
future internet

Article

On the Need for a General REST-Security Framework

Luigi Lo Iacono * , Hoai Viet Nguyen and Peter Leo Gorski

Data and Application Security Group, Cologne University of Applied Sciences, 50679 Cologne, Germany;
viet.nguyen@th-koeln.de (H.V.N.); peter.gorski@th-koeln.de (P.L.G.)
* Correspondence: luigi.lo_iacono@th-koeln.de

Received: 19 December 2018; Accepted: 14 February 2019; Published: 27 February 2019
����������
�������

Abstract: Contemporary software is inherently distributed. The principles guiding the design of such
software have been mainly manifested by the service-oriented architecture (SOA) concept. In a SOA,
applications are orchestrated by software services generally operated by distinct entities. Due to
the latter fact, service security has been of importance in such systems ever since. A dominant
protocol for implementing SOA-based systems is SOAP, which comes with a well-elaborated security
framework. As an alternative to SOAP, the architectural style representational state transfer (REST)
is gaining traction as a simple, lightweight and flexible guideline for designing distributed service
systems that scale at large. This paper starts by introducing the basic constraints representing REST.
Based on these foundations, the focus is afterwards drawn on the security needs of REST-based service
systems. The limitations of transport-oriented protection means are emphasized and the demand for
specific message-oriented safeguards is assessed. The paper then reviews the current activities in
respect to REST-security and finds that the available schemes are mostly HTTP-centered and very
heterogeneous. More importantly, all of the analyzed schemes contain vulnerabilities. The paper
contributes a methodology on how to establish REST-security as a general security framework for
protecting REST-based service systems of any kind by consistent and comprehensive protection
means. First adoptions of the introduced approach are presented in relation to REST message
authentication with instantiations for REST-ful HTTP (web/cloud services) and REST-ful constraint
application protocol (CoAP) (internet of things (IoT) services).

Keywords: SOA; services; security; REST; web services security; HTTP; IoT services security;
CoAP; RACS

1. Introduction

Representational state transfer (REST) [1] is an architectural style for designing distributed
services systems that scale at large. This is achieved by a set of defined architectural constraints.
REST-based systems have to be, e.g., stateless and cacheable in order to ensure the propagated scalability.
The uniform interface is another important constraint, which provides simplicity of interfaces and
performance of components’ interaction. The benefits coming along by adhering to these constraints
are amongst the main driving forces for the increasing adoption of service systems based on REST.

Currently only a limited set of technologies exists, which can serve as a foundation for
implementing REST-based systems. HTTP [2] is by far the most dominant choice. This fact is the source
for many misinterpretations in which REST is often equated with HTTP. Consequences emerging
from this reasoning are many-fold. One related to security is the adoption of transport-oriented
protection only, as common for conventional web-based applications by means of transport layer
security (TLS) [3]. This is by far not sufficient as an exclusive safeguard for REST-based services,
since they are constrained to be layered. Hence, these systems consist of intermediaries, which perform
functions on the data path between a source host and destination host, most commonly on the open

Future Internet 2019, 11, 56; doi:10.3390/fi11030056 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0002-7863-0622
https://orcid.org/0000-0002-6540-5389
https://orcid.org/0000-0003-0391-4054
http://www.mdpi.com/1999-5903/11/3/56?type=check_update&version=1
http://dx.doi.org/10.3390/fi11030056
http://www.mdpi.com/journal/futureinternet

Future Internet 2019, 11, 56 2 of 33

systems interconnection (OSI) application layer [4]. Examples of such intermediate systems include
caches, load-balancers, message routers, interceptors and proxies. In order to be able to perform their
tasks, intermediate systems need to terminate transport security, which as a result does not reach from
end to end. This remains opaque to the user and the obtained security level depends on many more
stakeholders than the two endpoints. [5] revealed that many current security interceptors struggle with
the implementation of transport-oriented security protocols, as they build intermediate systems that
decrease security or even provide implementations that are severely broken. Also, transport-oriented
security is not designed to fulfil the security requirements of ultra large scale (ULS) [6] systems
and distributed service-oriented applications in general. The various entities involved in chained
processing steps require adopting more fine-grained and message-related security means such as
partial encryption and signature as, e.g., provided by the web services (WS)-security [7] standard for
simple object access protocol (SOAP) based web services [8].

Moreover, different protocols following the REST principles are starting to emerge in
domains other than the web or the cloud. For implementing internet of things (IoT) services,
for instance, constraint application protocol (CoAP) [9] is taking root as REST-compliant protocol.
Datagram transport layer security (DTLS) [10], the user datagram protocol (UDP) based flavor of TLS,
is applicable as transport-oriented security measure here likewise. Again, the REST inherent constraint
of composing systems out of layers, in many cases prohibits the adoption of transport-oriented security
as single line of protection. Especially in the IoT domain, most of the use cases comprise high security
demands, asking for more elaborated and pluralistic safeguards.

The limited protection of transport-oriented security in REST-based systems has already been
addressed by several research and development approaches as will be discussed thoroughly in Section 5.
From these, some REST message security technologies have emerged that can be used in conjunction
with transport security. Still, these approaches are available for certain technologies only, mainly HTTP
and CoAP until now. As REST defines an abstract concept, its implementations are not restricted to these
two particular technologies, though. Since REST has been established as an important paradigm for
building large-scale distributed systems, more REST-ful protocols are expected to evolve prospectively.
The remote application protocol data unit (APDU) call secure (RACS) [11] protocol is one example. It is
an emerging REST-ful protocol for accessing smartcards. Beside transport-oriented security no further
protection means have been proposed for the RACS draft standard so far.

From these basic observations, the need for a general REST-security framework becomes apparent.
The objective of this paper is to close this gap while providing the following contributions. First,
this paper analyzes the actual security demands of REST-based systems thoroughly and emphasizes
the specific REST characteristics that necessitate a dedicated REST-security, which needs to be defined
at the same abstraction layer as REST itself and independent from any concrete technology in the
first place. Then, a comprehensive consolidated review of the current state of the art in respect to
REST-security is provided. Finally, the paper contributes a general REST-security framework alongside
with a methodology on how to instantiate it for a particular REST-conformance technology stack
in order to facilitate the protection of REST-based service systems of any kind by consistent and
comprehensive protection means. Available as well as upcoming REST-ful technologies will benefit
from the introduced methodology and the proposed general REST-security framework at its core.

For this purpose, the remaining of this paper is organized as follows. The foundations in respect
to the architectural style REST are laid in Section 2. The methodology for deriving the envisioned
general REST-security framework is laid in Section 3. The subsequent sections follow this methodology
accordingly, starting with capturing the demand in terms of required service security technologies in
Section 4. Due to the lack of a widespread adoption of REST other than the Web—but without the loss
of generality—the security demands and specific requirements are analyzed based on the Web Services
security stack. In Section 5 the related work and current practice is presented and assessed. A general
security framework that reflects the particular characteristics and properties of REST is introduced in
Section 6. Based on this approach, Section 7 proposes an adoption of the framework to two prevalent

Future Internet 2019, 11, 56 3 of 33

concrete REST-based protocols, HTTP and CoAP. An experimental evaluation of these schemes against
the related work based on prototype test-beds is given in Section 8. The paper concludes in Section 9
and provides a brief discussion on future research and development demands.

2. REST Foundations

Besides the dissertation of Roy Fielding [1], there neither exists a definition nor an unified
understanding of the term REST and its underlying principles and concepts. Often enough it is
mistaken as being a standard composed of its underlying foundations HTTP and uniform resource
identifier (URI) [12]. The source for this diffuse view on REST lies mainly in the fact that the two
aforementioned standards have been the only notable technology choice for implementing REST-based
service systems ever since. For the purpose of this paper it is henceforth demanding that the term
REST is defined unambiguously.

The aim of REST is to provide a guideline for designing distributed systems that possess certain
traits including performance, scalability, and simplicity. These architectural properties are realized
by applying specific constraints to components, interfaces, and data elements. These constraints are
subsequently introduced with the guidance of Figure 1.

REST is constrained to the client-server model in conjunction with the request-response
communication flow. A REST client performs some kind of action on a targeted resource by issuing a
request. For this, the request must contain a resource identifier and the action to apply to the addressed
resource. Depending on the action, the request and response messages may contain additional
meta-data elements, which are categorized in resource data, resource meta-data, representation data,
representation meta-data, and control data. The set of available actions in conjunction with a unique
scheme for identifying resources as well as the additional meta-data is known as the uniform interface
since it is consistent for all managed and provided resources.

Request
• Actions
• Resource Identifier
• [Resource Representation]
• [Caching]
• [Authentication]
• [Session]
• [Size]
• [Media	Type]
• ...

Uniform	Interface
(Request	Processing)
• Create
• Read
• Update
• Delete
• ...

Response
•Meaning
• [Resource Representation]
• [Resource Identifier]
• [Caching]
• [Authentication]
• [Session]
• [Size]
• [Media	Type]
• ...

Resource
Processing

State	Change

Resources
• users
• products
• locations
• pictures
• videos
• news
•messages
• documents
• events
• devices
• sensors
• …

REST	Client REST	Server

Intermediate	Systems
(Middleboxes)

Figure 1. Overview of the representational state transfer (REST) constraints and principles (on the
basis of [13]).

Since REST-based systems are constrained to be stateless, messages need to contain all required
data elements in order to relieve the server from maintaining state for each client. As REST messages

Future Internet 2019, 11, 56 4 of 33

embody all required data elements, which are predefined and standardized by the uniform interface,
their semantics are visible and are hence self-descriptive for all intermediaries and endpoints so that
all components in a REST architecture can understand the intention of a message without knowing
each other in advance. In a request to read access a resource, for instance, the request contains the
resource identifier along with representation meta-data to signal in what data format the resource
should be delivered from the server to the client. Moreover, a request can include further meta-data
required by intermediaries including state and caching information. The according response provides
information on its meaning and in case it denotes that the addressed resource is available, it is contained
in the message body in the requested representation. Once a response is received, it transfers the
receiving client into a new state. In another setting, in which the request triggers the creation of a
new resource, the request contains the resource in the request message body in some representation.
The response then gives feedback on the resource state and whether it has successfully created
or not. Again, further meta-data elements can be included in addition, providing information on
the authentication, the session and the freshness of a resource in respect to caching. Moreover,
the meta-data elements as well as the resource representation of the response may contain further
resource identifiers—i.e., hyperlinks. Based on these resource identifiers and their description, a
client is able explore other resources and transfer its state by starting a new request with a distinct
resource identifier and meta information. This REST property is known as hypermedia as the engine
of application state (HATEOAS).

The principles and constraints representing REST are fairly abstract making it adoptable in any
environment that contains technologies suitable for implementing the REST constraints. This coherence
is illustrated by Figure 2. HTTP is one protocol that is in conformance with the REST constraints and
principles as it is based on the client-server model and the interaction is stateless. Moreover, it specifies
a uniform interface, which specifies a set of predefined request actions, i.e., the HTTP methods, and a
set of additional meta-data for transferring different resource representation or controlling the cache
behavior for example. Additionally, HTTP uses a resource identifier syntax, i.e., the URI [12] standard,
for addressing resources. An instantiation on the technological basis of HTTP results in REST-ful
HTTP [14], the foundation for building REST-based web, micro or cloud services, which in turn
are used to build smart-* and industry 4.0 applications. More specifically, the fifth generation of
mobile communication systems (5G), e.g., adopts REST-ful HTTP for implementing a service-based
architecture (SBA) providing core network functions as REST-ful services [15]. Another evolving
application domain of REST can be found in the IoT [16]. Here, the REST-conformance CoAP [9] is
used to implement distributed service systems consisting of a large number of resource-restricted
nodes [17]. CoAP adopts most of the HTTP characteristics. It utilizes the same request actions and
the URI standard for specifying the uniform interface. Also, CoAP defines similar meta-data for
transferring and controlling the cache behavior. The main difference between CoAP and HTTP lies in
the fact that CoAP is a binary protocol, whereas HTTP is text-based. Other technical instantiations
of REST are equally possible and might appear in the future such as the remote APDU call secure
(RACS) [11] protocol, which is still being standardized. This abstraction hierarchy is an important fact
to consider carefully when researching on REST or REST-security.

Future Internet 2019, 11, 56 5 of 33

REST

REST-ful HTTP REST-ful CoAP REST-ful X

Web	Services,	 Cloud Services,
Smart-*	 Services, Industry 4.0	
Services,	 ...

IoT Services,	Smart-*	 Services,
Industry 4.0	Services,	...

Figure 2. Instantiation of the general REST architecture style to specific REST-ful protocols.

3. Methodology

To derive a general framework for REST-security, the methodology depicted in Figure 3 has
been applied. In a first phase (see Section 4 for details), the specific needs of REST-based systems in
terms of security have been derived by analyzing available standards and academic work in related
domains and contrasting them with characteristics of REST-compliant systems. Moreover, a common
and realistic threat model is defined and used as a basis for the subsequent phases.

Section	4	 Section	5	

Section	8	 Sections	6	and	7	

REST-Security

Demands/Specifics
 Threat Model

Vulnerability

Analysis

Related Work on"
REST-Security

HTTP
 CoAP

Generalization/

Hardening

General

REST-Security

Evaluation

Figure 3. Adopted methodology to derive a general framework for REST-security.

To obtain an in-depth understanding on how REST messages are protected by available means,
a comprehensive study of schemes introduced in literature as well as deployed in practice has been
executed (see Section 5 for details). Twenty-one approaches have been identified in total and all of
them have been evaluated in respect to the specific security demands of REST-based systems and the
determined threat model.

As none of the analyzed REST message security schemes fulfil all the necessary requirements
and is free of vulnerabilities in the given threat model, a new approach to REST-security has been
developed in an adjacent activity (see Sections 6 and 7). Governed by the main outcomes of the
previous studies, the generalization as well as hardening of the proposed schemes have been the goal.
To be able to get a proof-of-concept, particular entities of the general REST-security framework have

Future Internet 2019, 11, 56 6 of 33

been instantiated. As most of the available related work is focusing on REST message authentication,
the implemented instantiations of our framework do so as well for HTTP and CoAP.

To evaluate the derived and introduced general REST-security framework and more specifically
its particular instantiations have been examined in experimental test-beds using prototypes
(see Section 8 for details). For this purpose, implementations of the related schemes—as far as
openly accessible—have been integrated in experimental test environments. For comprehensibility
reasons the source code of the introduced scheme REST-ful HTTP message authentication (REHMA)
and REST-ful CoAP message authentication (RECMA) have been published and made available in the
public domain.

4. REST-Security Demands and Specifics

When considering REST for the design of service systems of any kind, the general security
demands of service-oriented architecture (SOA) [18] apply. The ability of REST-based systems to also
comply with the SOA principles has been analyzed and shown in [19]. As SOAP-based web services
have been and still are a dominant technology stack for implementing SOA-based systems, the evolved
security stack for SOAP-based web services can serve as reference [13].

4.1. SOAP-Based Web Services Security Stack

The SOAP-based Web Services technology stack includes an extensive set of security standards
(see Figure 4) [13].

!"#"$%&'$(
)*+,$'-./*+!

!"#
0$1$'./*+(

!"#
2&34*'56./*+(

!"#"$%&'537(
8*95%7(!"#:'&-3! !"#8'5,.%7(

!"#"$%&'537(

";28(0*&+1./*+(

";28("$%&'537()*<=*+$+3-(

Figure 4. Security stack for SOAP-based web services [13].

SOAP uses XML [20] as a platform-independent and extensible data description language for
defining the structure and semantics of the protocol messages. To ensure basic security services
for SOAP messages such as confidentiality and integrity, the WS-security [7] specification has been
standardized, which is based on XML encryption [21] and XML signature [22]. Upon these foundations,
further-reaching security concepts are provided. The fundamental condition for any security systems
is trust. WS-trust [23] introduces a standard based upon WS-security for establishing and broking trust
relationships between service endpoints. WS-federation [24] extends WS-trust in order to federate
heterogeneous security realms. It provides authorization management across organizational and trust
boundaries. The authorization management within those realms is described in WS-authorization.
Privacy constraints are covered by the WS-privacy specification. It allows handling privacy preferences
and policies between client and server. Secure communication, trust, federation, authorization
and privacy need a mechanism to negotiate and handle security policies. WS-security policy [25]
specifies how constraints and requirements in terms of security are defined for SOAP messages. It is a

Future Internet 2019, 11, 56 7 of 33

framework which allows Web Services to express their security demands as a set of so-called policy
assertions. WS-secure conversation [26] expands the security mechanisms for a conversation between
two communication partners. This organization for the advancement of structured information
standards (OASIS) standard defines how a secure exchange of multiple messages has to be established
in terms of a session [27].

4.2. REST-Ful Services Security Stack

REST-based services require a comparable set of technologies in order to enable developers to
implement message-oriented security mechanisms as required by the surrounding application context.
The currently available security stack is, however, rather scarce in comparison to the SOAP-based web
services security stack (see Figure 5) [13].

Even the fundamental message security layer is not available completely (visualized by the dashed
area) [13,28]. Some standards related to the authorization of service invocations such as OAuth [29]
and drafts on identity federation [30] are at hand, but the rest of the higher order security concepts
including trust, secure conversation and so forth are lacking entirely. Still, the depicted security stack
for REST-based services is a necessity and thus needs to be developed.

!"#$%"&
'()*"%+,-()& ."/"%,-()&

0(12#3& 4%$+5& 0%2*,#3&

67!4&.($)/,-()&

&&&8"++,9"&!"#$%253&

:$5;(%2<,-()&

67!4=!"#$%253&'(>?()")5+&

Figure 5. Desired security stack for REST-based web services [13].

4.3. REST-Security Specifics

Although both security stacks have their similarities, the plain adoption of WS-security to REST
and instantiations of REST is not feasible in a straightforward manner. The specifics of REST have to
be considered carefully in order to obtain a suitable and seamless security for REST-based services.

What needs to be taken into account first is the abstraction layer of REST and its instantiations.
REST itself is a very general concept and needs to be handled accordingly. Thus, a simple mapping
of the concrete WS-Security technologies to construct REST-security is not feasible, since both reside
on different abstraction layers. Since REST represents an abstract model, security components for
this architectural style need to be considered and defined on the same abstraction layer as well.
Consequently, REST-security needs to be a general framework composed of definitions, structures and
rules on how to protect REST-based systems. The term general in this context has to be understood as
generic in the sense that the schemes contained in the REST-security framework are not bound to a
specific REST-based technology or protocol only, but are applicable to any REST-ful technology. Such a
general REST-security framework would then support a guided adoption and implementation to any
concrete REST-ful protocol (see Figure 6).

Another REST specific issue is that there is no self-contained REST message, but the relevant data
items are scattered around the service protocol and the service payload (see Figure 7). SOAP messages,

Future Internet 2019, 11, 56 8 of 33

in contrast, are a self-contained XML structure. Both the meta-data as well as the payload in form of
a service operation or its corresponding result are enclosed in one XML document. Thus, with the
application of security mechanisms based on the technologies shown in Figure 4, both message parts
can be covered. This is, however, not the case for REST messages. Referring again to REST-ful HTTP
as an example, the meta-data is included in the HTTP header, whereas the resource representation is
inside the HTTP body. Since both parts are disjoint for many reasons, distinct security mechanisms
need to be applied in a balanced manner. If this is not being recognized, novel vulnerabilities might be
exploitable in the future.

General
REST-Security

Framework

REST-ful HTTP
Security Framework

REST-ful CoAP
Security Framework

REST-ful X
Security Framewok

Web Service security stack, ... IoT Service security stack, ...

Figure 6. Instantiation of the general REST-security framework to specific REST-ful protocols.

SOAP-Envelope	

SOAP-Header	

SOAP-Body	

Self-contained	SOAP-based	
Web	Service	Message	

HTTP-Header	

HTTP-Body	
(Resource	Representa.on)	

REST-ful	HTTP	
Web	Service	Message	

Service	Protocol	

Service	Payload	

Figure 7. Comparison of the SOAP-based service message structure with a REST service message
structure exemplified by a REST-ful HTTP instantiation.

Table 1 shows a set of possible attack vectors, which can be applied to REST-ful HTTP messages
that do carry a protected body only. The assumed attacker model is a common man-in-the-middle
(MITM) attack, in which an intruder is able to tamper the whole HTTP request and response messages
due to exploited transport security vulnerabilities or a compromised intermediate system.

Attack #1 is based on a GET request that does not contain a resource representation. Thus,
the whole HTTP message remains unprotected providing the surface for a malicious twist of the GET
method by, e.g., the DELETE method. The second attack tampers the resource path and the host header
with the aim of redirecting a client to the attacker’s resource. The attack in row three emphasizes
that even if a message includes a protected body, an attacker is still able to spoof the unsecured
header. In the provided case, the attacker can manipulate the HTTP method and the content-length
header in order to construct a valid DELETE request. Moreover, a malicious replacement of a resource
representation is also feasible as shown in row four. Here, an adversary can substitute a resource
representation with its own resource representation. Similar attacks are also possible on responses.
Row five depicts an example, where the location header is changed in order to forward a client to a

Future Internet 2019, 11, 56 9 of 33

malicious resource. The attack in row 6 presents a deception of the cache behavior. This manipulation
misleads the client or proxy to save the response for two hours. As a consequence, any further requests
in the next two hours to this resource will be replied by the cache and not by the origin server so that
the client can no longer notice a change of the actual resource state. These possible attack vectors can
be transferred analogously to REST-ful CoAP messages that are described in [31]. Note, that Table 1
lists a set of potential attacks vectors, which the authors identified and considered critical. This is
not a exhaustive list yet. Future work may uncover additional attack vectors that will provide more
arguments for appropriate message-level safeguards.

Table 1. Possible attack vectors on unauthenticated REST-ful HTTP messages.

Original REST-Ful HTTP Message Tampered REST-Ful HTTP Message

1

GET /resources HTTP/1.1
Host: example.org
Accept: application/json
Content-Length: 0
Connection: keep-alive

DELETE /resources HTTP/1.1
Host: example.org
Accept: application/json
Content-Length: 0
Connection: keep-alive

2

GET /resources HTTP/1.1
Host: example.org
Accept: application/json
Content-Length: 0
Connection: keep-alive

GET /evilresources HTTP/1.1
Host: attacker.org
Accept: application/json
Content-Length: 0
Connection: keep-alive

3

PUT /resources/3 HTTP/1.1
Host: example.org
Content-Length: 100
Content-Type: application/jose+json
Connection: keep-alive

<protected body>

DELETE /resources/3 HTTP/1.1
Host: example.org
Content-Length: 0
Content-Type: application/jose+json
Connection: keep-alive

<protected body>

4

POST /resources HTTP/1.1
Host: example.org
Content-Length: 100
Content-Type: application/jose+json
Connection: keep-alive

<protected body>

POST /resources HTTP/1.1
Host: example.org
Content-Length: 120
Content-Type: application/jose+json
Connection: keep-alive

<replaced malicious protected body>

5
HTTP/1.1 201 Created
Content-Length: 0
Connection: keep-alive
Location: http://example.org/resources/4

HTTP/1.1 201 Created
Content-Length: 0
Connection: keep-alive
Location: http://attacker.org/resources/4

6

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 100
Content-Type: application/xml

<protected body>

HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 100
Content-Type: application/xml
Cache-Control: max-age=7200

<protected body>

5. Related Work Analysis

The argued need for a general REST-security framework is further examined by an analysis of
the current practice and the available research. The analysis captures the correct security mechanisms
and evaluates them according to the specific of REST-based systems and the attacker model given in
the previous section. The related work has evolved so far in a relevant manner on REST-ful HTTP
and REST-ful CoAP only. Moreover, most of the available work has been conducted in relation to
basic service message security with a focus on authentication and authorization. Thus, the subsequent
analyzes are driven by these prerequisites [28].

Note, that in comparison to Prokhorenko et al. [32] the related work analysis focused on
approaches protecting the specifics of the uniform interface of REST-based systems in general.
Security techniques targeting a specific application domain are not considered. That is, protection
means referring to vulnerabilities of conventional web applications such as cross-site scripting (XSS),
cross-site request forgery (CSRF) or SQL injection are therefore out of scope.

Future Internet 2019, 11, 56 10 of 33

5.1. HTTP Basic and HTTP Digest Authentication

HTTP basic [33] and HTTP digest authentication [34] have been the two first standards for
authenticating HTTP requests. Both schemes require a username and a password for the authentication
process. If a client tries to access a resource, which is protected by one of these mechanisms, the server
returns an error response message including the WWW-authenticate header containing the name
of the mechanism, i.e., basic or digest, and a realm which is a description of the secured resource.
In case of basic authentication, the client must authenticate itself by sending the former request
with an Authorization header, which includes the base64-encoded username and the password.
The, i.e., plain-text transfer of username and password transfer is the main downside of this approach.
To protect this sensitive information in transit, TLS must be applied additionally. If transport-oriented
security is not available, the hole message remains unprotected and password eavesdropping as well
as any kind of request manipulations including the ones in Table 1 are feasible.

HTTP Digest Authentication provides a slightly improved approach, as it does not transfer the
credentials in clear-text. Here, the username and the password are hashed. Besides the username
and password the hash computation includes the URL path, the HTTP method, a client- as well
as a server-generated nonce, a sequence number and optionally a quality of protection description.
Since this scheme considers the HTTP method and the URL path in the hash calculation, a manipulation
of these request message elements is not feasible. However, an attacker can still perform malicious
changes of other message entities such as distinct headers and the body.

The other main drawback of both authentication mechanisms is that the request can be
authenticated only. Servers are not able to authenticate their responses opening the door for
MITM attacks.

5.2. API-Key

Application programming interface (API) keys are randomly generated strings, which are
negotiated out-of-band between client and server. An API-key is added to the URL or header of
every request. According to an analysis of the web API directory ProgrammableWeb, API-keys are
currently the most used authentication mechanism in REST-based web services [35].

API-keys share the same drawbacks as HTTP basic authentication. The API-key is transferred to
the server in plain-text. Thus, the credentials are only protected during transit if transport-oriented
security means such as TLS are being used.

5.3. HOBA

The experimental request for comments (RFC) HTTP origin-bound authentication (HOBA) [36] is
a challenge response HTTP authentication method based on digital signatures. If a distinct resource
is protected by HOBA and accessed without authentication, the server returns an error response
including the WWW-authenticate header. This header contains a challenge string, an expiration date
and an optional realm. To access this protected resource, the client needs to create a signature covering
a client-side generated nonce, the base URL of the request, the signature algorithm name, the optional
realm, the key identifier and the challenge string. The resulting signature value must then be included
in the authorization header together with the key identifier, the challenge string and the nonce.

HOBA does not ensure the integrity of HTTP requests. To do so, each data transfer in HOBA
must be protected by TLS. If transport-oriented security is not present, any malicious change of the
request can be performed. As with HTTP basic, digest and API-keys, authentication, HOBA considers
the authentication of requests only and does not provide the option to protect responses.

5.4. HTTP SCRAM

Salted challenge response HTTP authentication mechanism (HTTP SCRAM) [37] is another
experimental RFC. The authentication process is structured in two steps. In the first one, the client

Future Internet 2019, 11, 56 11 of 33

sends a request containing an hash-based message authentication code (HMAC) signature algorithm
name, the username and a self-generated nonce. The server replies with the client-generated nonce
concatenated with a server-generated nonce, a salt and a sequence number. Based on this information,
the client performs the second authentication step. It computes an HMAC signature composed of
the password, the salt and the sequence number. To access the HTTP SCRAM protected resource,
the calculated signature value is embedded in the authorization header including the client-generated
nonce concatenated with the server-generated nonce and an HTTP SCRAM-specific description.
Once the server receives this request, it verifies the signature and the concatenated nonces. If both
values pass the verification process, the server returns the desired response to the client. The response
contains a signature value as well which is created by means of the client’s password, the salt and the
sequence number, so that the client can proof the authenticity of the responding server.

Unlike HOBA, API-keys as well as HTTP basic and digest, HTTP SCRAM provides the option to
authenticate requests as well as responses. However, this approach does not guarantee the integrity of
the whole message, as the signature does not cover the body and most of the headers.

5.5. Mutual Authentication Protocol for HTTP

The experimental RFC mutual authentication protocol for HTTP [38] is an approach for
authenticating requests and responses without sending the user’s password in plain-text. To transfer
the password in a confidential manner, the client as well as the server each generate a key exchange
value. The generated exchange value of the client is sent via a request to server and the generated
exchange value of the server is returned to client by a response.

Based on these client- and server-generated key exchange values, a session secret is calculated.
The client as well as the server use this session secret to create a verification value. Included within the
authorization request header of the request or the authentication-Info response header, the verification
value serves as a parameter for the server and the client respectively for validating the authenticity of
the communication partner’s received messages.

The procedure for computing the verification value, the key exchange value and the session secret
is not specified in [38]. A description of algorithms for computing the credentials is provided in a
separate specification [39]. Here, the key exchange values are randomly generated. The session secret
is a SHA-256 or SHA-512 hash calculated from the key exchange values of the client and the server as
well as the user’s password. Alternatively, the session secret can be calculated via elliptic curve digital
signatures, which integrates the key exchange values and the password in the computation process as
well. Both verification values are hashes or digital signatures based on the key exchange values and
the session secret.

As the name implies, this approach provides a mutual authentication protocol for clients and
servers to verify the authenticity of requests and responses. However, only authenticity can be ensured
by this specification. Similar to HOBA and HTTP SCRAM, neither the client nor the server can validate
whether other headers or the message body has been manipulated.

5.6. De Backere et al.

De Backere et al. [40] present security mechanisms for REST-based web services focusing on
mobile clients. Their protection scheme requires the client to authenticate with the username and the
password before retrieving any resources. If the authentication process is successful, the server returns
a symmetric key as well as a token representing the key identifier and a timestamp for avoiding replay
attacks. Based on these three credentials, a client can send authenticated requests. This is realized by
embedding the token and timestamp within the request. The next step signs the request body with
the symmetric key. Optionally, the same symmetric key can also be used for encrypting the request
body. To protect the response, the server can utilize the generated symmetric key for authenticating
and encrypting the body of the responses. Alternatively, the approach of De Backere et al. provides
the option to sign the response body with the server’s private key.

Future Internet 2019, 11, 56 12 of 33

The advantage of this approach is the consideration of authenticity, integrity and confidentiality
of HTTP requests and responses. However, only the message body is protected by this scheme.
The header is left unprotected. Another drawback is a missing description defining whether the token,
the timestamp and the computed signature value must be included in the header or body.

5.7. Peng et al.

Peng et al. [41] present an academic approach which is based on HTTP basic and HTTP digest
authentication (see Section 5.1). This scheme requires the client to compute two hashes, which are
then added to the HTTP header. The first hash is calculated on the basis of a server-generated nonce,
a timestamp and a password. The second one is a hash of the username, the realm, the server-generated
as well as client-generated nonce, the sequence number, the corresponding HTTP method and the URL
path. Both computed hashes including the nonces, the timestamp, the sequence number and the realm
are stored in new defined headers before sending the message to the server.

The authentication mechanism of Peng et al. only considers the HTTP method and the URL path
in the hash calculations. Other header entries and the body are not secured. Moreover, the approach
offers neither an authentication nor an integrity protection of the response.

5.8. FOAF + SSL/WebID

The friend-of-a-friend project (FOAF) [42] project aims to define a specification for linking people
and information on the web. In FOAF, people, agents, groups and their relations can be described
in a machine-readable manner. FOAF + SSL [43], also known as WebID [44], extends FOAF by
authentication. The trust model of FOAF + SSL is based on the web of trust (WOT) [45] where each
entity acts as a trusted third party. Each WebID certificate contains a link to a corresponding FOAF
description, in which a entity and its relations to other entities are defined. Based on this description
and references a WOT can be built. As the name FOAF + SSL implies, the WebID certificate is used
to establish a TLS connection likewise. Doing so, authenticity, confidentiality and integrity can be
ensured in the transport layer.

FOAF + SSL does not provide any safeguards for the application layer. The security is based on
TLS and WOT only. Thus, systems using FOAF + SSL for authentication are still vulnerable for the
attacks described in Table 1.

5.9. Google, Hewlett Packard and Microsoft

The cloud storage services of Google [46], Hewlett Packard (HP) [47] and Microsoft [48] utilize
an enhanced API-keys mechanism that prevents eavesdropping the key in transit. Instead of simply
including the API-key directly to the URL or HTTP header, clients signs the request. Conceptually,
the core signing process of all three operating cloud storage services is equal. A string to be signed is
constructed by concatenating the HTTP method with the resource path including the query (unless HP,
which makes use of the resource path only) and a fixed set of headers. Independent of the exact
composition of these sets, only the timestamp entry is mandatory. All other specified headers—including
for instance the content-type or content-MD5 entries—are optional. The concatenated string is signed
by the API-key. The signature value is enriched with further signature-related meta-data such as
the signature algorithm name and a key identifier. This generated authentication information is
finally inserted into the Authorization header. Google supports an alternative option, which allows
incorporating the authentication information inside the query part of the URL.

The defined sets of headers to be considered by each of these provider-proprietary approaches do
not consider all security-relevant message elements (see Table 1). Missing entries include, for instance,
the host and the connection header. These omissions enable an adversary, e.g., to redirect the message
to another system or to manipulate the connection management. Moreover, the providers do not
stringently require considering a hash of the body in signature computation. Clients may create
the content-MD5 header to integrate a hash of the body in the signature, but they do not have to.

Future Internet 2019, 11, 56 13 of 33

Integrating a hash value covering the body’s resource representation into the string to be signed is a
vital requirement in order to provide the integrity of the whole REST message. Ignoring this opens
the door for spoofing the resource representation. The last but not least observed issue is the lack of
mutual authentication, due to leaving the response out of the protection sphere. Thus, a client cannot
proof the authenticity of a response providing the surface for MITM attacks.

5.10. Amazon

Another provider-proprietary approach deployed by the Amazon simple storage service (S3)
requires service invocations over HTTP by to be signed [49]. As with the other three commercial
cloud storage services, S3 concatenates the HTTP method, the URL’s resource path including the
query and a set of headers to a string that is to be signed. The authentication approach of Amazon
offers, however, more flexibility as it allows protecting application-specific headers. This is realized
by a list that specifies the headers required to be appended before signing or verifying the HTTP
message. When this list is used, the request must contain at least the Host header, a header containing
a timestamp and the x-amz-sha256 header, which stores a SHA-256 hash of the body. The list is then
stored together with the signature value and the remaining authentication information either within
the authorization header or in the URL. Based on this list, the S3 service checks what headers are
covered by the signature. If one of the required headers is not contained in the list, the service rejects
the request.

The benefit of Amazon’s approach is the required hash of the body in the signature generation.
Amazon sets, however, the host header, the timestamp and the x-amz-sha256 header as mandatory
only. Consequently, further important meta information such as the content-length, the content-type
and the connection header are not considered. Thus, an attacker is able to manipulate the resource
representation and the connection, if these headers have not been signed. With the aid of the list,
an adversary can extract what has been signed and what not. If the content-length and content-type
header are not in the list, a replacement of the resource representation with another resource
representation with the same hash value is feasible. Taking the two aforementioned headers into
account is crucial to mitigate such attacks. By this, the attacker has to find a resource representation that
has the same hash value, size and media type as the actual body. Also Amazon’s HTTP authentication
scheme suffers from not taking the response into account.

5.11. Signing HTTP Messages

A standard dealing with the authentication of HTTP messages is the Signing HTTP messages
draft of the internet engineering task force (IETF) [50]. Similar to the discussed proprietary approaches,
a signer has to concatenate the HTTP method, the resource path including the query and a set of
headers to a string to be signed. The concatenation order of the headers is determined by the signer,
which creates a corresponding list. This list is embedded in the authorization or the newly defined
signature header together with the signature algorithm name, the key identifier and signature value.
Using this list, however, is not required. An absent list results in considering the Date header in the
signature generation only. Consequently, a present list must contain at least a date entry.

Besides this header, the proposal does not consider additional meta-data relevant to ensure HTTP
message authentication. The client can optionally add more header entries to the signature string if
required and aware of the consequences of a too narrow protection sphere. Furthermore, the draft
does not require incorporating a hash of the body in the signature computation. Moreover, it does not
make clear, how a server needs to authenticate a response. Signing the response is mentioned at the
beginning of the draft, but in the rest of the specification it is not elaborated any further.

5.12. OAuth

OAuth [29,51] is an authorization framework for granting access to end users’ resources for third
party applications. Currently, two versions of OAuth have been published.

Future Internet 2019, 11, 56 14 of 33

The OAuth v1 specification of the IETF [51] has an inherent support for protecting a request
by a signature. The signature string is the concatenation of the HTTP method, the resource path
including the query, the host header and a set of OAuth v1 specific parameters. The latter parameters
consist of a realm, a key identifier that is called consumer key, an OAuth token, a timestamp and
a nonce. OAuth v1 does not enable to add any other parameters or headers in the signature.
The authentication information is stored in the authorization header. Like the other approaches
discussed so far, the authenticity of the request is considered solely. No means for signing a response
have been defined.

In contrast to the first version, OAuth v2 does not include any security means on its own [29].
Instead, the security is merely based on TLS. If a message-oriented protection is yet required, OAuth v2
can be augmented by either the OAuth MAC tokens [52] specification or by the extension a method for
signing an HTTP requests for OAuth [53]. The OAuth MAC token draft demands to sign the HTTP
method, the resource path including the query and at least the host header. Further meta-data can be
considered by defining a list similar to some of the previously discussed approaches. The resulting
signature value has to be included into the authorization header.

The second OAuth v2 extension a method for signing an HTTP requests for OAuth uses a JSON
web signature (JWS) [54] to guarantee the authenticity of HTTP messages. The JWS object used in
this specification owns a set of members, which contains the method, the host including the port,
the resource path, the query, the headers, an HMAC authenticator of the body and a timestamp.
Using JWS as the pillar can be a stable groundwork, since it is a well advanced IETF draft for signing
JSON objects [55] that is already used in many applications. However, the main drawback of this
specification lies in the fact that all mentioned JSON members are optional. Even though most of these
elements are vital to guarantee the authenticity and integrity of an HTTP message, none of them is set
as mandatory for the signature. Also, this draft does not state any information whether the JWS object
is stored in a header or in the body.

The common problem of both OAuth versions is the tight coupling to the actual application
domain of these authorization frameworks. As a result, adopting these standards to other contexts is
not feasible in a straightforward manner. As with the other approaches, the major disadvantage of the
OAuth protocols is that they do not specify a protection of the response.

5.13. Serme et al.

Serme et al. [56] introduce the first approach addressing the protection of HTTP responses by
proposing a REST-ful HTTP message authentication protocol, which protects the request as well as the
response. Their approach introduces new headers containing the certificate ID, the hash algorithm
and the signature algorithm name. The input to the signature algorithm is a concatenation of the
body, the URL, the hash algorithm name, the signature algorithm name, the certificate ID and a set of
headers forming a string to be signed. The generated hash and signature values are stored in separated,
newly defined headers each. Moreover, Serme et al. propose an encryption and decryption scheme for
HTTP messages.

One drawback of [56] is the missing reference implementation. This paper provides two pseudo
code notations of the signature generation and verification schemes as well as another two of the
encryption and decryption schemes. These algorithms do not clearly state whether a timestamp or
the HTTP method are considered in the processing. Moreover, they do not specify any order of the
concatenation or some form of policy, which retains the order. Likewise, the approach does not define
what headers need to be obligatory protected. That is, it is not clear whether all headers or a subset of
them must be signed/encrypted.

5.14. Lee et al.

Lee et al. [57,58] define a method for signing and encrypting HTTP messages. The key pairs for
performing the encryption, decryption and digital signatures are generated by a third party entity.

Future Internet 2019, 11, 56 15 of 33

Before a client and a server are starting to communicate with each other, both parties must request two
public points (p1, p2), representing the master public key, and a private point (sQ) from a private key
generator (PKG). The PKG is the trusted third party service. Its only task is to send the master public
key and the private point.

Based on this master public key and the other endpoint’s URL, the client and the server can
compute the public key of their communication partner. The private point sQ is then used by both
parties to calculate their own private key respectively. Once the key pairs and the public key of the
counterpart is present, the client and the server can use the communication partner’s public key to
encrypt the HTTP message. Before starting the data transfer, the encrypted message is signed by the
private key of the corresponding endpoint.

The approach of Lee at al. ensures the authenticity, integrity and confidentiality of the whole
HTTP message. Moreover, requests as well as responses are protected by this scheme. However,
the encryption of the whole message with the aim that only the endpoints are able to decrypt and
interpret, violates the self-descriptive constraint of REST messages [1]. That is, only the client and the
server can understand the intention of the message. Intermediate systems are not able to process the
fully encrypted and signed message, as they possess neither the corresponding private key of the client
nor the server. If an intermediary is not able to understand and process a traversing message, it may
reject forwarding the message or cancel the communication. Hence, ensuring the confidentiality of
REST messages requires to cope with special challenges in order to be in conformance with the REST
principles. Requirements for defining a confidentiality scheme in REST are discussed in Section 6.3.
Another shortcoming of this approach is a missing time variant parameter in the signature process,
which makes the scheme vulnerable to replay attacks.

5.15. OSCORE

Object security for CoAP (OSCORE) [59] is a draft standard providing encryption, integrity and
replay attack protection for CoAP messages. The CoAP message payload and a set of security-relevant
headers are protected by OSCORE. Still, some other security-critical header entries including the token
length, message ID, token and max-age option as well as the meta information for the body length
are left unprotected. The reason why leaving out the first four meta-data lies in the fact that these
entries may be changed by intermediate nodes. However, not considering these meta-data elements
opens the door for man-in-the-middle attacks. Possible attack vectors can be spoofing the message
ID and token in order to provoke a mismatch between requests and responses. Also, sending the
max-age option without any protection is critical, as it has a similar functionality like the cache-control
header in HTTP. When it gets tampered, the freshness of the response is corrupted analogously to
attack six in Table 1. On the contrary, signing these header entries to avoid the aforementioned attacks
prevents middleboxes from changing these elements. Thus, leaving out these header entries from the
protection sphere and protecting these meta-data elements induce issues on both sides. To resolve this
problem, an enhanced approach has to ensure the integrity of these header entries and it must allow
intermediate systems to modify the meta-data elements simultaneously. Moreover, OSCORE does not
consider protecting the integrity of the body length meta information. The reason behind this might
be that no header for the body length is specified in the CoAP standard, as this information must be
extracted from the UDP packet. This omission enables the manipulation of the body as manifested by
attack four in Table 1.

According to the specification, messages protected by OSCORE are not intended for being
cached. Each response is strictly bound to its corresponding request. Not supporting the option to
cache messages may lead to a low scalability and violates the cacheability principle, which is one of
the most vital REST constraints. Also, the OSCORE specification does not provide a protection for
acknowledgment and reset messages. As both messages are utilized to confirm or reject a CoAP request
or response, they must be secured as well. This prevents attacker from replacing an acknowledgment

Future Internet 2019, 11, 56 16 of 33

message by a reset message or vice versa. Another issue of OSCORE is a missing description that lists
additional or application-specific header entries to be signed and/or encrypted.

5.16. Granjal et al.

Granjal et al. [60] propose a scheme that signs and/or encrypts CoAP messages. This approach
offers the options to encrypt a message, sign a message or sign as well as encrypt a message.
However, the authors do not provide any policy, which specifies a list on the to be protected
header entries. The proposed approach computes a signature and an encryption over the entire
CoAP message including the payload and all present header entries. The resulting cipher-text and
signature value are then stored in newly defined security headers which contain information on the
security context such as the key type, whether the message is encrypted, signed or both and the
destination. The latter information can refer to endpoints, i.e., client and server, or intermediate
systems. A CoAP message may include one or multiple instances of these security header entries.
Thus, the approach of Granjal et al. [60] allows to compute signatures and cipher text for multiple
endpoints and intermediaries which enables an intermediate system to verify and decrypt traversing
messages. However, the paper does not describe whether an intermediary is able sign and decrypt
a message itself. This is an important property of a REST-ful security scheme in order to comply
with the layered system constraint. This principle enables intermediate systems to interpret and
transform the content of a message. The ability of intermediaries to sign and encrypt messages by
themselves allows them to transform messages or parts of them and inform the endpoint that a
distinct intermediary has processed certain message elements. Moreover, encrypting and signing
the entire message without obeying a policy, which defines what headers are protected, violates the
self-descriptive constraint. This prevents certain intermediate nodes from accessing and modifying a
message. That is, the signature of the message is invalid if an intermediary changes the message, as
no policy for describing the modification exists. The other drawback is that a completely encrypted
message is not accessible by intermediate systems not possessing the required decryption key. Both
scenarios may occur, as a lot of intermediaries are either transparent or reside outside organizational
boundaries of the client and the server.

5.17. Consolidated Review of Analysis Results

The obtained insights from the conducted analyzes of the available related work are summarized
in Tables 2 and 3. Note, that only approaches are listed, which ensure authenticity and integrity
of distinct message elements. The schemes proposed in [33,34,36–38,40,43,44,61] and API-keys are
omitted for readability reasons, since they do not provide any integrity protection for headers.

The related work analysis reveal that a lot of REST-based HTTP and Coap message authentication
attempts have been evolved so far. However, none of the examined approaches targets the same
abstraction layer as REST. Also, the evaluated mechanisms contain many vulnerabilities or are not in
conformance with the REST constraints.

The concrete adoptions to web, cloud and IoT services are very diverse, emphasizing the need
for a more methodical approach to REST message authentication and to REST-security in general.
Moreover, due to the lack of a general REST-security framework, the same situation can be expected
to take place in any other appearing implementation domain, in which REST gets adopted. All this
emphasizes the need for a more advanced and elaborated security for REST-based service systems.

Future Internet 2019, 11, 56 17 of 33

Table 2. Analysis of related work in HTTP message authenticity and integrity.

Message Elements to Be Signed

Amazon [49] Google [46]

Request Response Request Response

C R U D C R U D C R U D C R U D

URI - - - - - - - -
Version number - - - - - - - - - - - - - - - -
Method - - - - - - - -
Status code - - - - # # # # - - - - # # # #
Connection G# G# G# G# # # # # # # # # # # # #
Cache-control G# G# G# G# # # # # # # # # # # # #
Location - - - - # - - - - - - - # - - -
Accept - G# - - - - - - - # - - - - - -
Content-type G# - G# - - # - - G# - G# - - # - -
Content-length G# - G# - - # - - # - # - - # - -
Transfer-encoding G# - G# - - # - - # - # - - # - -
Host - - - - # # # # - - - -
Hash of body # # # # G# G# G# G# # # # #
Time variant parameter # # # # # # # #

Message Elements to Be Signed

Microsoft [48] HP [47]

Request Response Request Response

C R U D C R U D C R U D C R U D

URI - - - - - - - -
Version number - - - - - - - - # # # # # # # #
Method - - - - - - - -
Status code - - - - # # # # - - - - # # # #
Connection # # # # # # # # # # # # # # # #
Cache-control # # # # # # # # # # # # # # # #
Location - - - - # - - - - - - - # - - -
Accept - # - - - - - - - # - - - - - -
Content-type G# - G# - - # - - G# - G# - - # - -
Content-length G# - G# - - # - - # - # - - # - -
Transfer-encoding # - # - - # - - # - # - - # - -
Host # # # # - - - - # # # # - - - -
Hash of body G# G# G# G# # # # # G# G# G# G# # # # #
Time variant parameter # # # # # # # #

Message Elements to Be Signed

OAuth v2 MAC Tokens [52] Signing an HTTP Request ... [53]

Request Response Request Response

C R U D C R U D C R U D C R U D

URI - - - - G# G# G# G# - - - -
Version number # # # # # # # # # # # # # # # #
Method - - - - G# G# G# G# - - - -
Status code - - - - # # # # - - - - # # # #
Connection G# G# G# G# # # # # G# G# G# G# # # # #
Cache-control G# G# G# G# # # # # G# G# G# G# # # # #
Location - - - - # - - - - - - - # - -
Accept - G# - - - - - - - G# - - - - -
Content-type G# - G# - - # - - G# - G# - - # - -
Content-length G# - G# - - # - - G# - G# - - # - -
Transfer-encoding G# - G# - # - - G# - G# - # - -
Host - - - - G# G# G# G# - - - -
Hash of body G# G# G# G# # # # # G# G# G# G# # # # #
time variant parameter # # # # G# G# G# G# # # # #

Future Internet 2019, 11, 56 18 of 33

Table 2. Cont.

Message Elements to Be Signed

Signing HTTP Messages [50] OAuth v1 [51]

Request Response Request Response

C R U D C R U D C R U D C R U D

URI - - - - - - - -
Version number # # # # # # # # # # # # # # # #
Method - - - - - - - -
Status code - - - - � � � � - - - - # # # #
Connection G# G# G# G# � � � � # # # # # # # #
Cache-control G# G# G# G# � � � � # # # # # # # #
Location - - - - � - - - - - - - # - - -
Accept - G# - - - - - - - # - - - - - -
Content-type G# - G# - - � - - # - # - - # - -
Content-length G# - G# - - � - - # - # - - # - -
Transfer-encoding G# - G# - - � - - # - # - - # - -
Host G# G# G# G# - - - - - - - -
Hash of body G# G# G# G# � � � � # # # # # # # #
Time variant parameter � � � � # # # #

Message Elements to Be Signed

Serme et al. [56] HTTP Digest Authentication [34]

Request Response Request Response

C R U D C R U D C R U D C R U D

URI - - - - - - - -
Version number # # # # # # # # # # # # # # # #
Method � � � � - - - - - - - -
Status code - - - - � � � � - - - - # # # #
Connection � � � � � � � � # # # # # # # #
Cache-control � � � � � � � � # # # # # # # #
Location - - - - � - - - - - - - # - - -
Accept - � - - - - - - - # - - - - - -
Content-type � - � - - � - - # - # - - # - -
Content-length � - � - - � - - # - # - - # - -
Transfer-encoding � - � - - � - - # - # - - # - -
Host � � � � - - - - # # # # - - - -
Hash of body # # # # # # # #
Time variant parameter � � � � � � � � # # # # # # # #

Message Elements to Be Signed

Peng et al. [41] Lee et al. [57,58]

Request Response Request Response

C R U D C R U D C R U D C R U D

URI - - - - � � � � - - - -
Version number # # # # # # # # � � � � � � � �
Method - - - - � � � � - - - -
Status code - - - - # # # # - - - - � � � �
Connection # # # # # # # # � � � � � � � �
Cache-control # # # # # # # # � � � � � � � �
Location - - - - # - - - - - - - � - - -
Accept - # - - - - - - - � - - - - - -
Content-type # - # - - # - - � - � - - � - -
Content-length # - # - - # - - � - � - - � - -
Transfer-encoding # - # - - # - - � - � - - � - -
Host # # # # - - - - � � � � - - - -
Hash of body # # # # # # # # � � � � � � � �
Time variant parameter # # # # � � � � � � � �

Legend: mandatory signed, # not signed, G# optionally signed, � not specified, - not required.

Future Internet 2019, 11, 56 19 of 33

Table 3. Analysis of related work in constraint application protocol (CoAP) message authenticity
and integrity.

CoAP Message Elements to Be Signed

OSCORE [59] Granjal et al. [60]

Request Response Request Response

C R U D C R U D C R U D C R U D

Version number
Type
Token Length # # # # # # # #
Code (method code, response code)
Message ID # # # # # # # #
Token # # # # # # # #
Uri-host, Uri-port, Uri-path - - - - - - - -
Max-age # # # # # # # #
Location-path, location-query - - - - - - - - - - - -
Accept - - - - - - - -
Content-format
Body length (payload-length) # # # # # # # # � � � � � � � �
Body
Time variant parameter

Legend: mandatory signed, # not signed, G# optionally signed, � not specified, - not required.

6. Towards a General REST-Security Framework

The previous sections motivated and highlighted the need for a general REST-security framework.
The available approaches provide security solutions for REST-ful HTTP and REST-ful CoAP only
and do not offer any concepts residing on the same abstraction layer as REST itself. Moreover,
the introduced and discussed specifics of REST-based services of any kind made apparent that the
application of the available standards, technologies and research is neither developed in a manner that
suits REST nor evolved enough in maturity for an adoption in security-sensitive or mission-critical
environments.

This section, therefore, proposes a methodology for defining general REST-security framework
components. It starts by developing a generic authentication scheme for REST messages. This security
concept marks an initial step towards a REST message security, which forms the vital foundation for
the general REST-security framework. However, before being able to design any security schemes for
REST, the specifics and constraints of the architectural style require to be addressed first.

The REST message elements as well as the resource identifier forming the uniform interface can
be implemented by different standards and are equally important for the message processing. Hence,
a REST-security scheme needs to consider them all in order to avoid otherwise possible vulnerabilities
(see Section 4.3). Such security specifications must be defined on the same abstraction layer as REST
itself, so that they can be applied to any concrete protocol instantiation in a methodical manner
(see Figure 8). To do so, a formal description of REST messages and an identification of security
relevant parts in such messages need to be at hand [28].

REST
Message	Security

REST-ful HTTP	
Message	Security

REST-ful CoAP
Message	Security

REST-ful X	
Message	Security

Figure 8. General REST message security and its instantiation to concrete REST-ful protocols.

Future Internet 2019, 11, 56 20 of 33

6.1. Formal Description of REST Messages

Since REST is constrained to the client-server model in conjunction with the request-response
model, it is always the client issuing a request message to which the server replies with a corresponding
response. The request message space is denoted by Rc and the response message space is referred to
as Rs respectively. The whole REST message space R is henceforth

R := Rc ∪ Rs. (1)

The meta-data space M is composed of the set of resource meta-data Mr, the set of resource
representation meta-data Mb and the set of control data Mc:

M := Mr ∪Mb ∪Mc. (2)

The control data set Mc consists of the set of request actions Mca, the set of response meanings
Mcm, the set of message parameterisation Mcp and the set of data to overwrite the default processing
of a message Mco:

Mc := Mca ∪Mcm ∪Mcp ∪Mco. (3)

A REST message r ∈ R consists of two parts: a header h containing meta-data and a body b
comprising a resource representation. With H denoting the header and B the body space, the structure
of a REST message is defined as

r := h||delimiter||b, {(r, h, b) : r ∈ R ∧ h ∈ H ∧ (b ∈ B ∨ b ∈ ∅)}, (4)

where delimiter is a set of characters separating the header from the body and || represents the
concatenation operation. Note, that the actual embodiment of the delimiter depends on the concrete
implementation of the uniform interface, i.e., the service protocol. In case of a binary protocol,
the delimiter set might even be empty. For the sake of readability but without the loss of generality,
the following explanations will focus on text-based protocols only, since these protocols include
additional challenges in terms of the ordering, normalization and separation of headers. To obtain an
according description for binary protocols, these aspects can simply be omitted.

A header h holds a subset Ṁ ⊂ M of the meta-data entities:

h :=

{
(Ṁ, i), if r ∈ Rc,

(Ṁ), if r ∈ Rs.
(5)

If h is part of a request message, it additionally includes a resource identifier i ∈ I, where I defines
the set of resource identifiers. The constitution of h can further be characterized by the following policy:

• A message r ∈ R comprising a resource representation must include at least the two resource
representation meta-data entities mbl ∈ Mb and mbt ∈ Mb describing the length and the media
type of the contained resource representation respectively.

• A request r ∈ Rc must contain at least one control data element mca ∈ Mca and one resource
identifier i describing the action and the target of the action respectively.

• A response r ∈ Rs must contain one control data element mcm ∈ Mcm expressing the meaning of
the response.

On the basis of this formal description, the following subsections introduce two generic schemes
for ensuring the authenticity, integrity and non-repudiation of REST messages.

Future Internet 2019, 11, 56 21 of 33

6.2. REST Message Authentication (REMA)

Following the introduced methodology and the results obtained from the related work analysis,
the general REST message authentication (REMA) can be instantiated to REST-ful protocols of any
kind (see Figure 9).

REST	
Message	AuthN

REST-ful HTTP	
Message	AuthN

REST-ful CoAP
Message	AuthN

REST-ful X	
Message	AuthN

Figure 9. General REST message authentication and its instantiation to concrete REST-ful protocols

In order to illustrate the methodology, a REST-ful HTTP message authentication (REHMA,
see Section 7.1) and a REST-ful CoAP message authentication (RECMA, see Section 7.2) are derived
from the general framework subsequently.

6.2.1. Message Parts to Be Authenticated

The listed headers in the policy of Section 6.1 are crucial for the intended message processing
and therefore need to be protected. In the following, the set of header entries containing the
security-relevant and to be protected headers is denoted as h̃. Note, that h̃ varies depending on
whether it is part of a request or response, the action of the request, the meaning of the response and
whether the message contains a resource representation or not. The variability of h̃ can be especially
substantiated by the request actions. Depending on the objective of the action, h̃ requires a different set
of meta-data.

The following rules extend the policy of Section 6.1 and define additional security-relevant and
mandatory headers to be authenticated and integrity protected for service protocols supporting CRUD
actions. The combined rules are henceforth denoted as the REMA policy.

• A read request must contain at least one resource representation meta-data element mbr ∈ Mb
describing the desired media type being requested. Moreover, this request must not include a
resource representation.

• A creation request must contain a resource representation.
• An update request must contain a complete or partial resource representation.
• A delete request does not require any additional prerequisite headers until further requirements.

Moreover, this request must not include a resource representation.

Further extension of the REMA policy in terms of additional security-relevant header entries
contained in h̃ are a matter of the technical instantiation of REST and the application domain. Based on
these abstract notations, a general signature generation and verification scheme for REST messages
can be defined.

6.2.2. REST Message Signature Generation

Algorithm 1 defines a general method for ensuring the authenticity and integrity of REST messages
by generating a digital signature over the body and security-vital header entries as defined above.
Note, that error conditions are not made explicit for readability reasons. Each error will cancel the
signature generation process with an according error message.

Future Internet 2019, 11, 56 22 of 33

Algorithm 1 Representational state transfer (REST) message signature generation [28].

Input: REST message r, description desc of the application-specific header entries to be signed,

signature generation key k
Output: Signature value sv, time-variant parameter tvp

1: b← getBody(r)
2: h← getHeader(r)
3: h̃← getTbsHeaders(h)
4: h̃← h̃‖getTbsHeaders(h, desc)
5: tvp← generateTimeVariantParameter()
6: tbs← tvp
7: i← 0
8: while i < |h̃| do

9: tbs← tbs‖delimiter‖normalize(h̃i)
10: i← i + 1
11: end while
12: tbs← tbs‖delimiter‖hash(b)
13: sv← sign(k, tbs)

As input, the signature generation algorithm requires a REST message r, a signature generation
key k and a description desc. The latter parameter contains application-specific headers, which are to
be appended to h̃. After obtaining the body b and the header h from the message r, the function
in line 3 checks by means of the REMA policy that all required header entries are included in
h and if so, constructs h̃ out of them. Then eventually specified additional headers in desc are
appended to h̃. In order to avoid replay attacks, the signature generation algorithm creates of a
fresh time-variant parameter tvp. This parameter is the first element to be assigned to the tbs variable,
which is gradually filled with the data to be signed. These two steps must not be omitted even when a
concrete instantiation of this scheme already includes a time-variant parameter in h̃, since between
message generation and signature generation might exist a considerable time spread. All headers
contained in h̃ are normalized and concatenated to tbs. In order to tie the resource representation b
to h̃ inducing the integrity of the conjunction of security-relevant header entries and body, it needs
to be appended to tbs as well. The resource representation b is therefore hashed by a cryptographic
hash function and the resulting hash value is attached to tbs. Note, that in case a message does have
an empty resource representation, a hash of an empty body is computed and added to tbs. The next
statement signs the crafted tbs with a signature generation key k. Algorithm 1 outputs the generated
signature value sv and the time-variant parameter tvp.

With these two outputs, an authentication control data element mcpa ∈ Mcp can be generated,
containing the signature algorithm name sig, the hash algorithm name hash, a key identifier kid,
the time-variant parameter tvp, the signature value sv and the presence of additional header entries
given by desc in the specified order. This control data element mcpa needs ultimately to be embedded
into the respective message r. Since resource representations can vary, mcpa must be integrated into the
header h of the message r in order to remain data format independent.

6.2.3. REST Message Signature Verification

Algorithm 2 specifies the signature verification procedure for REST messages signed by
Algorithm 1. The signature verification algorithm requires a signed REST message r as input and it
returns a boolean value expressing the signature validation result. From the signed message r the
required parts are extracted, including the message body b and the message header h. From h the
authentication control data header mcpa is obtained next containing the concatenated values sig, hash,
kid, tvp, sv and desc. After building h̃ in line 5, the next statement appends the additional header

Future Internet 2019, 11, 56 23 of 33

entries defined in desc to h̃ in order of appearance. Then the headers in h̃ are iterated in the same
manner—and especially the same order—as during the signature generation process to build tbs.
With tbs and the signature verification key identifier kid, the verification of the signature value sv can
be performed. The boolean verification result is assigned to the variable valid, which represents the
output of the signature verification procedure.

Algorithm 2 REST message signature verification [28].

Input: Signed REST message r
Output: Boolean signature verification result valid

1: b← getBody(r)
2: h← getHeader(r)
3: mcpa ← getAuthenticationControlData(h)
4: (sig, hash, kid, tvp, sv, desc)← split(mcpa)
5: h̃← getTbsHeaders(h)
6: h̃← h̃‖getTbsHeaders(h, desc)
7: tbs← tvp
8: i← 0
9: while i < |h̃| do

10: tbs← tbs‖delimiter‖normalize(h̃i)
11: i← i + 1
12: end while
13: tbs← tbs‖delimiter‖hash(b)
14: veri f y← getVeri f icationAlgorithm(sig)
15: valid← veri f y(kid, tbs, sv)

6.3. REST Message Confidentiality (REMC)

In layered systems such as those constrained by REST, confidentiality is of specific importance,
since intermediate systems otherwise have plain-text access to traversing messages and those systems
most commonly reside outside organizational boundaries of service providers and consumers.
To prevent intermediaries from accessing sensitive message parts, the encryption of REST messages is
a required foundational REST message security building block.

REMA ensures the authenticity, integrity and—when using asymmetric digital signatures in
conjunction with a suitable PKI—non-repudiation of REST-ful protocol messages. In order to approach
a comprehensive REST message security, the confidentiality must be taken into account as well.
Following the introduced methodology of this paper, a REST message confidentiality scheme has
to define a general policy and algorithms for protecting REST messages from unauthorized data
disclosure. Such a scheme then serves as a guideline for adapting and implementing confidentiality
services for concrete REST-ful technologies including HTTP, CoAP and prospective ones (see Figure 10).

REST	Message	
Confidentiality

REST-ful HTTP	Message	
Confidentiality

REST-ful CoAP Message	
Confidentiality

REST-ful X	Message	
Confidentiality

Figure 10. General REST message confidentiality and its instantiation to concrete REST-ful protocols.

Future Internet 2019, 11, 56 24 of 33

In contrast to REMA, we do not specify the complete REMC framework, as this is not required
to prove the proposed concept. REMA is sufficient and more suitable for this purpose, since there is
much more related work available that can be used for evaluation. Still, we want to briefly discuss the
requirements and challenges REST message confidentiality framework needs to tackle.

Encrypting the whole REST message—so that only the endpoints can read and interpret the
intention of it—does not conform with the self-descriptive messages and layered systems constraint,
though. As mentioned before, the both principles require that the semantics of REST messages have
to be visible to intermediaries for enabling intermediate processing [1]. This means that the key
challenge of a REST message confidentiality scheme is to shield REST message from unauthorized data
disclosure while retaining the self-descriptiveness for endpoints and authorized intermediate systems.
Hence, distinct message elements, which are required for a particular intermediary in order to render
the message self-describing, must remain accessible for this respective intermediary. Consequently,
a general policy for encrypting REST messages need to consider and specify what message parts are
required to be accessible for which class of intermediaries.

This is especially true for caches, which must be able to read required message elements in order
to store responses. As cacheability represents one of the core REST constraints for ensuring scalability,
encrypted REST messages must therefore still provide the option to be cacheable. This aspect is,
e.g., neglected by OSCORE [59] and Lee et al. [57,58]. The first approach does not consider cacheability
of messages protected by OSCORE. The latter mechanism encrypts a REST message as a whole
inducing so that an intermediate cache system is not able to interpret and store the message.

The body of a REST message is special in this context. In some cases it may contain a resource
representation in others it does not. As XML, JSON and CBOR [62] are prevalent data formats for
the resource representation in REST-based service systems, such a resource representation might
already been encrypted by an according data encryption technology, such as XML encryption [21],
JSON web encryption [63] and CBOR encryption [64,65] respectively. Independent of an existing
application-controlled resource representation encryption, the REST layer needs to incorporate own
mechanisms for ensuring the confidentiality of the body. This is especially important for resource
representations which do not include an encryption scheme such as HTML [66], YAML [67] or CSV [68].
As discussed before, the access to the body can then be granted to classes of intermediaries requiring it.

All these aspects will be elaborated in future work in order to develop a REST message
confidentiality scheme that is in conformance with the architectural principles and constraints of
REST. Combining such a REST-ful message confidentiality with the introduced REST-ful message
authentication provides the fundamental layer of the REST-Security stack depicted in Figure 5.

7. Implementation of REST Message Authentication

To proof the proposed conceptual approach, we introduce two distinct instantiations of the general
REST message authentication framework REMA, one for HTTP (see Section 7.1) and one for CoAP
(see Section 7.2). Both concrete REST-ful message authentication schemes are intended to evaluate
the coherent security construction in both distinct protocols and the robustness against the observed
vulnerabilities contained in the current state of the art.

7.1. REST-Ful HTTP Message Authentication (REHMA)

This section introduces the REST-ful HTTP instantiation of REMA denoted as REST-ful HTTP
message authentication (REHMA). The following table emphasizes the instantiation of the generic REST
message signature generation algorithm of Lo Iacono and Nguyen [28] as presented in Section 6.2.2 for
HTTP requests and responses. This implementation uses string concatenation to build the string to be
signed (tbs), which consists of a time-variant parameter (tvp), security-relevant header entries, and the
hash of the body. Note that for the specific instantiation to HTTP, the delimiter becomes the newline
character ‘\n’ and the binary hash value needs to be text-encoded by making use of a Base64URL
transformation [69].

Future Internet 2019, 11, 56 25 of 33

tbs string template for HTTP request tbs string template for HTTP response
tvp + “\n” +
UpperCase(Method) + “\n” +
RequestTarget + “\n” +
UpperCase(Version) + “\n” +
LowerCase(Header0) + “\n” +
...
LowerCase(HeaderN) + “\n” +
Base64URL(hash(Body))

tvp + “\n” +
UpperCase(Version) + “\n” +
StatusCode + “\n” +
LowerCase(Header0) + “\n” +
LowerCase(Header1) + “\n” +
...
LowerCase(HeaderN) + “\n” +
Base64URL(hash(Body))

Assume, that the following example request and response messages require to be authenticated.

Example HTTP request message Example HTTP response message
GET /courses HTTP/1.1
Host: example.org
Accept: application/json
Connection: keep-alive
Cache-control: max-age=3600

HTTP/1.1 200 OK
Content-length: 19
Content-type: application/json
Server: Apache
Connection: keep-alive
Cache-control: max-age=3600
Transfer-encoding: gzip

{“REST”:“Security”}

Based on the definitions, rules and policies specified in Lo Iacono and Nguyen [28] and the
templates shown in the previous table, the tbs strings are constructed for the request message as shown
in the left column of the following table respectively for the response message as shown on the right:

tbs string of example HTTP request message tbs string of example HTTP response message
2014-11-21T15:26:43.483Z
GET
/courses
HTTP/1.1
application/json
max-age=3600
keep-alive
example.org
47DEQpj8HBSa...km5NMpJWZG3hSuFU

2014-11-21T15:26:45.351Z
HTTP/1.1
200
max-age=3600
keep-alive
19
application/json
max-age=3600
gzip
mIxp6LC6E2cl...zHQQBHU_PI9zWBG8

The elements of the HTTP start line of the request and response respectively are added to tbs
according to their predefined positions. The security-relevant header values are concatenated in
alphabetical order of the header names. Note, that the construction of tbs does not include the Server
header, since this meta-data is—from an authenticity viewpoint—not a crucial information for the
message processing.

The next step encodes the constructed tbs to UTF8 and signs the string with a key k. Since header
entries in HTTP must be text, a transformation of the binary signature value to a text-based equivalent
is required. This implementation uses a URL-safe Base64 transformation.

sv = Base64URL(sign(k, UTF8(tbs)))

The final step integrates the resulting text-encoded signature value sv along with the
corresponding signature meta-data to the newly defined signature header.

Authenticated example HTTP request Authenticated example HTTP response
GET /courses HTTP/1.1
Host: example.org
Accept: application/json
Connection: keep-alive
Cache-control: max-age=3600
Signature: sig=RSA/SHA256,
↪→hash=SHA256,
↪→kid=https://myid.org/cert,
↪→tvp=2014-11-21T15:26:43.483Z,
↪→addHeaders=null,
↪→sigValue=<sv>

HTTP/1.1 200 OK
Content-length: 19
Content-Type: application/json
Server: Apache
Connection: keep-alive
Cache-control: max-age=3600
Signature: sig=RSA/SHA256,
↪→hash=SHA256,
↪→kid=https://example.org/crt,
↪→tvp=2014-11-21T15:26:45.351Z,
↪→addHeaders=null,
↪→sigValue=<sv>

{“REST”:“Security”}

Future Internet 2019, 11, 56 26 of 33

Since both messages do not consider additional as well as application-specific headers to be
protected by the signature, the addHeaders parameter within the Signature header, contains the value
null. If further headers to be signed are required, a list containing the header names separated by a
semicolon must be included. REHMA protects all HTTP messages against the attack vectors of Table 1.
A Java implementation of REHMA is available at: https://das.th-koeln.de/developments/jrehma.

7.2. REST-Ful CoAP Message Authentication (RECMA)

This section introduces the REST-ful CoAP instantiation of REMA denoted as REST-ful CoAP
Message Authentication (RECMA). The following table shows the adoption of the REST-ful message
signature algorithm defined in Section 6.2.2 for CoAP. It contains two templates, each constructing a
byte concatenation (symbolized by ‖) of a sequence of all security-relevant message elements including
a time-variant parameter (tvp). The resulting concatenation is transformed into a byte array that is
the tbs variable for CoAP. The implementation considers signing request and response messages as
well as acknowledgment (T = 0 × 02) and reset (T = 0 × 03) messages. The template contained in the
left column describes the construction rules of tbs for requests as well as responses and the template
contained in the right column defines the construction of tbs for reset and acknowledgment messages.

tbs constructing template for CoAP request and response tbs constructing template for CoAP ACK and RST
tvp
‖Version
‖Type
‖TokenLength
‖Code
‖MessageID
‖Token
‖Options0
...
‖OptionsN
‖hash(Body)

tvp
‖Version
‖Type
‖TokenLength
‖Code
‖MessageID

Assume that the following two example messages require to be authenticated. The message on
the right is a POST request represented by the code value 0 × 02 (C = 0 × 02), which requires a
confirmation by the server, whether the message has successfully been received. Confirmable messages
are denoted by the message type value 0 × 00 (T = 0 × 00). Moreover, the example request contains
the protocol version number 0 × 01 (V = 0 × 01), the message identifier 0 × 01 (MID = 0 × 01) and
the token value 0 × 0A that has a length of one byte (TKL = 0 × 01). The left example message is
an acknowledgement message for the POST request specified on the left. It confirms the reception
(T = 0 × 02) of a request identified by MID = 0 × 01. The delimiter to separate the header form the
body in all CoAP messages is 0 × FF.

Example CoAP request message Example CoAP ACK message
V=0x01,T=0x00,TKL=0x01,C=0x02,MID=0x01
Token: 0x0A
Uri-path: 0x6974656D73 # items
Content-format: 0x32
Payload-length: 0xF
0xFF
{“item”:“pork”}

V=0x01,T=0x02,TKL=0x00,C=0x00,MID=0x01
0xFF

According to the previous table and the requirements defined by Nguyen and Lo Iacono [31] and
Nguyen and Lo Iacono [70], the tbs for both messages are constructed as follows:

https://das.th-koeln.de/developments/jrehma

Future Internet 2019, 11, 56 27 of 33

tbs of example CoAP request message tbs of example CoAP ACK message
0x14D14486B51 #tvp
‖0x01 #Version
‖0x00 #Type
‖0x01 #TokenLength
‖0x02 #Code
‖0x01 #Message-ID
‖0x0A #Token
‖0x00 #Uri-Host(3)
‖0x00 #Uri-Port(7)
‖hash(0x6974656D73) #Uri-Path(11)
‖0x32 #Content-Format(12)
‖0x00 #Max-Age(14)
‖0x00 #Uri-Query(15)
‖0x0F #Payload-Length (65001)
‖hash(UTF8({“item”:“pork”})) #Body

0x14D14486B57 #tvp
‖0x01 #Version
‖0x02 #Type
‖0x00 #TokenLength
‖0x00 #Code
‖0x01 #Message-ID

The concatenation order of the CoAP start header items and the token follows the order of the
predefined positions stated in the CoAP specification. The CoAP options are added in numerical order
of the option numbers. Once the construction of tbs for the two messages is finished, it is signed with
the signature key k.

sv = sign(k, tbs)

The last step incorporates the resulting signature value sv and the corresponding signature
meta-data to newly introduced CoAP options, which are signature-value, signature-algorithm,
hash-algorithm, TVP and a key-ID.

Signed CoAP request message Signed CoAP ACK message
V=0x01,T=0x00,TKL=0x01,C=0x02,MID=0x01
Token: 0x0A
Uri-path: “items”
Content-format: 0x32
Payload-length: 0x0F
Signature-algorithm: 0x01
Hash-algorithm: 0x01
TVP: 0x14D14486B51
Signature-value: <sv>
Key-ID: <kid>
0xFF
{“item”:“pork”}

V=0x01,T=0x02,TKL=0x00,C=0x00,MID=0x01
Signature-algorithm: 0x01
Hash-algorithm: 0x01
TVP: 0x14D14486B57
Signature-value: <sv>
Key-Id: <kid>
0xFF

Both messages use numbers to declare the signature and hash algorithm name. Here, the number
0 × 01 within the signature-algorithm option represents an HMAC-SHA256 signature and the same
number defines a SHA256 hash for the hash-algorithm option. A description on the additional and
application-specific header entries is not present in both messages, since an acknowledgment must
not contain further options besides the options for the signature description and the request does not
intend to include additional header entries.

As the CoAP standard does not define a meta-data element for defining the length of the body,
RECMA uses the payload-length option to declare the size of the body [71]. Even though this option
is not a standardized header, i.e., it is only a proposed draft specification, it is still considered in
the authentication process of RECMA to detect attacks that try to forge the body similar to attack
four in Table 1. Moreover, RECMA utilizes this option to comply with the self-descriptive messages
constraint that requires to be transport independent [1]. RECMA foils all attack vectors presented by
Nguyen and Lo Iacono [31]. A Java implementation of RECMA is available at: https://das.th-koeln.
de/developments/jrecma.

8. Evaluation and Discussion

The proposed REST message authentication scheme and the requirements defined for
implementing REST message confidentiality are the first steps towards a general REST-security
framework. The REMA-policy defines mandatory message elements for requests and responses,
which need to be available in order to render a message self-descriptive. As these message entities

https://das.th-koeln.de/developments/jrecma
https://das.th-koeln.de/developments/jrecma

Future Internet 2019, 11, 56 28 of 33

are mandatory, they are also security-critical. Hence message elements defined in the REMA-policy
must be signed in order to be protected against malicious modifications. REHMA [28] as well as
RECMA [31] apply the REMA-policy as a security-baseline for identifying corresponding mandatory
and security-critical HTTP and CoAP message elements respectively. Moreover, the policy on the to
be signed message elements in REHMA and RECMA are extended by protocol-specific mandatory
header entries which are required for the self-descriptiveness of HTTP and CoAP messages.

The concrete adoption of the REST message authentication scheme in HTTP and CoAP are
therefore not vulnerable to the attacks defined in Table 1 as well as the threats detected by the related
work analysis, since all essential and security-critical message elements are signed (see Table 4).
Note that the to be signed message elements defined in REMA, REHMA and RECMA protect against
attacks which are generally-valid for all REST-based applications implemented with HTTP, CoAP
other REST-based protocols. If another REST-based protocol or a distinct application domain utilize
additional security-critical header entries, these elements must be added either to the policy of the
concrete adoption or to the list of application-specific header entries included in desc in order to thwart
protocol- or application-specific man-in-the-middle attacks.

Table 4 illustrates the message elements signed by REHMA and RECMA. As the REMA-Policy
as well as the corresponding adoptions in REHMA and RECMA cover all the to be signed header in
order to avoid the documented vulnerabilities (see Section 4, Tables 2 and 3), it can also be utilized
as an analytical framework for the evaluation and enhancement of related work in HTTP/CoAP
signature schemes. For instance, REHMA may serve as a guideline for adding the missing to be
signed message elements of the HTTP signature schemes required by the cloud storage services of
Amazon [49], Microsoft [48], Google [46] and HP [47]. The signature schemes of these cloud storage
providers will benefit from the security specification of REHMA, as it will increase the level of security.
This is especially important as many companies use the cloud storage services of Amazon, Microsoft,
Google and HP in production.

This paper shows that a general REST-security scheme builds the basis for generally-valid
policies and requirements. By means of this common foundation, REST-ful security technologies
can be implemented based on the same security-baseline. This methodology has been conducted
for the REST message authentication. The implementation of REMA in HTTP and CoAP shows an
increasement of the level of security, as the documented vulnerabilities can be avoided. Other or future
REST-based protocols such as RACS [11] can use the same methodology for defining security schemes.
An adoption of REHMA in RACS is proposed in [70]. The reader is henceforth referred to this paper
for further details.

Future Internet 2019, 11, 56 29 of 33

Table 4. To be signed message elements by REST-ful HTTP message authentication (REHMA) and
REST-ful CoAP message authentication (RECMA).

Message Elements to Be Signed

REHMA [28]

Request Response

C R U D C R U D

URI - - - -
Version number
Method - - - -
Status code - - - -
Connection
Cache-control
Location - - - - - - -
Accept - - - - - -
Content-type - - - -
Content-length - - - -
Transfer-encoding - - - -
Host - - - - - -
Hash of body
Time variant parameter

Message Elements to Be Signed

RECMA [31]

Request Response

C R U D C R U D

Version number
Type
Token length
Code (method code, response code)
Message ID
Token
Uri-host, Uri-port, Uri-path - - - -
Max-age
Location-path, location-query - - - - - - - -
Accept - - - -
Content-format
Body length (payload-length)
Hash of body
Time variant parameter

Legend: mandatory signed, # not signed, G# optionally signed, � not specified, - not required.

9. Conclusions and Outlook

REST is an established approach for designing distributed applications and service systems that
scale at large. This is especially true for the web while other domains are following likewise. At the
same time, the areas of adoption increase in criticality, making the need for appropriate security
measures a necessity. The application of transport-oriented security is by far not sufficient and needs
to be supplemented by adjacent message-oriented security mechanisms. In the latter respect, REST
behaves very specific in comparison to existing approaches such as SOAP in the Web Services domain.
This renders a straightforward adoption of available schemes and technologies from this domain
infeasible. This is due to REST being an abstract architectural style on the one hand, that can be applied
to many distinct technologies and environments. On the other hand, the particularities of REST
demand for tailored approaches and schemes in order to not contradict with the REST constraints.

The introduced methodology marks an important step towards a structured and controlled
procedure for developing appropriate security means for REST-based service systems and applications.

Future Internet 2019, 11, 56 30 of 33

The practical applicability of the introduced methodology has been proven by an adoption of it to
authentication. The introduced generic REST message authentication scheme has then been instantiated
to the REST-ful protocols HTTP and CoAP. A comparison with the current state of the art revealed
that the available technologies are inhomogeneous and contain many vulnerabilities or do not comply
with the REST constraints. This further emphasizes the need for a general and methodical approach
towards REST-security as has been proposed by this paper. Finally, an initial attempt towards REST
message confidentiality is introduced discussing requirements and specifics to be considered while
developing the complete picture of a general REST message security framework.

More research and development efforts in REST-ful message security are required in order to reach
the necessary understanding of an adequate REST-security defined at the proper abstraction layer while
considering the specifics of REST. This is especially essential, since message security for REST-based
service systems builds the foundation of many high-level security components (see Figure 5). Moreover,
a stable and robust REST-security cannot only set the scene for a mature service security stack, but
it can also enhance available REST-based security technologies including OAuth [29] and OpenID
connect [72], which still suffer from many vulnerabilities [73,74].

Future work will focus on elaborating the REST-security framework in the light of aspects such as
performance and scalability. This includes the cacheablity of protected REST-ful messages. Moreover,
concepts that enable intermediate systems transforming signed and encrypted REST messages will be
studied as well. This is an important feature in a REST-ful architecture, since transforming the content
of a message is an essential property of the layered system constraint.

Author Contributions: Conceptualization, L.L.; methodology, L.L. and H.V.N.; software, H.V.N.; formal Analysis,
H.V.N.; investigation, H.V.N.; data curation, H.V.N.; writing—original draft preparation, L.L. and H.V.N. and
P.L.G.; writing—review and editing, L.L. and P.L.G.; visualization, H.V.N. and P.L.G.; supervision, L.L.; project
administration, L.L.; funding acquisition, L.L.

Funding: This work has been funded by the German Federal Ministry of Education and Research within the
funding program “Forschung an Fachhochschulen” (contract no. 13FH016IX6).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fielding, R. Architectural Styles and the Design of Network-Based Software Architectures. Ph.D. Thesis,
University of California, Irvine, CA, USA, 2000.

2. Fielding, R.; Gettys, J.; Mogul, J.; Frystyk, H.; Masinter, L.; Leach, P.; Berners-Lee, T. Hypertext Transfer
Protocol—HTTP/1.1; RFC 2616; IETF: Fremont, CA, USA, 1999.

3. Dierks, T.; Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.2; RFC 5246; IETF: Fremont,
CA, USA, 2008.

4. Carpenter, B.; Brim, S. Middleboxes: Taxonomy and Issues; RFC 3234; IETF: Fremont, CA, USA, 2002.
5. Durumeric, Z.; Ma, Z.; Springall, D.; Barnes, R.; Sullivan, N.; Bursztein, E.; Bailey, M.; Halderman, J.A.;

Paxson, V. The Security Impact of HTTPS Interception. In Proceedings of the 24th Network and Distributed
Systems Symposium (NDSS), San Diego, CA, USA, 26 February–1 March 2017.

6. Feiler, P.; Sullivan, K.; Wallnau, K.; Gabriel, R.; Goodenough, J.; Linger, R.; Longstaff, T.; Kazman, R.; Klein,
M.; Northrop, L.; et al. Ultra-Large-Scale Systems: The Software Challenge of the Future; Software Engineering
Institute, Carnegie Mellon University: Pittsburgh, PA, USA, 2006.

7. Nadalin, A.; Kaler, C.; Monzillo, R.; Phillip, H.B. Web Services Security: SOAP Message Security 1.1; OASIS
Standard: Burlington, MA, USA, 2006.

8. Gudgin, M.; Hadley, M.; Mendelsohn, N.; Moreau, J.J.; Nielsen, H.F.; Karmarkar, A.; Lafon, Y. SOAP Version
1.2 Part 1: Messaging Framework, 2nd ed.; Recommendation; W3C: Cambridge, MA, USA, 2007.

9. Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP); RFC 7252 IETF: Fremont,
CA, USA, 2014.

10. Rescorla, E.; Modadugu, N. Datagram Transport Layer Security Version 1.2; RFC 6347 IETF: Fremont,
CA, USA, 2012.

11. Urien, P. Remote APDU Call Secure (RACS); Internet-Draft; IETF: Fremont, CA, USA, 2018.

Future Internet 2019, 11, 56 31 of 33

12. Berners-Lee, T.; Fielding, R.; Masinter, L. Uniform Resource Identifier (URI): Generic Syntax; Request for
Comments 3986; IETF: Fremont, CA, USA, 2005.

13. Gorski, P.L.; Lo Iacono, L.; Nguyen, H.V.; Torkian, D.B. Service Security Revisited. In Proceedings of the 11th
IEEE International Conference on Services Computing (SCC), Anchorage, AK, USA, 27 June–2 July 2014.

14. Lo Iacono, L.; Nguyen, H.V. Towards Conformance Testing of REST-based Web Services. In Proceedings of
the 11th International Conference on Web Information Systems and Technologies (WEBIST), Lisbon, Portugal,
20–22 May 2015.

15. Mao, Y.; Yong, L.; Bo, L.; Depeng, J.; Sheng, C. Service-oriented 5G network architecture: An end-to-end
software defining approach. Int. J. Commun. Syst. 2016, 29, 1645–1657. doi:10.1002/dac.2941. [CrossRef]

16. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805.
[CrossRef]

17. Bormann, C.; Castellani, A.; Shelby, Z. CoAP: An Application Protocol for Billions of Tiny Internet Nodes.
IEEE Internet Comput. 2012, 16, 62–67. [CrossRef]

18. Kanneganti, R.; Chodavarapu, P. Soa Security; Manning Publications Co.: Greenwich, CT, USA, 2008.
19. Gorski, P.L.; Lo Iacono, L.; Nguyen, H.V.; Torkian, D.B. SOA-Readiness of REST. In Proceedings

of the 3rd European Conference on Service-Oriented and Cloud Computing (ESOCC), Como, Italy,
12–14 September 2014.

20. Bray, T.; Paoli, J.; Sperberg-McQueen, C.M.; Maler, E.; Yergeau, F. Extensible Markup Language (XML) 1.0,
5th ed.; Recommendation; W3C: Cambridge, MA, USA, 2008.

21. Imamura, T.; Dillaway, B.; Simon, E.; Kelvin, Y.; Nyström, M. XML Encryption Syntax and Processing Version
1.1; Recommendation; W3C: Cambridge, MA, USA, 2013.

22. Bartel, M.; Boyer, J.; Fox, B.; LaMacchia, B.; Simon, E. XML Signature Syntax and Processing, 2nd ed.;
Recommendation; W3C: Cambridge, MA, USA, 2008.

23. Nadalin, A.; Goodner, M.; Gudgin, M.; Barbir, A.; Granqvist, H. WS-Trust 1.3; OASIS Standard: Burlington,
MA, USA, 2007.

24. Goodner, M.; Nadalin, A. Web Services Federation Language (WS-Federation) Version 1.2; OASIS Standard:
Burlington, MA, USA, 2009.

25. Nadalin, A.; Goodner, M.; Gudgin, M.; Turner, D.; Barbir, A.; Granqvist, H. WS-SecurityPolicy 1.3;
OASIS Standard: Burlington, MA, USA, 2012.

26. Nadalin, A.; Goodner, M.; Gudgin, M.; Barbir, A.; Granqvist, H. WS-SecureConversation 1.4; OASIS Standard:
Burlington, MA, USA, 2009.

27. Rosenberg, J.; Remy, D. Securing Web Services with WS-Security: Demystifying WS-Security, WS-Policy, SAML,
XML Signature, and XML Encryption; Pearson Higher Education: San Francisco, CA, USA, 2004.

28. Lo Iacono, L.; Nguyen, H.V. Authentication Scheme for REST. In Proceedings of the International Conference
on Future Network Systems and Security (FNSS), Paris, France, 11–13 June 2015; Springer International
Publishing: New York, NY, USA, 2015.

29. Hardt, D. The OAuth 2.0 Authorization Framework; RFC 6749; IETF: Fremont, CA, USA, 2012.
30. Hedberg, R.; Solberg, A.; Gulliksson, S.; Jones, M.; Bradley, J. OpenID Connect Federation 1.0—Draft 07; Draft;

OpenID: San Ramon, CA, USA, 2019.
31. Nguyen, H.V.; Lo Iacono, L. REST-ful CoAP Message Authentication. In Proceedings of the International

Workshop on Secure Internet of Things (SIoT), in Conjunction with the European Symposium on Research
in Computer Security (ESORICS), Vienna, Austria, 21–25 September 2015.

32. Prokhorenko, V.; Choo, K.K.R.; Ashman, H. Web application protection techniques: A taxonomy. J. Netw.
Comput. Appl. 2016, 60, 95–112. [CrossRef]

33. Reschke, J. The ‘Basic’ HTTP Authentication Scheme; RFC 7617; IETF: Fremont, CA, USA, 2015.
34. Shekh-Yusef, R.; Ahrens, D.; Bremer, S. HTTP Digest Access Authentication; RFC 7616; IETF: Fremont,

CA, USA, 2015.
35. Nguyen, H.V.; Tolsdorf, J.; Lo Iacono, L. On the Security Expressiveness of REST-based API Definition

Languages. In Proceedings of the 14th International Conference On Trust, Privacy and Security In Digital
Business (TrustBus), Lyon, France, 30–31 August 2017.

36. Farrell, S.; Hoffman, P.; Thomas, M. HTTP Origin-Bound Authentication (HOBA); Experimental RFC 7486;
IETF: Fremont, CA, USA, 2015.

https://doi.org/10.1002/dac.2941
http://dx.doi.org/10.1002/dac.2941
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1109/MIC.2012.29
http://dx.doi.org/10.1016/j.jnca.2015.11.017

Future Internet 2019, 11, 56 32 of 33

37. Melnikov, A. Salted Challenge Response HTTP Authentication Mechanism; Experimental RFC 7804; IETF:
Fremont, CA, USA, 2016.

38. Oiwa, Y.; Takagi, H.; Maeda, K.; Hayashi, T.; Ioku, Y. Mutual Authentication Protocol for HTTP;
Experimental RFC 8120; IETF: Fremont, CA, USA, 2017.

39. Oiwa, Y.; Takagi, H.; Maeda, K.; Hayashi, T.; Ioku, Y. Mutual Authentication Protocol for HTTP: Cryptographic
Algorithms Based on the Key Agreement Mechanism 3 (KAM3); Experimental RFC 8121; IETF: Fremont,
CA, USA, 2017.

40. De Backere, F.; Hanssens, B.; Heynssens, R.; Houthooft, R.; Zuliani, A.; Verstichel, S.; Dhoedt, B.; De Turck,
F. Design of a security mechanism for RESTful Web Service communication through mobile clients.
In Proceedings of the IEEE Network Operations and Management Symposium (NOMS), Krakow, Poland,
5–8 May 2014; pp. 1–6.

41. Peng, D.; Li, C.; Huo, H. An extended UsernameToken-based approach for REST-style Web Service Security
Authentication. In Proceedings of the 2nd IEEE International Conference on Computer Science and
Information Technology, Windsor, ON, Canada, 7–9 June 2009. doi:10.1109/ICCSIT.2009.5234805.

42. Brickely, D.; Miller, L. FOAF Vocabulary Specification 0.99; Technical Report; Namespace: London, UK, 2014.
43. Story, H.; Harbulot, B.; Jacobi, I.; Jones, M. FOAF+SSL: RESTful Authentication for the Social Web.

In Proceedings of the 6th European Semantic Web Conference, Heraklion, Crete, Greece, 31 May–4 June
2009.

44. Story, H.; Hausenblas, M. WebID Specifications; W3C Editor’s Draft; W3C: Cambridge, MA, USA, 2013.
45. Khare, R.; Rifkin, A. Weaving a Web of Trust. World Wide Web J. 1997, 2, 77–112.
46. Google. Migrating from Amazon S3 to Google Cloud Storage; Google Inc.: Mountain View, CA, USA, 2017.
47. Hewlett Packard. HP Helion Public Cloud Object Storage API Specification; Hewlett Packard: Waltham,

MA, USA, 2014.
48. Microsoft. Authentication for the Azure Storage Services; Microsoft Research: Redmond, WA, USA, 2017.
49. Amazon. Signing AWS Requests By Using Signature Version 4; Amazon Web Service: Seattle, WA, USA, 2017.
50. Cavage, M.; Sporny, M. Signing HTTP Messages; Internet-Draft, IETF: Fremont, CA, USA, 2014.
51. Hammer-Lahav, E. The OAuth 1.0 Protocol; RFC 5849; IETF: Fremont, CA, USA, 2010.
52. Richer, J.; Mills, W.; Tschofenig, H. OAuth 2.0 Message Authentication Code (MAC) Tokens; Internet-Draft; IETF:

Fremont, CA, USA, 2014.
53. Richer, J.; Bradley, J.; Tschofenig, H. A Method for Signing an HTTP Requests for OAuth; Internet-Draft; IETF:

Fremont, CA, USA, 2014.
54. Jones, M.; Bradley, J.; Sakimura, N. JSON Web Signature (JWS); RFC 7515; IETF: Fremont, CA, USA, 2015.
55. Crockford, D. The Application/Json Media Type for JavaScript Object Notation (JSON); RFC 4627; IETF: Fremont,

CA, USA, 2006.
56. Serme, G.; De Oliveira, A.S.; Massiera, J.; Roudier, Y. Enabling message security for RESTful services.

In Proceedings of the 19th IEEE International Conference on Web Services (ICWS), Honolulu, HI, USA,
24–29 June 2012.

57. Lee, S.; Jo, J.Y.; Kim, Y. A Method for Secure RESTful Web Service. In Proceedings of the IEEE/ACIS
14th International Conference on Computer and Information Science (ICIS), Las Vegas, NV, USA,
28 June–1 July 2015.

58. Lee, S.; Jo, J.Y.; Kim, Y. Authentication system for stateless RESTful Web service. J. Comput. Methods Sci. Eng.
2017. 17, 21–34. [CrossRef]

59. Selander, G.; Mattson, J.; Palombini, F.; Seitz, L. Object Security for Constrained RESTful Environments
(OSCORE); Internet-Draft; IETF: Fremont, CA, USA, 2018.

60. Granjal, J.; Monteiro, E.; Silva, J.S. Application-Layer Security for the WoT: Extending CoAP to Support
End-to-End Message Security for Internet-Integrated Sensing Applications. In Proceedings of the
11th International Conference on Wired and Wireless Internet Communications, St. Petersburg, Russia,
5–7 June 2013.

61. Graf, S.; Zholudev, V.; Lewandowski, L.; Waldvogel, M. Hecate, Managing Authorization with RESTful
XML. In Proceedings of the 2nd International Workshop on RESTful Design (WS-REST), Hyderabad, India,
28 March 2011; doi:10.1145/1967428.1967442. [CrossRef]

62. Bormann, C.; Hoffman, P. Concise Binary Object Representation (CBOR); RFC 7049; IETF: Fremont,
CA, USA, 2013.

https://doi.org/10.1109/ICCSIT.2009.5234805
http://dx.doi.org/10.3233/JCM-160677
https://doi.org/10.1145/1967428.1967442
http://dx.doi.org/10.1145/1967428.1967442

Future Internet 2019, 11, 56 33 of 33

63. Jones, M.; Rescorla, E.; Hildebrand, J. JSON Web Encryption (JWE); Internet-draft, IETF: Fremont,
CA, USA, 2014.

64. Bormann, C. Constrained Object Signing and Encryption (COSE); Internet-Draft; IETF: Fremont, CA, USA, 2014.
65. Schaad, J. CBOR Encoded Message Syntax; Internet-Draft; IETF: Fremont, CA, USA, 2015.
66. Hickson, I.; Berjon, R.; Faulkner, S.; Leithead, T.; Navara, E.D.; Pfeiffer, S. HTML5—A Vocabulary and

Associated APIs for HTML and XHTML. 2014. Available online: http://www.w3.org/TR/html5/
(accessed on 19 December 2018).

67. Ben-Kiki, O.; Evans, C.; dot Net, I. YAML Ain’t Markup Language Version 1.2. Technical Report. 2009.
Available online: http://www.yaml.org/spec/1.2/spec.html (accessed on 19 December 2018).

68. Shafranovich, T. Common Format and MIME Type for Comma-Separated Values (CSV) Files; RFC 4180; IETF:
Fremont, CA, USA, 2005.

69. Josefsson, S. The Base16, Base32, and Base64 Data Encodings; RFC 4648; IETF: Fremont, CA, USA, 2006.
70. Nguyen, H.V.; Lo Iacono, L. RESTful IoT Authentication Protocols. In Mobile Security and Privacy—Advances,

Challenges and Future Research Directions, 1st ed.; Au, M.H., Choo, K.K.R., Eds.; Advanced Topics in
Information Security; Elsevier/Syngress: Boston, MA, USA, 2016; pp. 217–234.

71. Li, K.; Sun, R. CoAP Payload-Length Option Extension; Internet-Draft; IETF: Fremont, CA, USA, 2014.
72. Sakimura, N.; Bradley, J.; Jones, M.; de Medeiros, B.; Mortimore, C. OpenID Connect Core 1.0; Specification;

OpenID Foundation: San Ramon, CA, USA, 2014.
73. Yang, F.; Manoharan, S. A security analysis of the OAuth protocol. In Proceedings of the IEEE Pacific

Rim Conference on Communications, Computers and Signal Processing (PACRIM), Victoria, BC, Canada,
27–29 August 2013.

74. Sun, S.T.; Beznosov, K. The devil is in the (implementation) details: an empirical analysis of OAuth SSO
systems. In Proceedings of the 19th ACM Conference on Computer and Communications Security (CCS),
Raleigh, NC, USA, 16–18 October 2012.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.w3.org/TR/html5/
http://www.yaml.org/spec/1.2/spec.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	REST Foundations
	Methodology
	REST-Security Demands and Specifics
	SOAP-Based Web Services Security Stack
	REST-Ful Services Security Stack
	REST-Security Specifics

	Related Work Analysis
	HTTP Basic and HTTP Digest Authentication
	API-Key
	HOBA
	HTTP SCRAM
	Mutual Authentication Protocol for HTTP
	De Backere et al.
	Peng et al.
	FOAF + SSL/WebID
	Google, Hewlett Packard and Microsoft
	Amazon
	Signing HTTP Messages
	OAuth
	Serme et al.
	Lee et al.
	OSCORE
	Granjal et al.
	Consolidated Review of Analysis Results

	Towards a General REST-Security Framework
	Formal Description of REST Messages
	REST Message Authentication (REMA)
	Message Parts to Be Authenticated
	REST Message Signature Generation
	REST Message Signature Verification

	REST Message Confidentiality (REMC)

	Implementation of REST Message Authentication
	REST-Ful HTTP Message Authentication (REHMA)
	REST-Ful CoAP Message Authentication (RECMA)

	Evaluation and Discussion
	Conclusions and Outlook
	References

