the cloud
will lead to most of the performance gains.

Therefore, this evaluation allows us to conclude that using the straightforward solution of looking
at the first values of the stream (that is, when there is only one block) leads to good results in terms of
cost for several test cases. Furthermore, in the instances where this is not the best approach, the increase
in cost is very small, not justifying the use of more complex division methods. Considering this, in the
following subsections, we will look at the values at the beginning of the stream to estimate f .
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Figure 9. Summary of the results for Outlier 256 cloud-prone test cases.

4.2. Deciding between Fog and Cloud Considering Execution Time

As seen in Section 3, we only depend on the variables s, t, and f for our calculations, so we start by
finding these values. Tables A2 and A3 in Appendix B show the values for t in milliseconds measured
for each benchmark and dataset, and we use the measurement of s = 7.3 ms [24] in all fog-prone test
cases and s = 0.73 ms for the cloud-prone ones. Having these values, we can now calculate C f 0 and
Cc0 for the worst-case scenario from the fog point of view, that is, when f = 1.

We are considering that z = 65,536, so we can use Equation (5) to determine the penalty for
processing a value in the fog when it would cost less to do so in the cloud (p). Given our large stream
size, the penalty for each value is very small in fog-prone cases (less than 0.001%) and still relatively
small in cloud-prone ones (less than 0.01%), as can be seen in Tables A2 and A3 in Appendix B.
This difference is due to the fact that values for s and t are closer to each other in our cloud-prone cases.

Therefore, we can look at a reasonable number of values and still have a very low increase in cost.
We decided that we are willing to have a maximum increase in cost of 0.5%, so that enables us to test
over 3000 values for Outlier 16 and both MinMax cases, over 900 values for Outlier 256 for fog-prone
cases, and ten times fewer values for cloud-prone cases (the exact numbers are also displayed in the
aforementioned table). By examining the output of the benchmarks, we are able to count the values
that passed the filter (n), which leads us to the f estimates, as well as the real f values for comparison.
Again, all of these results are reported in Tables A2 and A3.

Finally, we use the calculated f values to plot a graph similar to the one in Figure 1 for each
benchmark. Like Section 4.1, here, we also used the simplified versions of Equations (1) and (2)
(i.e., C f = t + s · f and Cc = s). The result is illustrated in Figure 10. The continuous lines represent
the tests that use the estimated values of f (Est.), and the dashed lines represent the tests that use the
real values of f (Real). The continuous thick gray line represents the case where C f = Cc, that is, a line
with a slope of −1. By observing the graphs, we can determine that most of the lines are below the
C f = Cc threshold for fog-prone cases and above it for cloud-prone cases, as expected. As discussed in
Section 3, the lines below the threshold mean that it is more profitable in terms of execution time to
run these filters in the device that is collecting the data instead of sending the values to be processed
in the cloud. On the other hand, lines above the threshold mean that, from the point of view of the
device, it is more profitable to process these data on the cloud.
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Figure 10. Graphs of the linear equations for each dataset and benchmark using execution time as the
cost. Est., estimated.

A few notable exceptions are the MinMax benchmarks being executed on the HRelHumidity
dataset in the fog-prone scenario and the MinMax [−15, 15] benchmark being executed on the
HVisibility and HWindSpeed datasets on the cloud-prone scenario. In the first case, we see that
although it was more likely that the fog would be more profitable, the lines are above the threshold,
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indicating that in fact the cloud is the correct choice. This can be explained by looking at the values
of f for the MinMax benchmarks on the HRelHumidity dataset, which are equal to one, meaning
that all values passed the filter. We can see that the cloud is more profitable every time this happens,
as C f = t + s · 1 is always larger than Cc = s. In the second case, the lines are below the threshold,
indicating that the fog is more profitable instead of the cloud. This can again be explained by looking
at the values of f . MinMax [−15, 15] has f = 0 for HVisibility and f = 0.1393 for HWindSpeed. Using
the values of s and t in each case, we can calculate what f would be when C f = Cc. For HVisibility,
0.614381 + 0.73 · f = 0.73, leading to f = 0.1584. For HWindSpeed, 0.619163 + 0.73 · f = 0.73 and
f = 0.1518. The f value for both test cases is below the f value for the threshold, indicating that the
fog is indeed the correct choice for them.

We can also calculate the values of the slopes in order to verify the accuracy of our f estimation.
We do so by determining the slope of each of the lines using both the estimated and real f values.
The slopes obtained, as well as the error of the estimated values in comparison to the real ones,
are shown in Tables A2 and A3 in Appendix B. In 16 out of the 20 fog-prone cases and in 16 out of the
20 cloud-prone cases, the error is less than 5% in our predictions, which we consider a good result,
as we are able to get a close estimate of f while only risking an increase of 0.5% in the processing
cost. Furthermore, it is worth noting that while the eight remaining test cases present larger errors,
the choice between fog and cloud is the correct one in all of them.

4.3. Deciding between Fog and Cloud Considering Energy Consumption

Similarly to what we did in the previous subsection, we start by obtaining values for s, t, and f .
However, we will now use energy consumption as our cost type and evaluate our test cases on two
different devices, namely a NodeMCU platform and a Raspberry Pi 3 board.

For the NodeMCU, we calculate t by taking the execution time for each test case (displayed in
Tables A2 and A3 in Appendix B) and multiplying it by the voltage of the device (2 V) and the electric
current for when no data are being transmitted (17.2 mA) [27], resulting in the values reported in
Tables A4 and A5 in Appendix B. We use the same method to calculate the values of s, multiplying the
time it takes to send the data to the cloud (7.3 ms for fog-prone cases and 0.1825 ms for cloud-prone
cases) by the voltage and by the electric current for when data are being transmitted (70 mA) [27],
producing s = 1.022 mJ for fog-prone cases and s = 0.02555 mJ for cloud-prone ones. The next step is
to calculate C f 0 and Cc0 for f = 1, the worst-case scenario from the fog point of view.

Given z = 65,536, we use Equation (5) to determine the penalty for processing a value in the fog
when it would cost less to do so in the cloud (p). Tables A4 and A5 have all the values for p, which are
less than 0.0002 for fog-prone scenarios and less than 0.006 for cloud-prone scenarios. We again use
0.5% as the limit for the increase in cost that we are willing to pay to estimate the value of f , which
allows us to test over 13,000 values for most fog-prone cases (with the exception of Outlier 256, where
v ranges between 3600 and 5700, as this benchmark executes a more costly procedure in comparison to
the others) and over 320 values for most cloud-prone ones (here, the values of v range between 90 and
150 for Outlier 256), as can been seen in Tables A4 and A5.

The last step is to estimate f and plot the resulting linear equations using the simplified versions of
Equations (1) and (2) (i.e., C f = t+ s · f and Cc = s), as illustrated by Figure 11. From Tables A4 and A5,
we see that the slope estimate error is less than 5% in 13 out of the 20 fog-prone cases and in 16 out of
the 20 cloud-prone ones, which again is a good result for only 0.5% maximum risk in the processing
cost. Moreover, from the 11 remaining test cases, 10 correctly choose the more profitable approach (the
case that does not choose correctly is discussed below). We see that these results are analogous to the
ones obtained in Section 4.2, with the expected choice being made on most fog- and cloud-prone cases
and the same four test cases appearing as exceptions (fog-prone MinMax [−15, 15] and MinMax [−5, 5]
executed on HRelHumidity and cloud-prone MinMax [−15, 15] on HVisibility and HWindSpeed).
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Figure 11. Graphs of the linear equations for each dataset and benchmark using energy consumption
as the cost: NodeMCU.
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Nonetheless, we can see one interesting difference in the cloud-prone Outlier 16 cases, as all lines
are very close to C f = Cc. In this type of situation, it is necessary to check the slope values to get
a more accurate view of the decisions being made. From Table A5, we have the following slope
estimates (and real values): for HRelHumidity, −1.0070 (−1.0128); for HVisibility, −0.9836 (−1.0105);
for HWBTempC, −1.0106 (−1.0032); for HWindSpeed, −1.0019 (−1.0048); and for Synthetic,
−0.9990 (−0.9945). From that, we have that fog is chosen for HRelHumidity, HWBTempC, and
HWindSpeed, with the cloud being chosen for the other two datasets. However, in the case of
HVisibility, the real slope value tells us that the best choice would have been processing the values on
the fog. Even so, considering how close the fog cost (0.02529 mJ) is to the cloud cost (0.02555 mJ) in
this case, choosing the less profitable option will not greatly affect the performance of the system.

Instead of also executing our test cases on a Raspberry Pi 3 device, we employ a different approach
to calculate the value of t. First, we use our infrastructure [23] to count the number of instructions
for each test case (displayed in Tables A6 and A7 in Appendix B). As our infrastructure is a virtual
machine, we then multiply this number by the number of host per guest instructions (60 for MinMax
and 66 for Outlier [23]) and by the average number of cycles per instruction (which we estimate to be
one). This gives us an estimate of the number of cycles that each test case would take to process the
whole data stream on the Raspberry Pi 3. We then divide this result by the clock rate (1.2 GHz [28]) to
find out the time each test case takes to process all stream values and by the stream size (z = 65,536) to
finally obtain the execution time of each test case. We then proceed with the same method that we
used for NodeMCU to obtain the t values reported in Tables A6 and A7. In this device, the voltage is
3.3 V, and the electric current for when no data are being transmitted is 330 mA.

We determine the value of s in the same way as we did for NodeMCU, that is, by multiplying the
time it takes to send the data to the cloud (7.3 ms for fog-prone cases and 0.001825 ms for cloud-prone
cases) by the voltage and by the electric current for when data are being transmitted (500 mA) [28],
which gives us s = 12.045 mJ for fog-prone cases and s = 0.00301125 mJ for cloud-prone ones.

After that, we calculate C f 0 and Cc0 for f = 1 and use Equation (5) to determine the penalty for
processing a value in the fog when it would cost less to do so in the cloud (p, which can be found in
Tables A6 and A7). In the fog-prone cases, p is less than 0.00001, and in the cloud-prone cases, it is
less than 0.03. This time, we use 0.01% as the limit for the increase in cost that we are willing to pay to
estimate the value of f in the fog-prone cases and 1% as the limit in cloud-prone cases. This is done
due to the fact that we have very small values for p in the former and larger values for p in the latter.
With these limits, we can test over 11,000 values for most fog-prone cases (with the exception of Outlier
256, where v ranges between 1700 and 2900) and over 290 values for most cloud-prone ones (here, the
values of v range between 40 and 80 for Outlier 256), as indicated in Tables A6 and A7.

Finally, we estimate f using the simplified versions of Equations (1) and (2) to plot the graphs
in Figure 12. Tables A6 and A7 show us that 10 out of the 20 fog-prone cases and 16 out of the 20
cloud-prone ones have a slope estimate error of less than 5%. Although there are four fog-prone
scenarios where the error is higher than 30% and three cloud-prone scenarios where it is higher than
15%, the most profitable option between cloud and fog is chosen in all cases.

Like the previous cases, most fog-prone and cloud-prone tests result in the expected choice, with
the exception of fog-prone MinMax [−15, 15] and MinMax [−5, 5] executed on HRelHumidity and
cloud-prone MinMax [−15, 15] on HVisibility and HWindSpeed.
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Figure 12. Graphs of the linear equations for each dataset and benchmark using energy consumption
as the cost: Raspberry Pi 3.

4.4. Simulating Other Scenarios

As we have seen with our study of fog-prone and cloud-prone scenarios in the previous
subsections, another application for our model is simulating the decision process for different ranges
of values. This is useful to help us visualize how changes in technology may affect the decision to filter
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values in the device instead of sending them to be processed in the cloud. It also allows us to analyze
how far we can change s and t and still keep the same decisions.

The value of s is related to factors such as the network protocol being used (e.g., TCP, UDP);
the implementation of network processes (e.g., routing); and the communication technology employed
by the device (e.g., Wi-Fi, Bluetooth, Bluetooth Low Energy, LTE, Zigbee, WiMax). Moreover, it may
include costs related to information security like authentication and data confidentiality. Therefore,
improving the performance of any of these elements would decrease the value of s and lead us to
change the decision from processing values in the fog to sending them to be processed in the cloud.

At the same time, t is related to factors such as the quality of the filtering procedure’s code and
the technology of the processing unity used by the device. While we do not expect the performance of
these elements to decrease with time, it is possible that t may increase as progressively more limited
devices are employed or more robust features are added to the procedures being executed, which
would also lead to processing data in the cloud being more profitable than doing so in the fog.

In our simulations, we use the estimated f values for the fog-prone cases of the Synthetic dataset.
The upper values for t are approximations of the result of Equation (6), and the s values are numbers
close to the 7.3 ms, when the cost type is execution time, and 1.022 mJ, when the cost type is energy
consumption. We calculate the slope of the lines obtained with these coefficients to observe how
changing them affects our results.

In all figures in this subsection, the dashed area represents the space where the values used in
Sections 4.2 and 4.3 are located. The green cells (below the continuous line) are the ones where the
slope is less than or equal to −1, that is, the cases where fog computing is more profitable. The blue
cells (above the continuous line) are the cases where cloud computing has the lower cost.

Figure 13a depicts the simulation results for MinMax [−15, 15]. In this case, we need to either
increase t or decrease s by 5.1× to reach a situation where fog computing no longer has the lowest
cost. Figure 13b shows the simulation results for MinMax [−5, 5], for which we need to increase t or
decrease s by only 1.9× to change our decision. This is due to this case having a higher f than the
previous one, which brings its initial slope already close to −1. Figure 13c illustrates the simulation
results for Outlier 16, and an increase in t or decrease in s of 9.8× is necessary in this instance to
make cloud computing the more profitable choice, as the initial slope is far from −1 due to a very low
value of f . Figure 13d has the simulation results for Outlier 256. In this test, we need to increase t or
decrease s by 2.8× to change our decision. Although this case also presents a very low f value, this is
compensated by a t value that is much closer to s than the other cases, explaining why its initial slope
is much closer to −1 than Outlier 16.

The energy consumption values used in this analysis are the ones obtained for the NodeMCU
device. Figure 14a has the MinMax [−15, 15] simulation results, for which there is a need to either
increase t or decrease s by 20.6× for cloud computing to become the most profitable choice. Similarly to
the results in Figure 13b, the MinMax [−5, 5] values displayed in Figure 14b also needs to be adjusted
by a much smaller factor than what is required by MinMax [−15, 15] in order to change the decision
between fog and cloud, that is, we need to increase t or decrease s by only 7.9×. Again, this can
be explained by this case having a higher f than that of MinMax [−15, 15], which brings its initial
slope already close to −1. Figure 14c shows the simulation results for Outlier 16, which require a very
large adjustment of 39.8× to change our decision. Again, this can be explained by the initial slope
being far from −1 due to a very low value of f . Figure 14d presents the simulation results for Outlier
256, and here, we need to increase t or decrease s by 11.3× to change our decision. As in the case of
Figure 13d, the low f value of this instance is compensated by a larger t value, which brings its slope
to −1 when compared to Outlier 16.

Lastly, it is relevant to point out that we also simulated all of these cases employing the real f
values. Although that leads us to slightly different slopes, the decision between fog and cloud stays
the same in all scenarios. If we had used a smaller value for the maximum increase in cost allowed,
we would have seen some marginal discrepancies in borderline cases (i.e., cases where the slope is
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very close to −1), as f would have been less precise due to being estimated using fewer data points.
Divergences can also occur due to rounding differences in borderline cases. We do not consider this an
issue, as borderline cases have similar fog and cloud costs.

(a) MinMax [−15, 15]. (b) MinMax [−5, 5].

(c) Outlier 16. (d) Outlier 256.

Figure 13. Slope simulations for each test case using execution time as the cost.

(a) MinMax [−15, 15]. (b) MinMax [−5, 5].

(c) Outlier 16. (d) Outlier 256.

Figure 14. Slope simulations for each test case using energy consumption as the cost.

5. Conclusions

This article introduces two cost models for fog and cloud computing. The first is a mathematical
model that can be used to estimate the cost of processing a data stream on the device that collected it
(fog computing cost) and the cost of sending the data to be processed in the cloud (cloud computing
cost). Both of these costs are calculated from the point of view of the device, as this would allow it to
choose where to process the data stream while collecting its elements. The second is a visual model
that is a cloud computing cost vs. fog computing cost graph. It intends to help the user decide which
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of the strategies presents the lowest cost according to a certain metric. Using this visual model, the
user can better understand the test cases they are working with and improve the implementation of
their processing strategy.

Considering that our models are based on linear equations, we observed that the user can make
their decision by analyzing the slope of a line drawn in the visual model. As discussed, fog computing
is more profitable in the cases where the slope is less than or equal to−1, with cloud computing having
the lower cost otherwise.

One of the parameters of our model is the probability that a number will pass the filter, which we
call f . We analyzed different strategies to estimate this value and observed that looking at a contiguous
set of elements at the beginning of the stream is a straightforward approach that yields good estimates.
The two other approaches that we tested, which involve continuously monitoring the stream and
dynamically adjusting the estimate, presented very little performance gains, not justifying their use.

We applied our models to two instances of a filter that allows numbers outside of a certain range to
pass and two instances of a filter that finds outliers in a window of values. We used execution time and
energy consumption as the cost types for our analysis and executed the tests on five different datasets
(four datasets with real-world climatological data and one dataset with artificial data). By comparing
the slope of the linear equation obtained with the real and estimated values of f , we noticed that our
estimation process worked well, as it presented an error of less than 5% in most of our test cases and
allowed us to decide correctly on the more profitable strategy to process the values in all but one case.

We also simulated a different range of values for our test cases and found out how different
parameters would affect our decision. We looked at how much it would be necessary to decrease the
time it takes to send the data to the cloud (which we call s) or increase the time it takes to execute the
application in the fog (which we call t) for cloud computing to become the more profitable approach in
cases where the fog was the chosen solution. When using execution time as the cost type, the values
of the parameters had to change from 1.9× to 9.8× to affect our decision, and in the case of energy
consumption as the cost type, they had to change from 7.9× up to 39.8×. We noticed that the size of
these alterations depends on factors such as the value of f and how close s and t are to each other.
We point out that this type of investigation is very useful to visualize possible changes in technology.
Again, our estimation process proved to be effective, as the simulations using the real and predicted
values presented the same decisions in all cases.

We intend to continue this research by improving our model to account for scenarios not included
in this article, such as splitting tasks and sending data to other nearby devices, and overlapping
processing and transferring times. We also plan to test our model using test cases with additional
custom code operations. Another interesting path is to not only consider the costs from the point of
view of the device, but also to calculate the costs looking at the whole system in order to analyze the
impact of employing fog computing in the applications that we are studying. Furthermore, we propose
to implement a system that uses our model to choose between processing values in the fog or the
cloud, and execute it on constrained devices.
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Appendix A. Notation

Table A1. Notation for the cloud and fog computing cost models.

Notation Restriction Definition

b 0 < b ≤ z Number of blocks into which the stream is divided to compute several f values along the stream.
Cc Cc > 0 Cost of sending the data to be processed in the cloud.
C f C f > 0 Cost of processing the data in the fog and sending the data that pass the filter to the cloud.
f 0 ≤ f ≤ 1 Probability that a value will pass the filter.
i i > 0 Cost of being idle between processing a value and reading the next one.
n 0 ≤ n ≤ v Number of values that passed the filter among the tested values.
p p > 0 Penalty for processing a value in the fog when it would cost less to do so in the cloud.
r r > 0 Cost of reading a value.
s s > 0 Cost of sending a value to the cloud.
t t > 0 Cost of executing a custom code that decides if the value should be sent to the cloud.
v 0 < v ≤ z Number of values that we are allowed to test to estimate f considering the maximum increase in cost defined by the user.
z z > 0 Stream size (i.e., number of processed values).



Future Internet 2019, 11, 34 24 of 31

Appendix B. Experimental Data

Table A2. Execution time results in fog-prone cases.

Benchmark Dataset t (ms) p (%) v n f (Est.) f (Real) Slope (Est.) Slope (Real) Slope Error (%)

MinMax [−15, 15]

HRelHumidity 0.673551 0.000141 3551 3551 1.0000 1.0000 −0.9155 −0.9155 −0.0000
HVisibility 0.614381 0.000128 3893 0 0.0000 0.0000 −11.8819 −11.8819 −0.0000
HWBTempC 0.629857 0.000132 3797 760 0.2002 0.2784 −3.4911 −2.7420 +27.3195
HWindSpeed 0.619163 0.000129 3863 515 0.1333 0.1393 −4.5844 −4.4623 +2.7351
Synthetic 0.635126 0.000133 3766 2108 0.5597 0.5536 −1.5462 −1.5611 −0.9566

MinMax [−5, 5]

HRelHumidity 0.673655 0.000141 3550 3550 1.0000 1.0000 −0.9155 −0.9155 −0.0000
HVisibility 0.660127 0.000138 3623 2984 0.8236 0.8336 −1.0940 −1.0823 +1.0881
HWBTempC 0.646680 0.000135 3698 2613 0.7066 0.6911 −1.2576 −1.2826 −1.9489
HWindSpeed 0.656031 0.000137 3646 2920 0.8009 0.8013 −1.1227 −1.1222 +0.0440
Synthetic 0.643882 0.000135 3715 3087 0.8310 0.8299 −1.0880 −1.0892 −0.1187

Outlier 16

HRelHumidity 0.715757 0.000150 3342 73 0.0218 0.0236 −8.3408 −8.2180 +1.4952
HVisibility 0.667375 0.000139 3584 355 0.0991 0.0911 −5.2501 −5.4794 −4.1852
HWBTempC 0.723876 0.000151 3304 65 0.0197 0.0222 −8.4151 −8.2367 +2.1662
HWindSpeed 0.719371 0.000150 3325 121 0.0364 0.0267 −7.4110 −7.9862 −7.2024
Synthetic 0.741199 0.000155 3227 26 0.0081 0.0076 −9.1248 −9.1606 −0.3902

Outlier 256

HRelHumidity 2.590709 0.000542 923 41 0.0444 0.0051 −2.5043 −2.7776 −9.8403
HVisibility 1.729101 0.000361 1383 215 0.1555 0.1112 −2.5489 −2.8731 −11.2837
HWBTempC 2.561749 0.000535 933 15 0.0161 0.0124 −2.7248 −2.7522 −0.9963
HWindSpeed 2.454752 0.000513 974 5 0.0051 0.0160 −2.9291 −2.8386 +3.1893
Synthetic 2.633129 0.000550 908 4 0.0044 0.0012 −2.7389 −2.7629 −0.8681
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Table A3. Execution time results in cloud-prone cases.

Benchmark Dataset t (ms) p (%) v n f (Est.) f (Real) Slope (Est.) Slope (Real) Slope Error (%)

MinMax [−15, 15]

HRelHumidity 0.673551 0.001408 355 355 1.0000 1.0000 −0.5201 −0.5201 −0.0000
HVisibility 0.614381 0.001284 389 0 0.0000 0.0000 −1.1882 −1.1882 −0.0000
HWBTempC 0.629857 0.001317 379 210 0.5541 0.2784 −0.7058 −0.8762 −19.4563
HWindSpeed 0.619163 0.001294 386 7 0.0181 0.1393 −1.1543 −1.0127 +13.9844
Synthetic 0.635126 0.001328 376 206 0.5479 0.5536 −0.7053 −0.7024 +0.4010

MinMax [−5, 5]

HRelHumidity 0.673655 0.001408 355 355 1.0000 1.0000 −0.5201 −0.5201 −0.0000
HVisibility 0.660127 0.001380 362 302 0.8343 0.8336 −0.5752 −0.5754 −0.0392
HWBTempC 0.646680 0.001352 369 369 1.0000 0.6911 −0.5303 −0.6341 −16.3797
HWindSpeed 0.656031 0.001371 364 275 0.7555 0.8013 −0.6045 −0.5883 +2.7673
Synthetic 0.643882 0.001346 371 308 0.8302 0.8299 −0.5840 −0.5841 −0.0189

Outlier 16

HRelHumidity 0.715757 0.001496 334 10 0.0299 0.0236 −0.9897 −0.9959 −0.6239
HVisibility 0.667375 0.001395 358 43 0.1201 0.0911 −0.9668 −0.9947 −2.8069
HWBTempC 0.723876 0.001513 330 5 0.0152 0.0222 −0.9933 −0.9863 +0.7048
HWindSpeed 0.719371 0.001504 332 10 0.0301 0.0267 −0.9847 −0.9880 −0.3395
Synthetic 0.741199 0.001549 322 1 0.0031 0.0076 −0.9819 −0.9775 +0.4442

Outlier 256

HRelHumidity 2.590709 0.005415 92 0 0.0000 0.0051 −0.2818 −0.2814 +0.1445
HVisibility 1.729101 0.003614 138 55 0.3986 0.1112 −0.3614 −0.4033 −10.3846
HWBTempC 2.561749 0.005355 93 0 0.0000 0.0124 −0.2850 −0.2840 +0.3539
HWindSpeed 2.454752 0.005131 97 0 0.0000 0.0160 −0.2974 −0.2960 +0.4765
Synthetic 2.633129 0.005504 90 1 0.0111 0.0012 −0.2764 −0.2771 −0.2729
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Table A4. NodeMCU energy consumption results in fog-prone cases.

Benchmark Dataset t (mJ) p (%) v n f (Est.) f (Real) Slope (Est.) Slope (Real) Slope Error (%)

MinMax [−15, 15]

HRelHumidity 0.023170 0.000035 14,453 14,453 1.0000 1.0000 −0.9778 −0.9778 −0.0000
HVisibility 0.021135 0.000032 15,845 0 0.0000 0.0000 −48.3565 −48.3565 −0.0000
HWBTempC 0.021667 0.000032 15,456 3920 0.2536 0.2784 −3.6387 −3.3376 +9.0198
HWindSpeed 0.021299 0.000032 15,723 2131 0.1355 0.1393 −6.3949 −6.2452 +2.3970
Synthetic 0.021848 0.000033 15,327 8567 0.5589 0.5536 −1.7232 −1.7393 −0.9288

MinMax [−5, 5]

HRelHumidity 0.023174 0.000035 14,451 14,451 1.0000 1.0000 −0.9778 −0.9778 −0.0000
HVisibility 0.022708 0.000034 14,747 12,184 0.8262 0.8336 −1.1787 −1.1685 +0.8687
HWBTempC 0.022246 0.000033 15,054 11,189 0.7433 0.6911 −1.3071 −1.4028 −6.8176
HWindSpeed 0.022567 0.000034 14,839 11,701 0.7885 0.8013 −1.2336 −1.2145 +1.5716
Synthetic 0.022150 0.000033 15,119 12,530 0.8288 0.8299 −1.1759 −1.1743 +0.1301

Outlier 16

HRelHumidity 0.024622 0.000037 13,601 324 0.0238 0.0236 −20.8708 −20.9521 −0.3880
HVisibility 0.022958 0.000034 14,587 1470 0.1008 0.0911 −8.1144 −8.8072 −7.8668
HWBTempC 0.024901 0.000037 13,448 297 0.0221 0.0222 −21.5284 −21.4534 +0.3493
HWindSpeed 0.024746 0.000037 13,532 409 0.0302 0.0267 −18.3694 −19.6518 −6.5253
Synthetic 0.025497 0.000038 13,134 90 0.0069 0.0076 −31.4457 −30.6958 +2.4432

Outlier 256

HRelHumidity 0.089120 0.000133 3757 47 0.0125 0.0051 −10.0289 −10.8308 −7.4044
HVisibility 0.059481 0.000089 5630 531 0.0943 0.1112 −6.5567 −5.9035 +11.0641
HWBTempC 0.088124 0.000132 3800 15 0.0039 0.0124 −11.0896 −10.1371 +9.3965
HWindSpeed 0.084443 0.000126 3965 52 0.0131 0.0160 −10.4449 −10.1371 +3.0363
Synthetic 0.090580 0.000135 3697 5 0.0014 0.0012 −11.1133 −11.1277 −0.1295
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Table A5. NodeMCU energy consumption results in cloud-prone cases.

Benchmark Dataset t (mJ) p (%) v n f (Est.) f (Real) Slope (Est.) Slope (Real) Slope Error (%)

MinMax [−15, 15]

HRelHumidity 0.023170 0.001384 361 361 1.0000 1.0000 −0.5244 −0.5244 −0.0000
HVisibility 0.021135 0.001262 396 0 0.0000 0.0000 −1.2089 −1.2089 −0.0000
HWBTempC 0.021667 0.001294 386 217 0.5622 0.2784 −0.7091 −0.8878 −20.1222
HWindSpeed 0.021299 0.001272 393 7 0.0178 0.1393 −1.1745 −1.0278 +14.2665
Synthetic 0.021848 0.001305 383 209 0.5457 0.5536 −0.7139 −0.7099 +0.5616

MinMax [−5, 5]

HRelHumidity 0.023174 0.001384 361 361 1.0000 1.0000 −0.5244 −0.5244 −0.0000
HVisibility 0.022708 0.001356 368 304 0.8261 0.8336 −0.5831 −0.5806 +0.4365
HWBTempC 0.022246 0.001329 376 376 1.0000 0.6911 −0.5346 −0.6403 −16.5127
HWindSpeed 0.022567 0.001348 370 280 0.7568 0.8013 −0.6097 −0.5936 +2.7142
Synthetic 0.022150 0.001323 377 312 0.8276 0.8299 −0.5901 −0.5894 +0.1345

Outlier 16

HRelHumidity 0.024622 0.001470 340 10 0.0294 0.0236 −1.0070 −1.0128 −0.5816
HVisibility 0.022958 0.001371 364 43 0.1181 0.0911 −0.9836 −1.0105 −2.6609
HWBTempC 0.024901 0.001487 336 5 0.0149 0.0222 −1.0106 −1.0032 +0.7445
HWindSpeed 0.024746 0.001478 338 10 0.0296 0.0267 −1.0019 −1.0048 −0.2919
Synthetic 0.025497 0.001523 328 1 0.0030 0.0076 −0.9990 −0.9945 +0.4576

Outlier 256

HRelHumidity 0.089120 0.005322 93 0 0.0000 0.0051 −0.2867 −0.2863 +0.1470
HVisibility 0.059481 0.003552 140 55 0.3929 0.1112 −0.3675 −0.4100 −10.3520
HWBTempC 0.088124 0.005263 95 0 0.0000 0.0124 −0.2899 −0.2889 +0.3601
HWindSpeed 0.084443 0.005043 99 0 0.0000 0.0160 −0.3026 −0.3011 +0.4848
Synthetic 0.090580 0.005410 92 1 0.0109 0.0012 −0.2812 −0.2820 −0.2709
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Table A6. Raspberry Pi 3 energy consumption results in fog-prone cases.

Benchmark Dataset Instruction Count t (mJ) p (%) v n f (Est.) f (Real) Slope (Est.) Slope (Real) Slope Error (%)

MinMax [−15, 15]

HRelHumidity 3,997,730 0.003321 0.000000 23,765 23,765 1.0000 1.0000 −0.9997 −0.9997 −0.0000
HVisibility 2,687,010 0.002232 0.000000 35,358 0 0.0000 0.0000 −5395.3493 −5395.3493 −0.0000
HWBTempC 3,047,723 0.002532 0.000000 31,174 7744 0.2484 0.2784 −4.0222 −3.5891 +12.0664
HWindSpeed 2,869,570 0.002384 0.000000 33,109 4541 0.1372 0.1393 −7.2806 −7.1695 +1.5502
Synthetic 3,285,947 0.002730 0.000000 28,914 16,086 0.5563 0.5536 −1.7967 −1.8058 −0.4997

MinMax [−5, 5]

HRelHumidity 3,997,730 0.003321 0.000000 23,765 23,765 1.0000 1.0000 −0.9997 −0.9997 −0.0000
HVisibility 3,779,590 0.003140 0.000000 25,137 20,454 0.8137 0.8336 −1.2286 −1.1993 +2.4413
HWBTempC 3,537,571 0.002939 0.000000 26,857 19,474 0.7251 0.6911 −1.3787 −1.4465 −4.6872
HWindSpeed 3,737,250 0.003105 0.000000 25,422 20,039 0.7883 0.8013 −1.2682 −1.2476 +1.6506
Synthetic 3,584,428 0.002978 0.000000 26,506 22,025 0.8309 0.8299 −1.2031 −1.2047 −0.1299

Outlier 16

HRelHumidity 6,972,197 0.006372 0.000001 12,388 273 0.0220 0.0236 −44.3135 −41.3824 +7.0831
HVisibility 6,035,976 0.005516 0.000001 14,309 1441 0.1007 0.0911 −9.8850 −10.9245 −9.5154
HWBTempC 7,285,119 0.006658 0.000001 11,856 258 0.0218 0.0222 −44.8151 −43.8595 +2.1788
HWindSpeed 7,045,547 0.006439 0.000001 12,259 369 0.0301 0.0267 −32.6425 −36.7553 −11.1898
Synthetic 7,384,825 0.006749 0.000001 11,695 80 0.0068 0.0076 −135.1194 −122.1042 +10.6591

Outlier 256

HRelHumidity 49,584,961 0.045317 0.000006 1741 41 0.0235 0.0051 −36.6140 −112.4953 −67.4529
HVisibility 30,115,961 0.027524 0.000003 2868 459 0.1600 0.1112 −6.1604 −8.8124 −30.0942
HWBTempC 49,178,545 0.044946 0.000006 1756 15 0.0085 0.0124 −81.4756 −61.9114 +31.6004
HWindSpeed 46,647,122 0.042632 0.000005 1851 52 0.0281 0.0160 −31.6132 −51.1218 −38.1610
Synthetic 50,492,036 0.046146 0.000006 1710 4 0.0023 0.0012 −162.0664 −197.3519 −17.8795
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Table A7. Raspberry Pi 3 energy consumption results in cloud-prone cases.

Benchmark Dataset Instruction Count t (mJ) p (%) v n f (Est.) f (Real) Slope (Est.) Slope (Real) Slope Error (%)

MinMax [−15, 15]

HRelHumidity 3,997,730 0.003321 0.001683 594 594 1.0000 1.0000 −0.4755 −0.4755 −0.0000
HVisibility 2,687,010 0.002232 0.001131 883 0 0.0000 0.0000 −1.3488 −1.3488 −0.0000
HWBTempC 3,047,723 0.002532 0.001283 779 482 0.6187 0.2784 −0.6851 −0.8934 −23.3159
HWindSpeed 2,869,570 0.002384 0.001208 827 12 0.0145 0.1393 −1.2403 −1.0741 +15.4754
Synthetic 3,285,947 0.002730 0.001383 722 403 0.5582 0.5536 −0.6827 −0.6848 −0.3149

MinMax [−5, 5]

HRelHumidity 3,997,730 0.003321 0.001683 594 594 1.0000 1.0000 −0.4755 −0.4755 −0.0000
HVisibility 3,779,590 0.003140 0.001591 628 491 0.7818 0.8336 −0.5480 −0.5329 +2.8348
HWBTempC 3,537,571 0.002939 0.001489 671 671 1.0000 0.6911 −0.5061 −0.5998 −15.6321
HWindSpeed 3,737,250 0.003105 0.001573 635 484 0.7622 0.8013 −0.5576 −0.5457 +2.1783
Synthetic 3,584,428 0.002978 0.001509 662 550 0.8308 0.8299 −0.5495 −0.5498 −0.0523

Outlier 16

HRelHumidity 6,972,197 0.006372 0.003229 309 10 0.0324 0.0236 −0.4655 −0.4674 −0.4062
HVisibility 6,035,976 0.005516 0.002795 357 43 0.1204 0.0911 −0.5122 −0.5200 −1.5042
HWBTempC 7,285,119 0.006658 0.003374 296 5 0.0169 0.0222 −0.4488 −0.4478 +0.2404
HWindSpeed 7,045,547 0.006439 0.003263 306 10 0.0327 0.0267 −0.4606 −0.4619 −0.2767
Synthetic 7,384,825 0.006749 0.003420 292 1 0.0034 0.0076 −0.4455 −0.4447 +0.1873

Outlier 256

HRelHumidity 49,584,961 0.045317 0.022963 43 0 0.0000 0.0051 −0.0664 −0.0664 +0.0341
HVisibility 30,115,961 0.027524 0.013947 71 55 0.7746 0.1112 −0.1009 −0.1081 −6.6915
HWBTempC 49,178,545 0.044946 0.022775 43 0 0.0000 0.0124 −0.0670 −0.0669 +0.0832
HWindSpeed 46,647,122 0.042632 0.021603 46 0 0.0000 0.0160 −0.0706 −0.0706 +0.1132
Synthetic 50,492,036 0.046146 0.023383 42 1 0.0238 0.0012 −0.0652 −0.0652 −0.1471
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