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Abstract: Software Defined Networks (SDN) and Mobile Edge Computing (MEC), capable of
dynamically managing and satisfying the end-users computing demands, have emerged as key
enabling technologies of 5G networks. In this paper, the joint problem of MEC server selection by
the end-users and their optimal data offloading, as well as the optimal price setting by the MEC
servers is studied in a multiple MEC servers and multiple end-users environment. The flexibility
and programmability offered by the SDN technology enables the realistic implementation of the
proposed framework. Initially, an SDN controller executes a reinforcement learning framework based
on the theory of stochastic learning automata towards enabling the end-users to select a MEC server
to offload their data. The discount offered by the MEC server, its congestion and its penetration in
terms of serving end-users’ computing tasks, and its announced pricing for its computing services are
considered in the overall MEC selection process. To determine the end-users’ data offloading portion
to the selected MEC server, a non-cooperative game among the end-users of each server is formulated
and the existence and uniqueness of the corresponding Nash Equilibrium is shown. An optimization
problem of maximizing the MEC servers’ profit is formulated and solved to determine the MEC
servers’ optimal pricing with respect to their offered computing services and the received offloaded
data. To realize the proposed framework, an iterative and low-complexity algorithm is introduced
and designed. The performance of the proposed approach was evaluated through modeling and
simulation under several scenarios, with both homogeneous and heterogeneous end-users.

Keywords: software defined networks; mobile edge computing; reinforcement learning; stochastic
learning automata; game theory; data offloading; pricing; optimization

1. Introduction

Mobile Edge Computing (MEC) has emerged as a vital solution to offer computing resources at
the edge of the network and in close vicinity to the mobile end-users. The end-users are able to offload
their computation tasks to the MEC servers, which can further process the subscribers’ offloaded
tasks. The concept of MEC was motivated by the unprecedented growth of mobile traffic, especially
by the smart phones, and the emergence of enhanced multimedia services, which are characterized by
high computing demands. The main benefits of the MEC technology are: its potential to reduce the
latency, provide location-awareness, improve the performance of the mobile applications, reduce the
energy consumption of the mobile devices by alleviating the burden of executing their computing
tasks locally, and provide accurate computing outcomes in a time-wise manner. However, the adoption
of the MEC technology in the overall networking architecture has created the need of devising control
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mechanisms to route the mobile end-users offloading tasks to the MEC servers, while accounting
for network’s congestion, MEC servers computation capabilities and end-users Quality of Service
(QoS) prerequisites. Towards this direction, Software Defined Networking (SDN) is another 5G
enabling technology complementing the MEC advancement towards designing dynamic, manageable,
adaptable, and cost-effective networks. Specifically, the SDN paradigm transforms the communications
networks into a programmable world, where a centralized entity, i.e., SDN controller, has a global
view of the communication links and manages the network traffic more efficiently and dynamically.
The MEC environment can substantially benefit from the SDN technology, as the decision making with
respect to end-users’ selection of the specific MEC server to perform their data offloading, the routing of
the end-users’ offloading traffic and the guarantee of the end-users’ QoS constraints can be performed
in the control plane, which is implemented within the SDN controller, in a dynamic manner.

1.1. Related Work

The problem of data offloading from the end-users to the MEC servers for further computing
has been extensively studied in the recent literature, while examining both the computation and the
communication limitations [1]. In [2], a minimization problem of the long-term average weighted
total devices’ and MEC server’s power consumption is formulated and solved in a multi-user MEC
environment, concluding to a joint radio and computing resource management scheme, where both
the optimal users’ transmission power to offload their data and the corresponding computing power
to process them are determined. In [3], a femto-based MEC environment is introduced and the authors
exploit the trade-off between the end-users’ energy consumption and latency towards minimizing the
end-users’ affordable latency while executing an application. A centralized optimization problem is
introduced in [4] targeting at the minimization of the weighted sum end-users’ energy consumption,
while accounting for the end-users’ computation latency constraints. The authors consider that the
end-users adopt the orthogonal frequency division multiple access technique to offload their data
to the MEC servers and they capture the end-users’ workload offloading priorities in the problem
formulation and solution, while a similar approach is also followed in [5]. In [6], the authors proposed
a joint resource allocation scheme of the computation and communication resources of the MEC
system aiming to minimize the end-users’ energy consumption and the latency of the applications’
execution at the MEC servers. Moreover, in [7], the authors focused on the energy efficient operation
of the MEC system and they propose a dynamic data offloading and resource allocation scheme
to minimize the computation application completion time and the end-users’ energy consumption.
A holistic framework of minimizing the total cost of energy, computation, and delay for the end-users
is introduced in [8].

Game Theory has also been adopted to deal with the data offloading problem in the MEC
environment, while providing the enhanced flexibility to the end-users to make autonomous data
offloading decisions in a distributed manner [9]. In [10], a data offloading decision-making game is
formulated among the end-users, who decide the amount of data that will be offloaded to a single
MEC server, as well as the part of the computation task that will be executed locally at their devices.
A similar problem is addressed in [11], while a multiple MEC servers environment is considered and
the end-users have to additionally select to which MEC server they will offload part of their data.
The problem of activating the MEC servers based on the end-users computing demands is addressed
in [12], where the MEC servers’ activation problem is formulated as a minority game and a distributed
reinforcement learning algorithm is executed by each MEC server in order to determine if it will be
active or not. The concept of applying usage-based pricing policies to the end-users while they exploit
the MEC servers’ computing capabilities is introduced in [13,14] towards providing incentives to the
end-users to consume the MEC servers’ computing services in a fair manner.

Recently, the capabilities of the SDN have been exploited by the MEC environment to efficiently
and effectively deal with the data offloading problem, the activation of the MEC servers, the routing of
the end-users offloading data, and the announcement of pricing mechanisms to control the smooth
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operation of the MEC system [15]. The problem of selecting a computing mode (i.e., local, MEC,
or cloud computing) for each end-users’ computation task is studied in [16], where the SDN controller
executes the Computing Mode Selection algorithm and announces the corresponding routing policies
to the end-users. The benefits of the combined use of SDN and MEC within the Internet of Things
(IoT) systems are discussed in detail in the surveys [17,18]. In [19], a smart e-health IoT service is
introduced, which is based on SDN-powered MEC within a vehicular ad-hoc network architecture to
detect heart attacks in a real-time manner. In [20], the authors focused on virtual reality and vehicular
IoT applications and they propose an SDN-based MEC framework to provide the necessary data-plane
flexibility, programmability, and reduced latency. Furthermore, in [21], the adoption of SDN and MEC
is presented to overcome the barriers of network densification of IoT cloud integration within a smart
home environment.

Following the above discussion, the interest of the research community in the SDN-based MEC
framework is growing and calls for advanced flexible, dynamic and programmable data offloading
mechanisms. In addition, the problem of monetary-based pricing of the MEC servers computing
services has not been addressed in the existing literature.

1.2. Contributions and Outline

This paper aims at filling the aforementioned research gaps by proposing an SDN-powered MEC
architecture towards dealing with the joint problem of intelligent MEC server selection and end-users’
data offloading in a multiple MEC server and multiple end-user environment. From an architectural
point of view, the joint optimization problem is solved at the SDN controller, which announces the
best strategies to the MEC servers and the end-users. The goal of the MEC servers is to maximize their
profit by serving the end-users’ computing demands, while the end-users aim at maximizing their
perceived satisfaction (expressed through representative utility functions) by the provided computing
services from the MEC environment.

The key contributions of our work that differentiate it from the rest of the literature are
summarized as follows.

1. The monetary-based pricing of the MEC servers’ computing services, the offered discount to
the end-users, the total end-users’ offloaded workload, and the cost of the MEC servers to
process the workload are considered towards formulating representative welfare functions for the
MEC servers, creating a multi-server competitive computing market. In addition, the end-users’
perceived satisfaction from executing their tasks to the MEC servers is captured in holistic utility
functions, while considering the corresponding cost that the end-users have to pay in order to
enjoy the requested services (Section 2).

2. A reinforcement learning framework is included within the SDN controller’s functionalities
towards implementing the MEC server selection by the end-users to offload their data for further
processing. The theory of stochastic learning automata is adopted, where the end-users are
represented as stochastic agents at the SDN controller, learning the best MEC server selection
based on their previous actions and the reaction of the MEC environment. Each MEC server is
characterized by a reputation score, which acts as a reward probability to the MEC server selection
process. The reputation score captures the discount offered by the MEC server, its congestion in
terms of serving end-users’ computing tasks, its penetration in terms of serving the end-users’
computing demands, and its announced pricing for its computing services (Section 3).

3. Following the reinforcement learning-based MEC server selection by the end-users, a two-layer
optimization problem is formulated and solved aiming at maximizing the MEC servers’ profit
and also maximizing the perceived satisfaction by the end-users. The end-users’ maximization
problem of their satisfaction is addressed at the first stage as a non-cooperative game among the
end-users, who practically aim at maximizing their personal utility function. A Nash Equilibrium
(NE) point is determined, which expresses the optimal amount of offloading data for each
end-user. At the second stage of the joint optimization problem, given the end-users’ offloaded
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data, an optimization problem of each MEC server’s profit (as expressed by its welfare function)
is formulated and solved by the MEC servers (Section 4).

4. An iterative and low-complexity algorithm is introduced to implement the MEC server selection
process based on reinforcement learning and determine the optimal MEC servers’ computing
services’ monetary pricing and end-users’ optimal data offloading based on game-theoretic and
optimization techniques (Section 5).

5. A series of detailed simulation experiments are performed to evaluate the performance and
inherent attributes of the proposed framework. Furthermore, a comparative study demonstrates
its superiority and benefits compared to other relevant alternative strategies (Section 6).

Finally, Section 7 concludes the paper.

2. SDN-Powered Mobile Edge Computing

The SDN-powered MEC architecture consisting of multiple MEC servers and multiple end-users
is presented in Figure 1. Each MEC server s, s ∈ S, S = [1, ..., s, ...|S|] communicates with the SDN
controller towards setting the price p(t)s [$/bits] of its computing services per time slot t. The whole
operation of the examined system is divided in time slots, where T = [1, ...t, ..., |T|] denotes their
corresponding set. At each time slot, the SDN controller determines the MEC server selection by
the end-users (see Section 3), as well as the optimal price p(t)s for each MEC server and the optimal
data offloading b(t)u,s[bits] of each end-user u to the selected server s (see Section 4). Each end-user
u, u ∈ U, U = [1, ..., u, ...|U|] receives the required information by the SDN controller to offload
its data b(t)u,s to the selected server s. Each end-user u has a maximum amount of data I(t)u that
should be processed to perform a computing task, and part of them are offloaded to the MEC server,
i.e., b(t)u,s ∈ A(t)

u = [0, I(t)u ], while the rest of the data are processed locally.

SDN Controller

MEC Server Selection based on 
Stochastic Learning Automata

Optimal Data Offloading

Optimal Pricing of the MEC 
Servers Computing Services

b(t)*
p(t)*

(b(t)*, p(t)*) a(t)

Figure 1. SDN-powered MEC architecture.

2.1. End-User Utility Function

At the beginning of each time slot, each end-user u sends to the SDN controller its total computing
demands I(t)u that are needed to execute a computing task, while the SDN controller determines the
optimal amount of offloaded data b(t)u,s for end-user u at the MEC server s, as explained in detail in
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Section 4. Given that the MEC servers have bounded and limited computing capabilities, the data
offloading strategies of the rest of the end-users, i.e., b(t)

−u, contribute to the configuration of the prices

announced by the MEC servers and influence the data offloading b(t)u,s of end-user u. Thus, towards
formulating the user’s u perceived satisfaction, the end-user’s relative data offloading is defined as

r(t)u =
b(t)u,s

B(t)
−u

, where B(t)
−u = ∑s∈S ∑u′∈U,u′ 6=u b(t)u′ ,s expresses the total data offloading of the rest of the

end-users u′, u′ ∈ U − {u}. The end-user’s actual perceived satisfaction s(t)u at time slot t is increasing
with respect to its relative data offloading b(t)u,s, as part of the requested computing task is offloaded to
the MEC server and does not consume the end-user’s local computing resources. In addition, after
the end-user offloads its total data I(t)u to the MEC server, its perceived satisfaction is saturated as the
end-user cannot benefit more by the MEC server’s computing services, as presented in Figure 2. Thus,
without loss of generality and for presentation purposes only, in this paper, we adopt a logarithmic
function with respect to the end-user’s offloaded data b(t)u,s to capture end-user’s actual perceived
satisfaction, as follows.

s(t)u (b(t)u,s, b(t)
−u) = αulog(1 + βur(t)u ) (1)

where b(t)
−u is the vector of all end-users data offloading excluding end-user u, and the αu, βu ∈ R+

parameters determine the slope of the logarithmic function in a personalized manner for end-user
u, thus expressing how easily or not an end-user u becomes satisfied by offloading its data to the
MEC server.

Additionally, each end-user is charged for using the MEC server’s computing services in a fair
manner according to its relative data offloading. This policy enables even the low-budget end-users
to exploit the MEC servers’ capabilities to some degree, by prohibiting the high-budget ones from
dominating the system. Thus, the cost function of end-user’s u offloaded data is formulated as follows.

c(t)u (b(t)u,s, b(t)
−u) = d(t)u p(t)s r(t)u (2)

where d(t)u , d(t)u ∈ R+ expresses end-user’s u spending dynamics in order to use the MEC server’s
computing services. Specifically, a smaller value of d(t)u reflects end-user’s u dynamic behavior to
spend more money in order to buy computing support from the MEC servers. The price announced by
the MEC server s is denoted as p(t)s [$/bits].

Following the above analysis, end-user’s u utility function captures both its actual perceived
satisfaction s(t)u and its corresponding cost c(t)u in order to enjoy the MEC server’s computing services.
The end-user’s u utility function is defined as follows.

U(t)
u (b(t)u,s, b(t)

−u, p(t)) = s(t)u (b(t)u,s, b(t)
−u)− c(t)u (b(t)u,s, b(t)

−u) = αulog(1 + βur(t)u )− d(t)u p(t)s r(t)u (3)

where p(t) = [p(t)1 , ..., p(t)s , ..., p(t)|S|] denotes the vector of the prices announced by all the MEC servers.
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Figure 2. End-user’s actual perceived satisfaction by data offloading.

2.2. Mobile Edge Computing Server Characteristics and Profit

Each MEC server s supports a total computing demand of the end-users per time slot equal to

∑u∈U b(t)u,s from all the end-users that selected the specific MEC server to offload their data. In addition,
towards providing incentives to the end-users to select a specific MEC server to be served from,
the latter provides some discounts f (t)s expressed as a percentage of the original announced price of its
computing services. Furthermore, the MEC server has an actual cost c(t)s [$/bits] in order to process the
amount of data that it receives. Please also be reminded that the MEC server charges the end-users
with a price p(t)s [$/bits] for the computing services that it offers.

Additionally, a MEC server increases its positive reputation towards the end-users if it
is characterized by a good penetration within the end-users’ computing demands. Specifically,
the penetration of a MEC server s is defined as the total amount of data that the server s processed
over the total amount of data that are processed within the SDN-powered MEC system for a total

time period T, i.e., ∑t∈{1,...,T} ∑u∈U b(t)u,s

∑s∈S ∑t∈{1,...,T} ∑u∈U b(t)u,s
. In addition, we assume that each MEC server s can handle a

total amount of data BMax
s . Thus, an indicative parameter showing the congestion of the MEC server

per time slot in terms of processing the end-users’ offloaded data is expressed as the ratio of the
total amount of data ∑u∈U b(t)u,s that the MEC server processes in time slot t over its total computing

capability of data BMax
s , i.e., CONGs =

∑u∈U b(t)u,s
BMax

s
.

Following the above analysis and combining all the aforementioned factors and parameters that
characterize the MEC server s, its reputation score within the SDN-powered MEC environment is
defined as follows.

R(t)
s = w1

∑k 6=s [(1− f (t)k )]p(t)k
K

(1− f (t)s )p(t)s

+ w2
1

(1 + CONGs)3 + w3
∑t∈{1,...,T} ∑u∈U b(t)u,s

∑s∈S ∑t∈{1,...,T} ∑u∈U b(t)u,s

(4)

In Equation (4), the first term expresses the relative pricing of a MEC server s in terms of offering
its computing services to the end-users, the second term expresses the level of MEC server’s congestion
towards serving the end-users, while the third term expresses its penetration in serving end-users’
computing demands. The weights w1, w2, w3 are configurable parameters that express the relative
weight of each term within our study, and it should hold true that w1 + w2 + w3 = 1.

The revenue of each MEC server s from processing a total amount of end-users’ offloaded data

∑u∈U b(t)u,s depends on the announced price p(t)s and the corresponding discount f (t)s that the MEC
server provides, and is given as follows.

REV(t)
s (b(t), p(t)) = (1− f (t)s )p(t)s ∑

u∈U
b(t)u,s (5)
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where b(t) is the data offloading vector of all the end-users and p(t) denotes the announced prices by
all the MEC servers in the system.

On the other hand, the MEC server’s total monetary cost to perform the processing of the offloaded
data, is given as follows.

C(t)
s (b(t)) = c(t)s ∑

u∈U
b(t)u,s (6)

where c(t)s is the MEC server’s s computing cost per unit of data. Thus, the MEC server’s profit is
concluded by subtracting its cost from its revenue and is given as follows.

P(t)
s (b(t), p(t)) = REV(t)

s (b(t), p(t))− C(t)
s (b(t)) = (1− f (t)s )p(t)s ∑

u∈U
b(t)u,s − c(t)s ∑

u∈U
b(t)u,s (7)

3. MEC as a Learning System

At the SDN controller’s side, the end-users are represented and considered as stochastic learning
automata that sense the environment and make future decisions based on their past experience.
At each time slot t, the end-user can select to be served by a MEC server s, thus, the set of end-users’
actions at time slot t is a(t) = {a1, ..., as, ..., aS}. The SDN controller has the information of the
end-users’ offloaded data b(t) and the prices p(t) that the MEC servers announce regarding offering
their computing services. The SDN controller can determine the reputation score R(t)

s for each MEC
server, which can be normalized towards defining the reward probability as follows.

rew(t)
s =

R(t)
s

∑s∈S R(t)
s

(8)

The reward probability rew(t)
s , 0 ≤ rew(t)

s ≤ 1 represents the potential reward that an end-user
may experience by choosing to offload its data to the MEC server s. Following the theory of
the stochastic learning automata, the action probability vector of an end-user u, u ∈ U is Pr(t)u =

[Pr(t)u,1, ..., Pr(t)u,s, ..., Pr(t)u,S], where Pr(t)u,s is defined as the probability of the end-user u to select the MEC
server s to offload its data. Based on the theory of stochastic learning automata [22], the rule of
updating the end-users’ action probabilities at the SDN controller is defined as follows.

Pr(t+1)
u,s = Pr(t)u,s − b · rew(t)

s · Pr(t)u,s, s(t+1) 6= s(t) (9a)

Pr(t+1)
u,s = Pr(t)u,s + b · rew(t)

s · (1− Pr(t)u,s), s(t+1) = s(t) (9b)

where 0 < b < 1 denotes the learning parameter expressing how fast the end-users explore the
available options of the MEC servers towards offloading their data. Equation (9a) represents the
probability of end-user u selecting a different MEC server to offload its data in the next time slot t + 1
compared to end-user’s choice in the current time slot t, while Equation (9b) expresses the probability
of end-user u to keep being served by the same MEC server. It is noted that, initially, the end-users’
action probabilities are initialized as Pr(t=0)

u,s = 1
S . The MEC servers selection learning process executed

at the SDN controller is presented in the Data Offloading and MEC Server Selection (DO-MECS)
algorithm (see Section 5).

4. Autonomous Data Offloading and Price Setting

4.1. Problem Formulation

Following the above described reinforcement learning technique of the stochastic learning
automata, each end-user has concluded to the selection of a MEC server to offload its data. Then,
the goal of each MEC server is to maximize its profit by processing the end-users’ data, while the
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goal of each end-user is to maximize its perceived satisfaction, as expressed by its utility function,
by offloading the optimal amount of data to the selected MEC server. Thus, a two-layer optimization
problem is formulated, as follows.

b(t)∗ = argmax
b(t)u,s

U(t)
u (b(t)u,s, b(t)

−u, p(t)) (10a)

p(t)∗ = argmaxp(t)P
(t)
s (b(t), p(t)) (10b)

As it is observed by Equations (10a) and (10b), the MEC servers optimal price p(t)∗ and the
end-users optimal data offloading b(t)∗ are interdependent, thus the joint optimization problem is
formulated as a two-layer optimization framework. Initially, the end-users determine their optimal
data offloading b(t)∗ via confronting the optimization problem of their personal utility functions as
a non-cooperative game among them. Then, at the second layer, the MEC servers determine their
optimal announced prices p(t)∗ given the data offloading of the end-users, via solving an optimization
problem. The formulation and solution of the optimization problem is performed at the SDN controller,
where its advanced computing capabilities enable the fast decision-making. In the following two
subsections, we analyze in detail each layer of the optimization problem.

4.2. Optimal Data Offloading

At first, the optimal data offloading b(t)∗u,s of each end-user u that has selected to offload its data to

the MEC server s at the time slot t is determined. A non-cooperative game G = [U, {A(t)
u }, {U

(t)
u }] is

formulated among the end-users who compete with each other towards determining their optimal
data offloading. The game G consists of three components: (a) the set of end-users (i.e., players)
U = [1, ..., u, ..., |U|];; (b) the strategy space A(t)

u = [0, I(t)u ], where b(t)u,s ∈ A(t)
u ; and (c) the end-user’s

utility function U(t)
u . Each end-user wants to maximize its personal utility function, while considering

the physical limitations, as follows.

max
b(t)u,s

U(t)
u (b(t)u,s, b(t)

−u, p(t)) (11a)

s.t. 0 ≤ b(t)u,s ≤ I(t)u (11b)

The concept of Nash Equilibrium is adopted towards determining a stable operation point for
the system. At the Nash Equilibrium point, any of the end-users has no incentive to change its
amount of data offloading, as no end-user can improve its utility by unilaterally changing its data
offloading strategy.

Definition 1. A data offloading vector b(t)∗
u = [b(t)∗1,s , ..., b(t)∗u,s , ..., b(t)∗|U|,s], s ∈ S is the Nash Equilibrium point

of the game G = [U, {A(t)
u }, {U

(t)
u }], if for every end-user u it holds true that U(t)

u (b(t)∗u,s , b(t)∗
−u ) ≥ U(t)

u (b(t)u,s,

b(t)∗
−u ), ∀b(t)u,s ∈ A(t)

u .

In the following analysis, our goal is to show the existence and uniqueness of a Nash Equilibrium
for the data offloading game. The necessary and sufficient conditions are: (i) the strategy space
A(t)

u , ∀u ∈ U should be non-empty, convex and compact subset of an Euclidean space RU ; and (ii) the
utility function U(t)

u (b(t)u,s, b(t)
−u, p(t)) is continuous in b(t)

u and quasi-concave in b(t)u,s.

Theorem 1. The Nash Equilibrium point of the game G = [U, {A(t)
u }, {U

(t)
u }] exists and the end-user’s best

response data offloading strategy is given as follows.

BRu(b
(t)∗
−u ) = b(t)∗u,s =

B(t)
−u

βu
[

αuβu

d(t)u p(t)s

− 1] (12)
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where 0 ≤ b(t)∗u,s ≤ I(t)u .

Proof of Theorem 1. The strategy space A(t)
u = [0, I(t)u ] represents the amount of data that the end-user

u can offload to a MEC server s, thus by defintion it is non-empty, convex, and compact subset of
the Euclidean space RU . In addition, based on Equation (3), the utility function U(t)

u (b(t)u,s, b(t)
−u, p(t))

is continuous in b(t)
u . Furthermore, we determine the second-order derivative of the utility function

U(t)
u (b(t)u,s, b(t)

−u) with respect to b(t)u,s, as follows.
∂2U(t)

u (b(t)u,s)

∂b(t)2u,s
= − αu β2

u

B(t)2
−u
· 1

[βu+
βub(t)u,s

B(t)−u

]2
< 0

Given that ∂2U(t)
u (b(t)u,s)

∂b(t)2u,s
< 0, the U(t)

u (b(t)u,s, b(t)
−u, p(t)) is concave in b(t)u,s, it is also quasi-concave in b(t)u,s.

Therefore, the Nash Equilibrium point of the game G = [U, {A(t)
u }, {U

(t)
u }] exists.

Towards determining the best response strategy of each end-user, we calculate the critical points
of the U(t)

u (b(t)u,s, b(t)
−u, p(t)), as follows.

∂U(t)
u

∂b(t)u,s
= 0⇔ b(t)u,s =

B(t)
−u

βu
( αu βu

d(t)u p(t)s
− 1)

The data offloading of each end-user u should satisfy the physical limitations, i.e., 0 ≤ b(t)u,s ≤ I(t)u ,
thus we have the following cases.

Case A: If d(t)u p(t)s > αuβu then the best response strategy is b(t)∗u,s < 0. However, since the physical

limitation imposed states that 0 ≤ b(t)u,s and our function is concave, then the best response should be

b(t)∗u,s = 0.

Case B: If d(t)u p(t)s < αu βu

I(t)u
βu

B(t)−u

+1
then the best response strategy is b(t)∗u,s > I(t)u . However, since the physical

limitation imposed states that b(t)u,s ≤ I(t)u and our function is concave, then the best response should be

b(t)∗u,s = I(t)u .

Case C: If αu βu

I(t)u
βu

B(t)−u

+1
≤ d(t)u p(t)s ≤ αuβu then the best response strategy is 0 ≤ b(t)∗u,s ≤ I(t)u ,

which satisfies the physical limitation. In this case, the best response is given by the equation

b(t)∗u,s =
B(t)
−u

βu
( αu βu

d(t)u p(t)s
− 1).

Theorem 1 proves the existence of the Nash Equilibrium point of the game G and determines the
best response strategy for each end-user u, u ∈ U. In the following theorem, the uniqueness of the
Nash Equilibrium point of the game G is examined.

Theorem 2. The Nash Equilibrium point b(t)∗u,s , ∀u ∈ U, s ∈ S of the game G is unique.

Proof of Theorem 2. Towards proving the uniqueness of the Nash Equilibrium point b(t)∗u,s = BRu(b
(t)∗
−u ),

for Cases A and B, the Nash Equilibrium point is trivially unique, while for Case C we should show
that the best response strategy BRu(b

(t)∗
−u ) is a standard function [23]. The properties of a standard

function are the following:

• Positivity f(x) > 0;
• Monotonicity: if x ≥ x′, then f(x) ≥ f(x′); and
• Scalability: for all a > 1, a · f(x) ≥ f(a · x).

If a fixed point exists in a standard function, then it is unique [23]. Using Equation (12), the above
properties of the standard function can be easily shown for the end-user’s best response function
BRu(b

(t)∗
−u ). Thus, the Nash Equilibrium point of the game G is unique.
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In conclusion, it is noted that the optimal data offloading of each end-user is given by
Equation (12).

4.3. Optimal Pricing of the MEC Servers Computing Services

In this subsection, the optimal pricing of the MEC server’s computing services is determined
towards maximizing the MEC servers’ profit given the offloaded data of the end-users. Combining
Equations (7), (10b) and (12), the corresponding optimal pricing problem of the MEC servers can be
written as follows.

p(t)∗ = argmaxp(t)P
(t)
s (b(t), p(t)) = (1− f (t)s )p(t)s ∑u∈U [

B(t)
−u

βu
[ αu βu

d(t)u p(t)s
− 1]]− c(t)s ∑u∈U [

B(t)
−u

βu
[ αu βu

d(t)u p(t)s
− 1]] (13)

Based on Equation (13), it is observed that the optimal pricing problem of the MEC servers’
computing services is a function only of their prices p(t)s .

Theorem 3. The optimal pricing announced by each MEC server for its computing services given the end-users
offloaded data and towards maximizing its own profit is given as follows:

p(t)∗s = [
αuβuc(t)s ∑u∈U

B(t)
−u

d(t)u

(1− f (t)s )∑u∈U B(t)
−u

]1/2 (14)

Proof of Theorem 3. Towards determining the optimal pricing announced by each MEC server,
we take the first-order derivative with respect to p(t)s and determine the critical points.

∂P(t)
s (b(t),p(t))

∂p(t)s
= − 1

βu
(1− f (t)s )∑u∈U B(t)

−u +
c(t)s αu

p(t)2s
∑u∈U

B(t)
−u

d(t)u
= 0

Thus, the critical points are given by the following equation.

p(t)∗s = [
αu βuc(t)s ∑u∈U

B(t)−u

d(t)u

(1− f (t)s )∑u∈U B(t)
−u

]1/2

By checking the second-order derivative of P(t)
s (b(t), p(t)) with respect to p(t)s , we have:

∂2P(t)
s (b(t),p(t))

∂p(t)2s
= −2c(t)s

αu

p(t)3s
∑u∈U

B(t)
−u

d(t)u
< 0

Thus, p(t)∗s maximizes the MEC server’s profit P(t)
s (b(t), p(t)).

5. Data Offloading and MEC Server Selection (DO-MECS) Algorithm

In this section, an iterative and low-complexity algorithm is introduced towards realizing the Data
Offloading and MEC Server Selection (DO-MECS algorithm). The DO-MECS algorithm consists of
two main components. At the first component, the MEC server selection by the end-users is executed
following the theory of the stochastic learning automata, as presented in Section 3. Then, at the second
component of the DO-MECS algorithm, the end-users’ optimal data offloading and the MEC servers’
optimal pricing is determined, as presented in Section 4. It is noted that the first part of the DO-MECS
algorithm runs at the beginning of each time slot, while the second part of the algorithm runs for
multiple iterations within each time slot.

DO-MECS Algorithm

Step 1 (Initialization): At the first time slot t = 0, set the initial MEC server selection probability vector
as Pru(t = 0), where Pru,s(t = 0) = 1

S , ∀u ∈ U, s ∈ S.
Step 2 (MEC Server Selection): At the beginning of each time slot (t > 0), each end-user chooses a MEC
server to offload its data based on its action probability vector Pru(t). If Pru,s(t) ≥ 0.999 for all the
MEC servers s, s ∈ S, then stop. Otherwise, set i = 0, where i denotes the iteration of the second part
of the algorithm.
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Step 3 (Optimal Data Offloading): Each end-user has been associated with a MEC server and all the
MEC servers announce their prices. Each end-user determines its optimal data offloading based on
Equation (12).
Step 4 (Optimal Pricing): Given the end-users’ offloading data, each MEC server determines the optimal
pricing of its computing services based on Equation (14).
Step 5 (Convergence): If |b(t)∗u,s |i+1 − b(t)∗u,s |i| ≤ ε1 and |p(t)∗s |i+1 − p(t)∗s |i| ≤ ε2, ∀s ∈ S, u ∈ U, where ε1, ε2

(small positive constants) are the convergence control parameters, then stop. Otherwise, go to Step 3.
Step 6 (Update): Update the end-users’ action probabilities based on Equations (9a) and (9b) and return
to Step 2.

6. Results

In this section, we provide some numerical results illustrating the operation, features and
benefits of the proposed DO-MECS framework. In Section 6.1, we focus on the pure operational
characteristics of our framework, while in Section 6.2 a comparative evaluation of our approach against
alternative methodologies is provided. The algorithm and simulations were implemented in Python
(with NumPy), and executed on an Intel Core i5-4300U laptop with CPU@1.90 GHz× 4 and 8 Gb RAM.
Unless otherwise explicitly indicated, a detailed Monte Carlo analysis was executed for all presented
numerical results considering averages over 1000 executions.

6.1. Operation of the DO-MECS Framework

Towards illustrating the successful operation of the DO-MECS framework, we performed
detailed simulations considering two main cases regarding the end-users that reside within the MEC
environment: (a) homogeneous end-users; and (b) heterogeneous end-users, with reference to their
sensitivity on the pricing imposed by the MEC servers (i.e., end-user dynamics d(t)u in Equation (2)).
In our simulations, we considered S = 5 MEC servers and U = 100 end-users, while for demonstration
purposes the weights w1, w2, w3 in Equation (4) were considered of same importance, and each one
equal to 1/3. We considered a business perspective with respect to the MEC servers, in the sense
that they present different characteristics with respect to parameters such as cost, discount factor, etc.
The parameters that characterize the different MEC servers are presented in Table 1. Regarding the
communication part of the network operation, each MEC server was assumed to receive data from the
users via its own subcarrier. Thus, each user sensed the interference only from the users that were
offloading to the same MEC server. It is noted however that, in this study, the transmission power
control problem was not treated, and it was assumed that users transmit with fixed power.

Table 1. MEC servers’ characteristics.

Server Cost c Discount fs

server 1 0.12 0.05
server 2 0.14 0.04
server 3 0.20 0.02
server 4 0.17 0.03
server 5 0.13 0.05

6.1.1. Homogeneous End-Users

Initially, with respect to the scenario of homogeneous end-users, Figure 3 presents, in a
comprehensive manner, indicative numerical results regarding the pure operation of the DO-MECS
algorithm, in order to gain some insight about the key operational characteristics and contributions
of the various components of our framework. We considered a simplistic demonstration scenario,
which however did not harm the validity of the observations. To the contrary, it was selected such that
we verified the operational characteristics of our proposed approach, where each user’s maximum
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amount of data was the same I(t)u = 1000 Bytes. We did not consider or differentiate them based on
the nature of the executed tasks or on parameters related to the computing or data intensity. It is also
stressed that the focus of this paper and of the corresponding evaluation results is on the decision
making process of the data offloading (i.e., server selection and part of data to be offloaded), and not
on the actual offloading and/or computation processing itself.

Specifically, Figure 3a presents the relative pricing of each MEC server, i.e.,
∑k 6=s [(1− f (t)k )]p(t)k

K

(1− f (t)s )p(t)s
, as it

was determined at the end of each time slot with respect to the time slots that the DO-MECS algorithm
needs to converge. It was observed that in all cases convergence was obtained in fewer than 3000 time
slots, while for practical purposes fewer than 2000 time slots were sufficient, corresponding to actual
running time of less than 14 s for learning rate b = 0.2. Note that significantly lower convergence times
could be achieved if higher learning rates were considered, as demonstrated below in Section 6.2.1.
Note that the times measured and reported here refer to the convergence of the overall DO-MECS
algorithm in our simulation (i.e., decision making process), where the users conclude to a stable
selection of MEC servers in order to offload their data to be further processed.

As presented in Figure 3a,b, the greater was the relative pricing for each MEC server, the more
attractive it became for the end-users. Server 1 clearly accumulated the majority of the end-users since
in Table 1 we notice that Server 1 had both the smallest cost and offered the highest discount compared
to the other MEC servers. The same trend and reasoning followed for the rest of the servers. Please note
here that, due to the homogeneity of the considered population, each end-user offloaded the same
amount of data (in this experiment offloaded its total data, i.e., I(t)u = 1000 Bytes), to the corresponding
selected MEC server, as determined by the MEC Server Selection process (Step 2 of DO-MECS
Algorithm) based on the theory of the stochastic learning automata (Section 3). In Section 6.1.2,
a different scenario with heterogeneous end-users was considered and demonstrated, where the
end-users decided to offload different amounts of data, based on the overall system dynamics.

(a) (b)

(c) (d)

Figure 3. Cont.
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(e)
(f)

Figure 3. Pure operation of the proposed framework considering homogeneous end-users: (a) relative
pricing of MEC servers vs. time slots; (b) number of end-users per MEC server vs. time slots; (c)
MEC servers’ congestion vs. time slot; (d) MEC servers’ penetration vs. time slots; (e) MEC server’s
reputation score vs. time slots; and (f) MEC server’s profit vs. time slots.

As expected, the congestion on each MEC server, i.e., (1 + CONGs)3, followed the same trend as
the number of end-users selecting each MEC server (Figure 3b). The latter observation was expected,
as the more end-users selected to offload their data to a MEC server, the more congested that MEC

server became (Figure 3c) and a greater penetration, i.e., ∑t∈{1,...,T} ∑u∈U b(t)u,s

∑s∈S ∑t∈{1,...,T} ∑u∈U b(t)u,s
, was achieved by that

server. In particular, the MEC servers’ penetration in serving the end-users computing demands
is presented in Figure 3d. Furthermore, from Equation (4), we observe that the reputation score
Rs depends on the relative pricing, the congestion and the penetration of the MEC servers. The Rs

essentially controls the probability based on which each end-user will select a server to offload its
data. In Figure 3e, the results illustrate that the proposed DO-MECS framework tried to boost “weaker”
servers to allow them to gain some traction on the market. Additionally, Figure 3f presents the profit
P(t)

s (b(t), p(t)) that each MEC server received based on its price announcement and the end-users’ data
offloading. The results reveal that Server 1 achieved the highest profit due to the combined effect of
having the lowest cost (Table 1) and attracting a large number of end-users, despite the fact that it
presented the lowest price, as shown in Figure 3a. The same trend was followed from the rest of the
servers, which indicates that the announced price by the MEC server was not the only dominant factor
in shaping the server’s profit, but also the number of end-users that selected to be served by a server
was a key parameter in determining the server’s overall profit.

6.1.2. Heterogeneous End-Users

We considered the scenario of heterogeneous end-users, i.e., the end-users demonstrate different
spending dynamics (i.e., d(t)u ) and therefore potentially may offload different parts of their total data
I(t)u to the selected MEC server. Specifically, in Figure 4a, we present the convergence of the amount
of offloaded data for 10 indicative end-users from the overall available set in the simulated scenario.
The results indicate that, as the end-users had different spending dynamics, the announced price
by each MEC server had different impact on each end-user in terms of determining its amount of
offloaded data. Due to the differentiation of the end-users’ spending dynamics, the MEC servers were
motivated to adjust their announced prices to better adapt to the volume of the end-users’ offloaded
data. The aforementioned behavior is captured in Figure 4b, where it is observed that the “weaker”
servers were willing to drop their price to increase their stability and penetration on the market,
while the stronger ones increased their price to avoid congestion. Moreover, in Figure 4c,d, the total
number of end-users per MEC server and the corresponding amount of offloaded data per MEC server
are presented, respectively.
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(a) (b)

(c) (d)

Figure 4. Pure operation of the proposed framework considering heterogeneous end-users: (a)
end-users’ amount of offloaded data vs. time slots; (b) relative pricing of MEC servers vs. time
slots; (c) number of end-users per MEC server vs. time slots; and (d) offloaded data to each MEC server
vs. time slots.

6.2. Comparative Evaluation

In this section, we present some comparative results of the performance of our proposed
framework against some alternative strategies to reveal its benefits and advantages. Initially,
in Section 6.2.1, we present the impact of the learning rate parameter of the stochastic learning automata
(see Section 3) in the operation of the DO-MECS framework, while, in Section 6.2.2, we evaluate the
benefits and drawbacks of different data offloading mechanisms.

6.2.1. Different Learning Rates

As we can see from Equations (6) and (7), the learning rate parameter b is an important factor
regarding the convergence of the DO-MECS framework to the optimal stable state. Greater values
of the learning rate would lead to faster convergence, however smaller ones allow the end-users
to better exploit the available options and ultimately conclude to better states. To demonstrate the
above tradeoff, a comparative evaluation between different values of the learning rate was performed.
Table 2 shows the average execution time of our DO-MECS framework until convergence was achieved,
while Figures 5 and 6 present the average MEC server’s profit and the average end-user’s utility for
different learning rates, respectively. Indeed, it was observed that small values of the learning rate
parameter b concluded to slow convergence of the DO-MECS algorithm, however, they allowed the
MEC servers and the end-users to achieve higher average profit and higher average utility, respectively.
Based on Figures 5 and 6, we can see that the the difference on the convergence state (i.e., average
MEC servers’ profit and average end-users’ utility) between learning rates b = 0.1 and b = 0.2 was
negligible, while the difference in the convergence time was significant. This was also evident from
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the execution times presented in Table 2, where for b = 0.2 the DO-MECS algorithm converged five
times faster than in the case where b = 0.1, while, by using a higher value for b (i.e., b = 0.5), we could
achieve convergence times lower by an order of magnitude. Thus, a learning rate of b = 0.2 presented
a good balance between optimality and efficiency. The convergence time of the DO-MECS algorithm
could be further improved by adopting one of the following strategies and/or a combination of
them: (a) Increase the learning rate b. (b) Initiate the algorithm from an “educated” point of MEC
servers’ selection by the users, i.e., instead each user randomly selecting a MEC server at the first
step of DO-MECS algorithm, they can use previous knowledge that would be available in a realistic
environment after the initial interaction of the users with the MEC servers. (c) Utilize a more powerful
machine with better computational characteristics.

Table 2. Execution time for different learning rate values.

Learning Rate Execution Time (s) Number of Timeslots

b = 0.1 147.2 s 11053
b = 0.2 27.5 s 2959
b = 0.3 11.6 s 1357
b = 0.4 6.4 s 773
b = 0.5 4.2 s 504

Figure 5. Average MEC servers’ profit vs. time slots for different learning rates.
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Figure 6. Average end-users’ utility vs. time slots for different learning rates.

6.2.2. Different Offloading Mechanisms

Towards evaluating the significance of the game theoretic data offloading mechanism proposed
by our DO-MECS framework, a comparison between our mechanism and a computationally simplistic
mechanism where each end-user offloads a fixed portion (i.e., percentage) of its data, was performed,
while for fairness purposes the rest of our proposed framework (i.e., server selection and optimal
pricing mechanisms) was kept intact in all strategies. Specifically, with respect to the alternative data
offloading mechanism, three different variations were examined, where the end-users send 25%, 58.6%
and 100% of their total data I(t)u , respectively, to the selected MEC servers. It should be noted here
that the alternative with fixed portion (i.e., percentage) of 58.6% data offloading of user’s maximum
amount of data was selected because it corresponds to the same average end-user data offloading,
as the one produced by our proposed framework in the considered experiment.

The corresponding comparative results are depicted in Figures 7 and 8, where the average
MEC servers’ profit and the average end-users’ utility, respectively, as a function of the time for the
different offloading mechanisms were obtained. In particular, it was evident that as expected the
more data the end-users offloaded to the MEC servers, the higher profit the MEC servers experienced.
However, this happens at the cost of very low average utility experienced by the end-users, as clearly
demonstrated from the curves corresponding to the 100% offloading alternative. Moreover, it was
observed that by allowing the end-users to send a constant amount of data without enabling them to
dynamically adapt their offloading amount of data based on the system’s conditions (as our framework
evangelizes), always resulted to significantly lower average end-users’ utility. As a result, the proposed
DO-MECS framework offered incentives to the end-users to participate in the non-cooperative data
offloading game in order to dynamically and autonomously determine the optimal amount of data,
while the MEC servers experienced the best levels of profit that they could achieve based on the
decisions of their customers, i.e., end-users.
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Figure 7. Average MEC servers’ profit vs. time slots for different offloading mechanisms.

Figure 8. Average end-users’ utility vs. time slots for different offloading mechanisms.

7. Conclusions

In this paper, the joint problem of MEC server selection by the end-users, along with their optimal
data offloading and the optimal price setting by the MEC servers is studied in a multiple MEC
servers and multiple end-users environment. The flexibility and programmability offered by the SDN
technology, enables the realistic implementation of the proposed framework. In particular, the MEC
server selection part of the framework is based on a reinforcement learning technique adopting the
theory of the stochastic learning automata. The end-users optimal data offloading and the MEC
servers’ optimal pricing of their computing services is formulated as a two-layer optimization problem.
At the first layer, a non-cooperative game among the end-users of each server is formulated towards
maximizing the perceived satisfaction of each end-user, as expressed by an appropriately formulated
utility function. The existence and uniqueness of the game’s NE point is shown, thus concluding
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to the end-users’ optimal data offloading strategy. At the second layer of the proposed framework,
an optimization problem of each MEC server’s profit is formulated and the corresponding optimal price
of its computing services is determined. A low-complexity Data Offloading and MEC Server Selection
(DO-MECS) algorithm is introduced to realize the overall framework. The operation and performance
of the proposed framework was extensively evaluated through modeling and simulation, while the
presented detailed numerical results demonstrate its performance and benefits in the examined setting.

Our current and future work contains the testing of the proposed framework in a realistic testbed
environment, while the proposed framework will be extended to include additional socio-physical
parameters in the MEC server’s reputation score, e.g., trust level of the MEC server, security and
privacy preserving characteristics, and others.
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