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Abstract: The increasing worldwide energy demand, the CO; emissions generated due to the
production and use of energy, climate change, and the depletion of natural resources are important
concerns that require new solutions for energy generation and management. In order to ensure
energy sustainability, measures, including the use of renewable energy sources, the deployment of
adaptive energy consumption schemes, and consumer participation, are currently envisioned as
feasible alternatives. Accordingly, this paper presents the requirements and algorithmic solutions
for efficient management of energy consumption, which aims to optimize the use of available
energy, whether or not it is 100% renewable, by minimizing the waste of energy. The proposal
works within a Demand-Response environment, uses Network Functions Virtualization as an
enabling technology, and leverages the massive connectivity of the Internet of Things provided by
modern communications technologies. The energy consumption optimization problem is formulated
as an Integer Linear Program. It is optimally solved while using a brute-force search strategy,
defined as OPTTS, to detect all concerns that are related to the problem. Given the A'P-hard
nature of the problem and the non-polynomial complexity of OPTTS, some heuristic solutions
are analyzed. Subsequently, a heuristic strategy, described as FASTTS based on a pre-partitioning
method, is implemented. The simulation results validate our proposed energy management solution.
Exact and heuristic strategies, when deployed in the Network Functions Virtualization domain,
demonstrate improvements in the way that energy is consumed, thereby offering an increase in
service processing. The evaluation results also show that FASTTS produces high-quality solutions
that are close to those of OPTTS while executing 230 x-5000x faster.

Keywords: energy efficiency; energy management; demand response; green energy; NFV;
pre-partitioning; service scheduling

1. Introduction

In recent years, the increasing energy consumption and CO, emissions caused by the deployment
of new services and the proliferation of the Internet of Things (IoT) concept are becoming critical
concerns driving the adoption of new solutions for energy production and management [1]. According
to [2], the development of the Information and Communication Technology (ICT) industry could use
up to 50% of the world’s electricity in 2030 and up to 23% of CO, emissions. Consequently, the ICT
and energy sectors have encouraged the use of renewable energy sources and deployment of adaptive
energy management schemes with active customer-side participation. The purpose of these actions is
to ensure sustainability and the long-term development of human society.
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Renewable energy sources, such as solar and wind, are envisioned as an environmentally friendly
and sustainable alternative to meet current and future energy demands [3]. However, the sporadic
nature of green energy may cause instability when integrated into conventional energy sources [3].
This issue, along with the inefficient use of the generated energy (from renewable and non-renewable
sources), have led to the development of Demand Response (DR) schemes, in which the consumption is
adapted to generation dynamically using requests and actions exchanged between the Energy supplier
(ES) and Energy Consumers (ECs) [4].

An essential component for deploying DR schemes is the ICT infrastructure that is needed for
both the data exchange (i.e., notifications and instructions) between the ES and the ECs and the
execution of management mechanisms (e.g., workload scheduling) [5]. In this regard, existing ICT
solutions, such as cloud computing infrastructures and IoT technologies, can be used as key enablers
for delivering feasible smart and programable management approaches for adaptive consumption
of available supply. Specifically, the Network Functions Virtualization (NFV) technology can be
used to deploy management mechanisms (carried out through algorithmic solutions) as software
components, named Virtual Network Functions (VNFs), which can be used or modified on-demand [6],
according to the dynamic requirements of the energy demands. The VNFs executed on Data Centers
(DCs) (i.e., on cloud computing infrastructures) can dispose of a scalable computational capacity
(mainly in terms of processing power and memory) needed to carry out adaptive energy management,
as shown in [5].

Likewise, the massive connectivity available to end-users due to the proliferation of IoT
technologies and development of network systems, such as 5G, makes it possible for potential energy
consumers to participate in the energy management process [7]. It is expected that the number of
devices connected to the Internet will increase considerably in the coming years (e.g., Cisco estimates
that there will be 28.5 billion networked devices by 2022 [8]). Thus, eventually, all energy consumers
(i.e., devices, appliances, or, in general, IoT infrastructures) will be able to be managed, for example,
in terms of their consumption. This condition facilitates a true customer-side, the complete interaction
between the ECs and the ES, the improvement in control, monitoring and management tasks, as well
as the applicability to small scenarios, such as Home Energy Management Systems (HEMS) or
environments as big as cities or countries. In this regard, an adaptive energy management proposal
that is enabled by IoT and NFV technologies is a feasible, promising proposal that represents the
evolution of smart grids, and it is aligned with the vision of future energy systems currently referred
to as the Internet of Energy (IoE) [9].

This paper analyzes the adaptive energy management conditioned on the available supply of
renewable and non-renewable sources from the point of view of communications systems. The proposal
considers the manageability of the ECs, through massive connectivity and IoT technologies, and the
dynamic and programmable behavior of management strategies that are deployed in an NFV domain
and operating on scalable cloud computing infrastructures. This paper starts with an overview of the
components of an NFV-enabled DR ecosystem. SUbsequently, it presents the operating requirements
and management mechanisms for adaptive energy management conditioned to the availability and
with application to small and large-scale IoT scenarios. The proposal also includes the mathematical
characterization of the ES and the ECs, as well as the adaptive consumption model using an Integer
Linear Programming (ILP) formulation. The ILP model allows for us to identify the complexity
of the problem and the possible algorithmic strategies to carry out adaptive energy management.
In this context, this paper presents an algorithmic strategy, defined as OPTTS, which is based on a
brute-force search mechanism and solves the ILP optimally. Given that OPTTS present a non-linear
complexity, some heuristic strategies are analyzed in the scope of the problem. Subsequently, a fast
heuristic strategy identified as FASTTS that is based on a pre-partitioning method is implemented.
The optimal exact and heuristic strategies are evaluated through extensive simulations. The results
are compared with a baseline case, in which no management solution is applied. The simulation
results in different scenarios validate the performance of the proposed adaptive energy management
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solution and demonstrate that the algorithmic strategies OPTTS and FASTTS, when deployed at the
NFV domain, produces improvements in power consumption and demand processing. The major
contributions of this paper are summarized, as follows:

®  The description of an NFV-enabled energy management ecosystem, the requirements, and the
mechanisms to perform adaptive energy management of available supply, whether or not it
is renewable.

¢ The ILP formulation of the adaptive energy management model.

e An exact algorithmic strategy, defined as OPTTS, which based on a brute-force search
combinatorial analysis solves the ILP optimally.

®  The discussion of possible algorithms to tackle the hardness of the ILP and the computational
complexity of OPTTS.

* A heuristic solution defined as FASTTS that based on a prepartitioning method produces
solutions with a reduced running time (as compared to the optimal) and is applicable to
large-scale environments.

¢  The evaluation of the strategies OPTTS and FASTTS through extensive simulations in order to
confirm the improvements in energy consumption and demand processing.

Tables 1 and 2, respectively, present a list of the acronyms and most relevant notations used
throughout the paper. The rest of the paper is organized, as follows. Section 2 discusses the related
work. Section 3 introduces the problem of efficient energy consumption, the requirements, and the
management mechanisms for the adaptive consumption of available energy. Section 4 presents the ILP
formulation related to the energy management model. Section 5 describes OPTTS for solving the ILP
problem optimally. A discussion of possible heuristic algorithms is addressed in Section 6. The heuristic
solution, FASTTS, is presented in Section 7. Section 8 presents an overview of the deployment of the
algorithmic strategies in the NFV domain. The evaluation results are discussed in Section 9. Finally,
the conclusions and future work are drawn in Section 10.

Table 1. List of acronyms and corresponding definitions.

Acronym  Definition Acronym  Definition
Cs Critical Services IoE Internet of Energy
DC Data Center IoT Internet of Things
DR Demand Response MANO  Management and Orchestration
EC Energy Consumer NCS Non-Critical Services
EM Energy Manager NFV Network Functions Virtualization
ES Energy Supplier NFVO NFV Orchestrator

HEMS Home Energy Management System SDN Software Defined Network

ICT Information and Communications Technologies SFC Service Function Chain
ILP Integer Linear Programming VNF Virtual Network Function

Table 2. List of notations and corresponding definitions.

Notation Definition Notation Definition
l Priority identifier, I € {1,--- ,L} TZ; Lifetime of the service k
L Number of priority levels Tik it Starting time of the service k
m Time interval where Pgg > 0 TG Starting time of Prg
N Number of services Tg General or maximum time-shifting value

k

Shw

OPTTs  Optimal or exact algorithmic strategy Backward time-shifting of service k

PZ;’I Power demanded by service k with priority / 5o Forward time-shifting of service k

Pp Aggregated power demanded uk Priority of service k

Prs Available power in the system w Maximum time horizon in the system
Pnr Power from Non-Renewable sources wWR Weight associated to renewable energy
Pr Power from Renewable sources OPgrs Standard deviation of Prgg

Sk Service identifier, k € {1,--- ,N} OTs Standard deviation of T¥
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2. Related Work

This section reviews the related work. Section 2.1 describes the ICT participation in energy
management systems, including NFV-based approaches. Section 2.2 presents the key features of
our proposal.

2.1. ICT-Based Energy Management Systems

In recent decades, the ICT infrastructure—especially IoT technology—has been identified as a key
factor in the design and deployment of future energy systems because it enables the implementation
of advanced energy monitoring, consumption, and management schemes [10]. Many studies have
analyzed energy efficiency in IoT systems from different points of view, but the integration of IoT
infrastructures in the operation of energy systems is still under development and it is a hot research
topic at this time [7]. In this context, several research works have been proposed to encourage the
use of ICT-based architectures, mechanisms, and strategies in energy systems. For instance, in [7],
the authors survey the features, specifications, communications interfaces, and challenges in the
design and deployment of IoT-based systems for energy management purposes in different application
environments, such as smart homes, smart power grids, and smart cities.

Given that IoT and DCs infrastructures have been identified as potential enablers for the
deployment of DR programs, several studies have been proposed in this area [11]. For example,
in [12], Wei et al. proposed an IoT-based common information model and a communication framework
to deploy a DR energy management system for industrial consumers. The proposal mostly analyzes
the operation from the facility side (i.e., from the ECs-side), and the experimental results demonstrate
that the interoperability between entities (ES and ECs) not only results in improvements in energy
efficiency, but also a reduction in the energy cost on the consumer side. Meanwhile, in [13], the authors
present a HEMS that includes sensors, local energy production (from photovoltaic panels), and a
central hub for monitoring energy consumption and executing the DR strategies for controlling loads.
The results show that the integration of IoT technologies and renewable energy in the housing sector
optimizes energy performance and it is a sustainable practice for reducing carbon emissions. On the
other hand, DCs infrastructures, due to characteristics, such as advanced monitoring capabilities,
significant influence on the operation of power grids, constant growth, and highly automated
computational resources, have been considered to be suitable candidates for implementing DR
programs that can cover neighborhoods or entire cities [11]. Subsequently, DCs in DR schemes
enabled by communications standards, such as the OpenADR Communication Specification [14] or
the NFV technology, can act as an Energy Manager (EM) and coordinate the voluntary change in
consumption patterns from ECs. This action is performed by executing management mechanisms
(e.g., workload scheduling) to adapt consumption to generation over time [15].

Regarding NFV, this technology has been used in energy management for several specific
applications. In power grids, for example, Niedermeier et al. [16], proposed an NFV-enabled
virtual advanced metering infrastructure network to transmit energy-related information about
power consumption and production, with the aim of improving energy management. In mobile
communications, the use of NFV to improve energy management and achieve energy efficiency has
also been explored. In [17], the authors use the GWATT tool [18] to estimate the energy savings for
three NFV use cases: Virtualized Evolved Packet Core, Virtualized Customer Premises Equipment,
and Virtualized Radio Access Network. Meanwhile, other works [19,20] are focused on optimizing
energy consumption and minimizing the energy footprint of the mobile network infrastructure
(i.e., the transport networks and network functions) through the virtualization and management
capabilities that are offered by NFV. Another interesting application field that is gaining momentum
is drone-based communications, in this regard, Tipantufia et al., in [21], presents an NFV-based
energy-aware management scheduling approach for a drone fleet with 5G connectivity capabilities
that aims to guarantee a desired level of service availability. All of these works demonstrate the
applicability of NFV in deploying energy efficient systems.
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2.2. Features of Our Proposal

Our proposal is aligned with the requirements of future energy systems [10], because it considers:
(i) the use of ICT infrastructures (NFV and IoT technologies) in energy management processes [22];
(ii) the use of renewable resources in energy provisioning [22]; and, (iii) adaptive consumption
(consumption adjusted to the generation) with customer-side participation [23]. Most research works
address energy efficiency by minimizing consumption or encouraging energy savings, whereas our
proposal seeks the adaptive energy management of available supply, whether or not it is renewable.
Technically, the adaptive consumption procedure is achieved by executing management mechanisms
that aim to optimize the use of the available power or minimizing the waste of power at all times
(both points of view completely equivalent).

In addition, energy management in our proposal is not solely approached from the supplier side,
as described in [16], or solely from the customer side, as discussed in [12], nor is it exclusively focused
on a specific infrastructure (e.g., network resource), as shown in [19]. On the contrary, our proposed
solution presents the mathematical models of the ES and the ECs, and the formulation of the adaptive
consumption model. The complexity that is related to adaptive energy consumption is also analyzed,
and the performance metrics and algorithmic strategies are described in detail to motivate future work
in this field.

3. Adaptive Energy Managements: Requirements, Components, and Mechanisms

Section 3.1 introduces the problem of inefficient use of available energy and an overview of the
NFV-enabled ecosystem for energy management. Section 3.2 describes the requirements for adaptive
energy consumption. Section 3.3 presents the characterization of provisioning and consumption,
as well as the management mechanisms that enable the optimal use of available supply.

3.1. Problem Statement and Ouverview of the Energy Management Ecosystem

Because energy production is finite and not always synchronized with consumption,
suppliers frequently face periods of energy scarcity or abundance. This operation condition produces
that the energy demands cannot be processed due to a lack of supply or that generated energy may be
wasted if it cannot be consumed or stored. Subsequently, inefficient energy distribution and use can
cause partial or total energy shortages during specific periods (peak load hours) or in certain places,
and an increase in tariffs for consumers. Therefore, the proper management of available energy at all
times is essential. Accordingly, we propose an IoT and NFV-enabled adaptive energy management
solution that is focused on the efficient (optimal) consumption of available power, whether or not it
is renewable. The adaptive consumption procedure is carried out using management mechanisms
(e.g., workload scheduling using time-shifting capabilities) implemented through algorithmic solutions
and deployed on an NFV-enabled cloud computing infrastructure, as shown in Figure 1. In this
context, if needed, Ref. [5] presents a detailed description of an NFV-enabled architecture for efficient
energy management.

In summary, as illustrated in Figure 1, an IoT and NFV-enabled ecosystem for adaptive energy
management is composed of three main components: (i) an ES, which provides power to the ecosystem;
(if) an NFV-Enabled EM, which manages services (energy demands from ECs) and energy resources
(from the ES), and it is responsible for executing management algorithmic strategies that enable the
efficient/optimal use of available energy; and, (iii) the ECs, who demand energy and modify their
energy consumption (advance or delay demand execution) according the instructions that are received
from the EM. The requirements and management mechanisms for adaptive energy consumption are
presented below.
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Figure 1. Overview of an Network Functions Virtualization (NFV)-enabled adaptive energy
management ecosystem.

3.2. Requirements for Adaptive Energy Management

Adaptive consumption of available energy: for optimal use of available energy, the consumption
pattern must be adapted to the existing energy resources at all times, whether or not they are
deterministic (this is the case when the energy comes from renewable sources). In order to carry
out this procedure, the ECs must collaborate with the ES and be willing to shift the execution of
services (i.e., advance or delay consumption) according to availability. In this way, the ES can
stimulate consumption or propose the deferment of services during periods of surplus or shortage,
respectively. The cooperation between ES and ECs is defined by means of contracts in which
technical (service parameters) and economic (pricing schemes) aspects are established. Technically,
the consumption adaptation procedure is executed through management mechanisms, such as
those described in Section 3.3.3.

Customer-side participation in the energy management process: in an adaptive energy management
system, the ECs must interact with the ES. The level of interaction between these stakeholders
can be fully automated or may require end-user participation, depending on the characteristics of
each service and application environment (e.g., residential, industrial, or public infrastructures
scenarios). In summary, each time an EC requests energy for service execution, a handshake
process must be established with the ES (technically, this process is performed by the EM;
see Figure 1), in which information on energy demands and available resources is exchanged.
With the collected information, the ES (technically, the EM) must perform the corresponding
calculations in order to inform the ECs of the consumption conditions (i.e., the services to
which energy can be allocated and their respective execution time). This procedure is described
in more detail in Section 3.3.3. Regarding the functional requirement, in order for ECs to
participate in the energy management ecosystem, they must have automated IoT capabilities to
allow communication (with the ES) and manageability (activation/deactivation of consumption).
Currently, a large number of devices are manufactured with embedded communication systems.
In addition, if needed, affordable platforms (e.g., Arduino, Raspberry, or ESP32 platforms) can be
integrated into virtually any device in order to provide connectivity and automation capabilities.
In this context, different protocols, interfaces, and IoT solutions can be used for different purposes
and applications. However, a discussion of specific solutions for these purposes is beyond the
scope of this paper.
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e ICT infrastructure for the establishment of communication between components: the communications
infrastructure is a fundamental component of an adaptive energy management system [10].
This infrastructure must enable the reliable and secure exchange of information and
instructions related to energy management (i.e., information on service parameters, notifications,
and consumption indications). Different communication technologies can be used to interconnect
the components (ES-EM-ECs), as shown in Figure 1. However, the most suitable option of
an underlying network to communicate the different stakeholders is the Software Defined
Networking (SDN) technology due to complementarity with the NFV realm [24]. Regarding the
ownership, operation, and maintenance aspects of the ICT infrastructure, different options can
be analyzed. In the first instance, the ICT infrastructure could be leased by energy suppliers
and distributors, but it is expected that, with the massive connectivity and IoT and IoE trends,
the energy sector will invest and deploy sophisticated communications networks. The current
smart grids could be used as a baseline infrastructure for this purpose.

e ICT infrastructure for performing management strategies: the ecosystem for adaptive energy
management requires an entity that coordinates all actions between the ES and the ECs. In the
scheme presented in Figure 1 these functionalities are performed by the EM; this component
is normally part of the ES and is in charge of performing all calculations and executing all
strategies (algorithms) that are associated with energy management from ES to ECs. In this regard,
Ref. [5] demonstrates that NFV technology deployed on cloud computing infrastructures is an
ideal solution to meet the scalability, flexibility, and reconfigurability requirements of adaptive
energy consumption. An NFV-enabled EM can grow proportionally (increase in computing,
storage, and networking resources) according to the varied requirements of the ECs, and it can
dispose of the Management and Orchestration (MANO) entities [6], so that all the components
of the generation and consumption ecosystem work in a coordinated manner. Thanks to NFV
technology, the manageability of the ECs through the underlying network (e.g., SDN) is separated
(abstracted) from the functionality (i.e., management strategies), a feature that enables energy
management in different scenarios (e.g., HEMS, companies, or smart cities).

®  Primary use of renewable energy sources and control of their contribution: although this requirement is
not indispensable in optimizing the consumption of the available supply, our proposal encourages
the primary use of green energy and the transition to 100% renewable energy systems, as an
emissions-aware and sustainable solution. In this regard, the proposed energy management
mechanisms, such as workload scheduling through time-shifting capabilities, prioritization
in energy supply, or rejection of energy demands if necessary, enable the optimal use of the
sporadic energy capacity from green sources such as solar or wind. Furthermore, given that the
change towards zero-emission energy systems is gradual and it requires the co-existence of both
renewable and non-renewable sources, controlling the contribution of each source according to
its availability and need is an important parameter in the operation of the ES.

3.3. Components of the NFV-Enabled Ecosystem and Proposed Energy Management Mechanisms

3.3.1. Energy Supplier

In the ecosystem for energy management, the ES is equipped with advanced control and
monitoring systems, performs the energy-mixing process (Process to obtain energy for direct use,
combining different primary energy sources [25]), and it may be composed of several suppliers or
sub-suppliers. For analytical simplicity, in the proposal, the ES is regarded as a single entity and it s
characterized by its power production capacity. The power level delivered by the ES, or available power
in the system, defined as Prg has an initial time Tfﬁ-f and a duration equal to m. The Prg is de facto the
power received at the point of consumption, regardless of losses, and it is a combination of the power
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obtained from renewable sources (Pr), such as hydroelectric, solar, and wind, and from non-renewable
sources (Pyr), such as coal, natural, and gas, as indicated in Equations (1)—(3), respectively.

Pps = Pr + Pnr 1)
PR = Pgs X wg )
Py = Pgs x (1 —wg) 3)

where the weight wg € [0, 1], controls the contribution of the renewable energy in the total generated
power Pg;. Thus, the wgr = 1 if the provisioning is exclusively from green sources.

3.3.2. Energy Consumers

The ECs are the IoT infrastructures that demand energy to execute services (i.e., workloads, jobs,
or applications). They have processing, networking (e.g., SDN compatible), and control (automation
systems to activate or deactivate the consumption) capabilities. The ES manages the ECs through
the EM. In the proposed energy management model, the ECs are characterized by their energy
consumption. Subsequently, an energy demand referred in also as a service is characterized by: (i) an
identifier k, with k € {1,---, N}; (ii) a starting time (Ti];it); (iii) a power demanded (P;l‘); and, (iv) a
finite duration or lifetime (Té‘). For simplicity, the management model assumes that P;‘ is invariant
during TZ;. Besides, the calculations for energy use optimization consider the joint action of all N
services, which demand a total power demanded equal to Pp, a value that is equivalent to the sum of
each service.

Given that the execution of some services is more important than that of others in a realistic
environment, the energy management model also considers the prioritization in the power supply by
including a priority-level identifier /, with I € {1,..., L}, to each service. These priority levels can be
defined in the contractual terms between the EC and the ES [15], and with this information, the EM
can identify the services that cannot be processed if Pgs < Pp. The ecosystem (EM) prioritizes the
processing of the services with the highest priorities (i.e., the demands are processed in descending
order, with I = 1 being the highest priority level). The Pp considering the prioritization level of
demands can be expressed as:

N L
VkeNVIeL: Pp=Y Y P} )
k=11=1

The services, according to their priority level, are categorized as Critical Services (CS) and
Non-Critical Services (NCS). The CS (i.e., services with [ = 1) cannot be shiftable in time, their execution
is mandatory, and consequently, the system must always guarantee their energy provisioning.
Some examples of CS are services (devices) used for disasters, emergencies, surgical interventions
and human life support, and road safety for passengers and drivers. Instead, NCS (i.e.,l € {2,...,L})
can be shifted in time, their execution is critical, and they may even not be executed if Prs < Pp.
Some examples of NCS include entertainment systems, home air conditioning systems, services that are
associated with cleaning (washing machines and dryers), and non-essential home automation system.
The power demanded by the CS, the NCS, and the Pp, is presented in Equations (5)—(7), respectively.

N

k,cs _ k1
Py = kz1 P; (5)
Pk,ncs _ % i Pk,l (6)
d - d
k=11=2

PD _ Pllic,cs + Pg,ncs (7)
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3.3.3. NFV-Enabled Energy Manager and Mechanisms for Adaptive Consumption

The energy adaptation process is continuously carried out every time that an EC requests energy
consumption. Thus, before using energy, the ECs notify the EM of their demands. The EM performs
the calculations (execution of algorithmic strategies) for the efficient (optimal) utilization of available
energy. As a result of this procedure, the EM knows the service(s) that can be executed and their
execution time (a service can be advanced, delayed in time, or rejected). Subsequently, the consumption
instructions are sent to the ECs, and the energy allocation is performed for the service(s) that can
be executed. Depending on the amount of Prg, the ES through the EM can promote an increase or
decrease in consumption through the anticipated or delayed execution of services. Figure 2 shows a
summary of the adaptation process between components.

Energy supplier Energy Consumer
(Energy Manager) .
Power grid (power flow)
(; Communications network (information flow) ~

Connection establishment s

Energy request (consumption parameters)

% Energy adaptation request
DR energy Energy adaptation reply
management Energy allocation
strategies Energy provisioning

Figure 2. Energy adaptation process (handshake between the Energy Supplier (ES) and the Energy
Consumer (EC)). Adapted from [5].

The strategies that are considered by the EM to optimize the use of Prg are described below and
they are used in the model that is presented in Section 4 and in the algorithmic strategies described in
Sections 5 and 7.

*  Adaptation of consumption to availability by exploiting time-shifting capabilities of services:
the adaptation of the consumption pattern to the availability, is achieved with the use of temporary
displacement on the service. Thus, a service k (Sx) can be affected by a time-shifting (Tsk) forward
(i-e., Tffw) or backward (i.e., Tskbw) within a finite interval of time horizon W. These parameters
are independent for each service Sy, and the management strategies (algorithms as shown in
Section 5) deployed in the NFV domain determine the efficient (optimal) scheduling of services to
optimize the use of Prg.

*  Prioritization in energy distribution and rejection of demands: if Peg < Pp, the the EM allocates the
energy resources to the services according to the category to which they belong, i.e., the supply
is prioritized for the execution of CS (I = 1). The remaining energy is allocated to the NCS in
decreasing order according to their priority level (from / = 2 down to [ = L). Thus, services with
a lower priority level are more likely to be unprocessed or rejected. If all services have an equal
level of priority, the service scheduling algorithms aim to use energy as efficiently as possible
and, second, to try to meet as many demands (services) as possible. This procedure is explained
in detail in the algorithm in Figure 3. Other alternatives that could be analyzed in future work,
if Pg < Pp, are the degradation of the quality of services (e.g., decrease in display brightness of
a device), and the use of energy stored in batteries during energy surplus periods. A service S
is completely defined by the parameters that are listed in Table 3, and an example is illustrated
in Figure 4.
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Figure 3. Flow chart for AR computation of OPTTS when there exist service rejection.

Analysis for each combination of services
CombServ (CombServ; € AllCombServ)

j=1
T

ARCambServi =100%

Identification of the services of CombServ;
Sorting of services in descending order of
priority, from the lowest priority L up to

highest priority /
v

Analysis of services that can be rejected per
priority level, / = L

v

Combinations of rejectable services:
combRejServ
Combinations of non-rejectable services:
combNonRejServ
Power demanded per cobNonRejServ
Residual power per cobNonRejServ

All priorities or
Pres=0

Computation of metrics
for all combNonRejServ
Metric 1: op,, Metric 2: AR

Sorting of combinations

¥

Selection of the best combination

Final AR for CombServ; (ARcombserv;)
1

AllCombServ

Table 3. Parameters of services or power demands.

Parameter Description

Unit/Comment

N Number of services

Sk Service identifier

L Number of priority levels

1 Priority identifier

PZ; Power demanded by service k
Tikr}(it Starting time of service k

T; Lifetime of service k

skbw Backward time-shifting of service k

Skfw Forward time-shifting of service k
uk Priority of service k

Integer number

ke{1l,---,N}

Integer number

le{1,---,L}
Power units
Time units
Time units
Time units
Time units

Integer number

10 of 31
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Figure 4. Graphical representation of a service and interaction with the available power. Parameters of
S N=1,L=3,1=2PF; =3T,,=10T; =11, =2T] =2andU’=2.

7 Tinit

4. ILP Problem Formulation: OptTs

The proposed adaptive energy management approach uses a discrete-time model divided into
time slots of equal duration that in practical implementations can correspond to different time units
(e.g., 10-min or one-hour time intervals). This time model offers flexibility to the system in order to
deal with various applications, processes, and environments. For instance, if services evolve slowly,
then time slots that correspond to extended periods (e.g., units of hours) could be used. Conversely,
if the system presents rapid changes or transitions, time intervals representing small units of time
(e.g., units of minutes or units or tens of seconds) could be employed. Thus, a service Sy may have a
Té‘ of one or several time slots and could be shifted zero, one, or more than one time slots, if needed.
When considering these conditions, the adaptive consumption of available supply is achieved through
the minimization of power wasted. This problem is defined by an objective function and several
constraints, as shown below.

4.1. Objective Function

With finite Prg and Pp values, the objective to minimize the unused or remaining available power
can be conceptually expressed as the difference between these parameters, as shown in Equation (8).
In each time slot i, this objective function of can be expressed, as shown in Equation (9).

minimize {Pgs — Pp} (8)

Vi € W : minimize { ﬁ (Pesli] — Ppli]) } )

i=1

The difference between Prs and Pp is defined as Residual Power (Prrs), and it is given by:

w
Vi€ W: Pres = ), (Pes[i] — Ppli]) (10)
i=1

Thus, the objective of the proposed adaptive energy management model is to minimize the Pggs,
given the constraints presented below.
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Domain Constraints

The role of energy provisioning by the ES and the non-negative Prps is ensured
by Equations (11) and (12), respectively.

Pes[i] >0 (11)
(Pes[i] — Ppli]) > 0 (12)

Given that, mathematically, the Pp can be greater than Prg, a situation that occurs due to a low
generation or high load, this negative difference or missing power is denoted as Lack Power (P ack)-
The Py sck represents the amount of energy that is needed to process all demands under the current
conditions of the system. This parameter can be expressed as:

o) | Pesli] = Ppli]| if Pes[i] < Ppli],
Prackli] = { 0 otherwise. (13)

4.2. Capacity Constraint
The maximum capacity of the system is determined by the maximum Prg value and it is defined

by Equation (14).

N L
Vke NVIeL: Y Y PM o xi] < Pesli], x € {0,1} (14)
k=11=1

where the decision variable x; represents the allocation of energy resources for the processing of the

service Sk.
1 if the service Sy is processed at
x[i] = time slot i, (15)
0 otherwise.

In the proposal, it is assumed that the processing of complete services, i.e., partial processing of a
service is not allowed. In fact, within the framework of a DR system, these services are considered to
be rejected or not-processed demands. In addition, the consistency between the service and its priority
is validated by Equation (16). This condition ensures the existence of the service for its corresponding
unique priority level.

and for TZ;,

Pl _ { Power demanded by S; with priority [ if the Sy with priority ! exists, at TX (16)
=

init
0 otherwise.

4.3. Time Constraints

The analysis of the whole system starts at a time zero (f = 0), which is assured by Equations (17)
and (18). Moreover, Equation (19) ensures a finite maximum time horizon Equation (19), in which all
services and time shiting values (T,fw, T}‘w) can be analyzed.

VkeN: TE, >0 (17)
VkeN: {TE, — Tk} >0 (18)
Vk e N: W > max{Tl;, + Tj + Tf, } (19)

In addition, related to the domain constraint presebted in Equations (11), (20) and (21) ensure the
supply of non-zero power during a time interval m, within the total scope of the system.

Ty 20 (20)
W > T5 +m (21)
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For simplicity, in the nomenclature in the rest of the paper, the time slot identifier has been omitted.
However, this parameter has been considered in the design of the scheduling strategies presented in
Sections 5 and 7.

4.4. Hardness of the Problem

The energy resources allocation for a set of services, each with a finite power demanded and a
priority level subject to maximum available capacity, as described in Equation (14), can be seen as the
objective of the Knapsack problem of placing the most valuable or useful items without overloading
the knapsack [26]. Thus, following this analogy, we can conclude that the problem of minimizing
PrEs while respecting the capacity and time constraints falls into the general category of the Knapsack
Problem, so that its complexity is A/P-hard.

5. Exact Solution: OPTTS

In order to find the optimal service scheduling that minimizes the Prrg, a brute-force search
combinatorial algorithm OPTTSCOST has been developed following the criteria that are presented
in Section 3. This algorithm computes all possible combinations of N services (i.e., S1,52, -+, SN),
considering all possible values of time-shifting (i.e., {Tskbw, e 0,00, Té‘fw}) to which the services
may be subject. After analyzing all of the combinations, the one with the best performance metrics
is selected, which represents the best combination of services with a Pp (Pp.;,») that produces the
minimization of Pgrgs and allows for the execution of as many services as possible. Figure 5 depicts an
example of the scheduling strategy for N = 3 services.

/4
2 5 r______rf_; 2 5 29 @Number of service
R=I/ ! =4 = . . .
g ! ! 2 — (3) g 4 N DPower demand with no time shifting
§ 3 i i g 3 g 3 @ @ Power demand with forward time shifting
o2 | ;_ ﬂ? 2 @ o 2 DPower demand with backward time shifting
a ! e 5 a @ o |
1 1 1 2 1 1 Available power, Prg
2 4 6 2 4 2 4 6|5 Residual power, P,
Time slots Time slots Time slots e POWER, “res
(a) Pgs. (b) Pp, N = 3. (c) Scheduling of demands.

Figure 5. Example of scheduling strategy for N = 3 services and Ts = 1 [time slots]. Time-shifting
applied to services: Tslbw =1for Sy, T2 =0 for S,, and Tg’fw =1for Ss.

5.1. Metrics

5.1.1. Standard Deviation of Residual Power (opg,)

This performance metric measures the amount of Prps of a given combination of services
(Combserv). The better use of Pgs produces a lower op,,; value. If Pgs = Pp if all power is used
Opgps—=0- The expression of op,.. within m is:

Z (PREScomb]-)2

Vj € AllCombServ: opy.s = -
)

(22)

5.1.2. Acceptance Ratio (AR)

This performance metric measures the percentage of processed services. If Prs < Pp, then one or
several services should be rejected (RejServ), using certain criteria as shown in Figure 3. The AR is
given by:

N — RejServ

AR
N

% 100 % (23)
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when considering the AR metric, the missing power can be rewritten as P; gcx(ar=100%)- In addition,
the value of m, so that all power demands are met (AR = 100%) can be written as:

N
LRl P x Tk

24
Brc (24)

where, the numerator and denominator represent the mean values of consumption and provision,
respectively. In the case that all services have the same duration (Té‘) and consumption (PZ; ), m can be
defined, as indicated in Equations (25) and (26).

N pk k
" P xT
mlnit = {Z"—’ d__d w (25)
Pgs — mod(Pgs, Py)
mInit + TX — mod ( mInit, T if mod (mInit, T* #0,
m— d ( d) f d (26)

mlInit if mod ( mInit, T§ =0.

5.1.3. Standard Deviation of Time-Shifting (o7)

This performance metric measures, the TX (backward or a forward) performed by the different
services that form a Combserv. The ideal value is o; = 0, because it represents that all services are
executed respecting their initial execution time (i.e., no time-shifting application). The or; can be
expressed as:

-
(Zvken Ts7)?

N (27)

Vj € AllCombServ : ot =

5.2. Optimal Power Management Strategy OPTTS

The strategy OPTTS is composed of a main algorithm, which is responsible for analyzing all
combinations of services, and a secondary algorithm, which computes the AR metric, as shown in
Figures 3 and 6, respectively. For practical reasons in the nomenclature, in the rest of the document,
the parameter that represents the service priority level (/) has been omitted; however, it has been
considered in the design of the scheduling strategies. Additionally, to simplify the analysis, especially
for the computation of complexity (Section 5.3), we consider Tskbw = Tskfw = T;, VSk. The steps that
were carried out by OPTTS are summarized, as follows.

5.2.1. Variations per Service (VarServ)

A variation of a service is the result of the application of a specific discrete time-shifting value
on the Ti,;it' The algorithmic strategy analyzes all possible variation within {Tskbw, cee 0,000, Té‘fw .
The total number of variations analyzed by OPTTS are defined as AllVarServ and they are given by.

AllVarServ =2 x N x Ts + N (28)

5.2.2. Combinations of Services (CombServ) and Computation of Metrics

The algorithmic strategy simultaneously analyzes the configuration of all N services. Specifically,
it performs the combinatorial analysis of all existing variations of a service with all variations of the
other services. The set of N different variations is defined as a combination of services (CombServ),
which demands a certain power level Ppgy,;. Analysis of all variations of all services (VarServ)
produces a total number of combinations AllCombServ, which is expressed as:

AllCombServ = (2 x Ts +1)N (29)
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This step mainly contributes to the growth of complexity; for instance, N = 10 and Ts = 4,
produce over three-billion combinations to be processed. For each CombServ, the algorithm evaluates
the performance metrics.

3
Input parameters: Pgs, THES, m, N, Sk,

PX, TE.. T¥ Tsk,, TS}‘W, Uk L
=1
T<
13
Variations per service: VarServ in [Tsy,,, Ts}‘w]

Total number of variations: AllVarServ
L 2

Combinations of services : CombSery
Total number of combinations: A//CombServ

y
Power demanded per combination: P, I=1+1
Residual power per combination: Pggg, . Pg¢ update
Computation of metrics (Pgs = Pres)

Metric 1: 0ppg, Metric 2: AR, Metric 3: o
AR computed by Algorithm Fig.5
¥

Sorting of combinations, selection of the best
combination, and energy allocation

All priorities or
Yes
I Final metrics: Pggg, AR, Pryck I

End

Figure 6. Flow chart of the exact scheduling algorithm.
5.2.3. Sorting of Combinations and Selection of the Best Combination

Nested quicksort applied to all combinations, according to: (i) ascending op,,, (ii) descending
AR, and (iii) ascending or;. Subsequently, the best combination (i.e., the first in the sorted list) is
selected, the power is allocated to the services that can be processed, and the metric Prrg is computed.
The best CombServ represents the optimal scheduling of services, minimizing the Prgg value. In the
example presented in Figure 5, when only considering a priority level, the combination that enables
the Prgs minimization is shown in Figure 5c.

5.2.4. Iterative Analysis of Priorities

The algorithmic strategy OPTTS repeat the steps above for each priority level until all priority
levels are analyzed or until the system has no power (Prgs < 0). Finally, the algorithm presents the
optimal service scheduling and the performance metrics Prrs, AR, and Py 4ck.

5.3. Complexity Analysis of OPTTS

The computational complexity of OPTTS, as shown in Equation (29), is related to the exploration
of all search space, which is given by the values of N and T¥. Equation (29) shows that an increase in
N leads to a non-linear growth in complexity; however, the impact due to the exclusive action of T¥ is
not evident. The first derivative of the linearized version of Equation (29) is evaluated with respect
to N in order to analyze the contribution of TX in the growth of the problem, as shown in Figure 7.
Subsequently, the obtained results allow for us to verify that an increase in the value of T¥ also causes
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a non-linear growth of the search space. Thus, the increase in N or T¥ leads a non-linear growth of
complexity, which can be reflected in greater use of computational resources or an increase in the
execution time. The main (Figure 6) and secondary (Figure 3) algorithms contribute to the increase of
complexity; however, the major contribution comes from the three first steps of the main algorithm.
The growth rate of OPTTS as a function of N can be expressed as:

FI(Ny=N+2xNxTs+N)+(2xTs+1)N (30)

where, discarding low-order terms, the last term in Equation (30) reveals that OPTTS has an exponential
complexity with an order of growth O(2N), according to the Big-O notation. The complexity of OPTTS
indicates the limits and drawbacks for applicability to large values of N and T¥ and the computational
capacity (in terms of processing and memory) needed for its execution.

¢

01.2*

Q

s 1

) L

50.8

= 06f
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é 02r

- N I R Y N B
& 1 2 3 4 5 6 7 8 9 10
17 Ts [Time slots]

Figure 7. Example of growth rate of OPTTS based on T;. Parameter: Tk = {0,---,10}.
6. Analysis of Heuristic Strategies

The N'P-hard nature of the problem (Section 4.4) and the intractability of OPTTS for large values
of N or TK (Section 5.3) motivates the development low complexity strategies to find feasible solutions
within a reasonable computing time. In this context, Section 4.4 has proven that the Prrs minimization
falls into the category of a 1/0 Knapsack Problem. Specifically, it can be categorized as a multiple-choice
Knapsack Problem [27], due to the production of the different variations (VarServ) belonging to the
same service. Subsequently, the existing literature proposes a number of techniques and strategies
for efficiently solving this problem [27,28], taking into account that, in some cases, the reduction of
the execution time is achieved by relaxing the exact solution. Based on the literature surveyed and to
cover as far as possible the main categories of methods or techniques that were developed for solving
the 1/0 Knapsack Problem (in our case, the Prrg minimization problem), we have examined four
strategies. According to the degree of difficulty in implementation, the examined strategies are: (i) a
Pre-partition strategy (FASTTS), based on a divide-conquer approach of the total number of analyzed
services; (ii) a Greedy strategy, based on a constructive algorithm in which the best VarServ is selected
based on a performance criterion (e.g., tradeoff Prgs and AR); (iii) a metaheuristic Genetic algorithm
that evolves as a function of the analyzed population and genetic operator (crossover and mutation)
applied; and, (iv) a Dynamic programming approach, which is an optimization and programming
technique that can be applied for efficiently solving a variety of computational problems. Table 4
summarizes the features and implementation challenges of the possible heuristic strategies.

Based on a preliminary assessment of the strategies presented in Table 4, in this article we
have decided to analyze, in detail, the Pre-partitioning strategy, as shown in Section 7, because its
implementation requires few modifications on the algorithm OPTTS. Besides, preliminary results
show that this method can produce high-quality solutions in a reduced time when compared to the
optimal strategy. The implementation and evaluation of the other strategies will be addressed in detail
in future work.
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Table 4. Heuristics strategies analyzed to solve the Prrg minimization problem efficiently.

Strategy/Technique General Description Features and Challenges
Strategy based on a divide-and-conquer method. In - Easy implementation from OPTTs.
this strategy, the original set of N is divided into -  The strategy can be seen as a generalized
subsets. The OPTTS strategy is applied to each of implementation of OPTTS.
Pre-partitionig these subsets. This operation reduces the complexity -  The size of the search space can be controlled, because
Strategy by reducing the VarSer and the CombServ in each it can decrease as divisions increase.
processed subset. This heuristic strategy iteratively - The control of the accuracy and running time within
processes all sub-problems, and the solution is certain thresholds can be set based on the number of
obtained as a combination of partial solutions. divisions implemented.
- The strategy must be built from scratch and there are
Iterative and constructive algorithm, in which the many feasible implementations.
Greedy VarSer to be processed, one at time,k ils seklec‘red basetd - Good running time performance and possible
Approach on the value of a parameter (e.g., P;", T; or the ratio configuration for achieving a linear complexity growth.
PP between p’;frl and Tl’;)/ respecting the Prg and with the However, there is no guarantee on the quality of the
aim of first minimizing Prgs and then increasing AR. solution, because it can vary widely according to the
criterion established to select the VarSer.
Strategy inspired by the behavior of biological -  Medium complexity implementation due to features
systems. First, an initial population of chromosomes and requirements of the proposal (e.g., time-shifting,
is created, in which each chromosome represents a priorities, rejection).
possible CombServ (solution) formed by randomly -  Nondeterministic solution. It depends on the random
. selected VarSer. Later, the population evolves values chosen in the creation of populations (initial
Genetic . . o . . . .
Algorithm along with generations considering the action of the and offspring) and the selection of genetic operators
& genomic operators (crossover and mutation) and the (crossover and mutations).
selection of fittest individuals (combinations with - Good running time performance, but the final solution
the best Prpg metric). Finally, in the last generation, may require many generations if the parameters
the solution with the best fitness function (minimum for population creation or stop criteria are not
PgrEg) is selected. properly established.
Strategy that uses a dynamic programming
. method.' The algorlthm' simplifies the 'analys1s - Good running time performance, but difficult
Dynamic of N simultaneous services by analyzing and . . . . .
. . . . . implementation due to the two-dimensional behavior
Programming solving them one at a time. Systematically, using a .
h of the problem (power and time parameters) and
Approach bottom-up approach, the results of a previous set of

. . . multiple-choice analysis for VarSer selection.
services (considering their VarSer) are stored and P ¥

used for solving a greater N.

7. Heuristic Solution: FASTTS

The proposed strategy is defined as FASTTS and it is inspired by the divide-and-conquer
algorithm [29]. This approach is a well-known design technique and it is the key to solving a variety
of problems, such as classification, binary search, or the multiplication of large numbers [29]; it has
been proven to produce efficient solutions with little or none loss of accuracy [30], and it only requires
few modifications on OPTTS for implementation. The main idea of FASTTS is to reduce the set of total
combinations to be explored through the division of the original set of N services into two or more
subsets of equal or similar size and complexity, which are defined as partitions and they represent the
individual subproblems to be solved using OPTTS. These partial solutions are then merged to obtain
the best possible (optimal or suboptimal) scheduling of services while keeping the objective of Prgs
minimization. Thus, FASTTS reduces the complexity by analyzing the sum of the combinations of all
partitions, rather than the combinations produced by the original set of services. The total number of
possible partitions (numPart) is given by:

1 < numPart < N (31)

The heuristic strategy can be seen as a generalization of OPTTS (when the numPart = 1 partition),
and it might impose limits on the performance with respect to OPTTS. For instance, if the system
requires a faster running time, a greater number of partitions can be performed at the possible cost of
performance degradation; conversely, if the system demands a very low-performance degradation,
then a few number of partitions can be considered at the cost of an increase in complexity. Figure 8
depicts an overview of OPTTS and FASTTS for N = 8 services. In addition, the size of each partition
(lenPart) is also restricted to being an integer due to the integer nature of N.
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Figure 8. Overview of OPTTS and FASTTS strategies. Parameters: N = 8, Tsk =1, and numPart = 2
partitions for FASTTS.

7.1. Suboptimal Power Strategy FASTTS

Figure 9 explains the heuristics algorithm FASTTS, the steps carried out are briefly summarized
below, and its complexity is analyzed in Section 7.2.

Input parameters: Pys, THES, m, N, Sy,
PE Thie Td TSt Tsf, US L,
numPart, i =1

T
Processing of Partition;
Analysis foreachpriority level, /=1

Variations per service: VarServin [Ts ;,‘W,Tsfkw]

Total number ofvariations: A/l VarServ
L2
Combinations of services : CombServ
Total number of combinations: AllCombServ

¥
Power demandedper combination: Py I=1+1
Residual power per combination: Ppgg, Py update
Computation of metrics (Pgs = Pres )

Metric 1: gp, .o, Metric 2: AR, Metric 3: o7
AR computed by Algorithm Fig.5
v

i=i+1
Sorting of combinations, selection ofthe best Py update
combination, and energy allocation

I Allocation of resources per Partition; I

No

All partitions

Yes

Merging ofpartial results: Best combination and
allocation ofenergy resources

v

Final metrics: Prgs, AR, Prack I

End

Figure 9. Flow chart of the heuristic algorithm.
7.1.1. Prepartition Phase

The set of N services is divided into numPart partitions of equal or similar size.
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7.1.2. Computation of Combinations per Partition

For each partition, the algorithm calculates the variations per service (VarServ), the combinations
of services (CombServ), and their metrics op,,, AR, and o7, then it selects the best combination of
services for each of the priority levels within the partitioned domain. After that, the Pp and Prrg are
calculated. Thus, the Prrs of a previous partition is the Prg of the next partition.

7.1.3. Iterative Process

The algorithm analyzes all partitions in order from Partition; up to Partition,,mpa+.

7.1.4. Merging of Partial Solution

To obtain the final scheduling of the services, all of the partial solutions are combined.
Subsequently, the final metrics Pres, AR, and Pp 4cx(ar=100%) are computed.

7.2. Complexity Analysis of FASTTS

The complexity of FASTTS is related to the number of combinations that must be analyzed,
which is calculated as the sum of the combinations of all the partitions. The first steps performed by
the heuristic (i.e., variations per service and combinations) define its complexity and as a function of N
the growth rate of FASTTS is given by Equation (32). Moreover, if all of the partitions have the same
size, the growth rate can be expressed, as shown in Equation (33).

numPart
fIN)=N+(2xNxTs+N)+ Y (2xTs+1)lerPart (32)
i=1
f(N) =N+(2><N><T5+N)+numPart><(2sz+1)W (33)

Thus, discarding the low-order terms in Equation (33) the complexity of FASTTS is O(ZW )
i.e., the heuristic strategy presents a non-linear growth rate; however, it is much smaller than OPTTs.
In this context, in order to assess the difference between the exact and heuristic solutions in terms of
the number of combinations and, subsequently, in terms of complexity and execution time, the relative
gain parameter (G) has been defined, as indicated in Equation (34).

(2x Ts+1)N

GT = Z?glmPurt(z x Ts + 1)lenParti

(34)

The Gt parameter only considers the most dominant terms of Equations (30) and (32) and allows
an estimate of how many times less-complex or how many times faster the heuristic solution is,
as compared with the optimal. Figure 10 shows growth rate for OPTTS and FASTTS, considering for
this latter numPart = 2 and numPart = 3 partitions. This example reveals a considerable reduction in
the size of the problem (for N > 2, because no partition is performed when N = 1) when compared
to OPTTs. For example, for N = 10 services the exact algorithm produces exactly 282.475.249
combinations, while, with numPart = 2, this number is reduced to 33,614 combinations (Gt ~ 8403),
and with numPart = 3 the number decreases down to 3087 combinations (Gt ~ 91,504). Assuming
a running time of 100 [hours] for OPTTS, FASTTS is able to solve the problem (suboptimal solution)
in approximately 43 [seconds] if the numPart = 2, and in roughly 4 [seconds] if the numPart = 3.
The reduction in complexity would not only be reflected in a shorter execution time, but also in a
reduction of the computational requirements (processing and memory). Thus, FASTTS could also be
deployed at the edge of the network or near to the end user (i.e., at fog computing level).
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Figure 10. Comparison of problem size between OPTTS and FASTTS. Parameters: N = {1,---,10},
Ts = 3 for all Si.

8. Energy Management Algorithmic Strategies a Service Function Chains

Figure 11 illustrates an example of the deployment of the algorithmic strategies OPTTS and
FASTTS decomposed as VNFs, forming Service Function Chains (SFCs), and coordinated by the NFV
Orchestrator (NFVO). This implementation can exploit all the benefits that the NFV realm can offer
i.e., the VNFs could be moved, migrated, shared, deployed in parallel mode, or used by other SFCs if
necessary. In addition, the operation of algorithmic strategies through SFCs can be further improved
by addressing aspects, such as optimal allocation of VNFs or the optimal composition and allocation
of SFCs when considering energy efficiency, as discussed in [31,32], respectively. These considerations
are beyond the scope of this paper and they can be addressed in future work.

( End-to-End Network Service )
r L 1 | | —— OptTs flow
Information VNE Forwarding Graph (VNF-FG) Information FastTs flow
from towards
consumers 4" Energy Supplier consumers
Data IN_ | Monitoring \ ( VNF4 l.of VNES )., VNF6 | MANO
End Point Combinations of Computation Scheduling
A K Service i it Decision A VNF
. v T MANAGER
Energy Consumer [~ | (VNFM)
Status e v
VNF7 VNF8 I
s Consolidation of M
partial results (NFVO)
\ ! y [
p I VIRTUALIZED
. oo - INFRASTRUCTURE
Compute, storage, and networking resources & MANAGER
(VIM)
NFV Network Infrastructure (NFVI)

Figure 11. Example of the deployment of OPTTS and FASTTS strategies as SFCs in the NFV-enabled
Energy Manager (EM).

Depending on the application scope (i.e., requirements for accuracy, scalability, or speed in
the allocation of energy resources) and the amount of available physical resources (NFVI), the EM
could choose the execution of OPTTS and/or FASTTS. The SFCs that are associated with the energy
management strategies are listed below.

e SFCoprs: VNF, - VNF, - VNF; - VNF, - VNEs - VNF;.
e SFCpastTs: VNF, - VNE, - VNFE; - VNF; - VNE; - VNFs - VNFs - VNFs - VNF;.

In practical implementations, some VNFs can be concurrently executed, such as in the case of
VNF; and VNF,. In addition, certain VNFs may demand high processing and memory resources
for their execution, such as VNF; and VNFg. For instance, VNF; requires high computational
capabilities for computing all possible combinations, which can exceed tens or hundreds of millions of
combinations for OPTTS. Instead, VNFs demands both high memory and processing capabilities to
store the partial solutions and consolidate them in order to obtain the final service scheduling.
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9. Evaluation

In this section, a performance evaluation of the exact and heuristic strategies is carried out
through extensive simulations and according to the metrics Prgs, AR, Prack. The obtained results
are compared with traditional scenarios in which no strategy is applied (i.e., when the T = 0). First,
the case studies are presented in Section 9.1. Later, the evaluation of the strategies in small and large
scale scenarios is discussed in Sections 9.2 and 9.3, respectively. Finally, a summary of the results
obtained is presented in Section 9.4. The strategies are implemented while using Matlab (Matlab
R2017b) and they were run on a machine with a 3.33 GHz x 12 cores Intel Core i7 Extreme processor,
24 GB RAM, and 24GB of SWAP memory.

9.1. Case Studies

The strategies are evaluated in six case studies, which are summarized in Table 5. These cases
studies correspond to small and large-scale scenarios. The differentiation in the scenario sizes is given
by the value of N, because this parameter has a direct impact on complexity, as discussed in Section 5.3
(Equation (30)) and Section 7.2 (Equation (33)). Thus, case studies with N > 20 services are categorized
as large-scale scenarios; otherwise, they are classified as small scenarios. The first four cases in Table 5
correspond to the small-scalse scenarios in which both OPTTS and FASTTS are evaluated. The fifth
case in Table 5 is used to analyze FASTTS and the modification of partitions in large-scale scenarios.
Finally, although case F is a small-scale scenario, only the evaluation of FASTTS is carried out due to the
number of services and T¥ that is not feasible for OPTTS. In this regard, the consumption information
for the HEMS scenario of case F is adapted from [33] and detailed in Table 6.

Table 5. Summary of simulation parameters.

Scenario Prs T};’jst m N Ti’:u‘t T;‘ P;‘
Case A: Demands 3 constant 3,2,1, for given by
within Prg within m Tg =1,2,3 Equation (26) ? 4, V5 1-3 L VS
Case B: Demands 2 constant Tk given by 8 0, for S; — S4 and 13 1S
outside Prg within m d Equation (26) Tg +m, for S5 — Sg ok
2 constant uniform dist.
Case C: Random Td . 0 6 6 k—1,YS; random 1, VSi
within m
[1-3], VS
Case D: Random Pd 3 constant uniform dist. - uniform dist.
and Td within m 0 10 6 k—1,VS random random
[1-3], VSk [1-3], VSk
Case E: Large scale 3 constant 0 50, 100, 50, 100, k—1.VS unf;fg;s:“' un;i;(;r;r(\)rc:st.
L =1, V5
Random Pd and Td within m 1000 1000 [1-3], VS, [1-3], VS,
according to . . .
. . according to according to  according to
Case F: HEMS Figure 12a 0 24 20 Table & Table & Table &

and within m

For the case F, the priorities of the energy demands are detailed in Table 6, for the rest of cases
there is a single priority level (i.e., [ = 1). Additionally, for all cases, W is given by Equation (19). In the
simulations, four generation and consumption profiles are used. Figure 12 illustrates the profiles
used in the evaluation of FASTTS in HEMS, the rest of profiles are depicted in Figure 13. Although in
Figure 13, for simplicity in the analysis, a flat-energy profile is used, this does not mean a restriction for
algorithmic strategies, which are capable of working with any demand and supply profile. The selected
profiles allow for the analysis of the operation of the strategies in: (i) shortage power states, due to a
high concentration of demands, as shown in Figure 13a, where the time-shifting of some demands
enable full energy utilization; (ii) periodic transitions between periods of scarcity and abundance
of power, as shown in Figure 13b, where energy is only harnessed if all demands are shifted in
time; (iii) more realistic situations where the services have different (random) values of Pfi‘ and T,
as depicted in Figure 13¢; and, (iv) consumption peaks due to efficient load distribution and that
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produce an extra effort in generation as shown in Figure 12a. The simulations have been repeated
50 times, when considering a confidence interval of 95%, in order to ensure the quality and stability of

results for the random scenarios.

Table 6. Description of Home Energy Management Systems (HEMS) scenario that corresponds to the

Case F in Table 5.
Load Description Demanded Power [W] Quantity [ Ti’:u't Té‘
Freezer 210 1 1 0 24
Refrigerator 650 1 1 0 24
Oven 1800 1 3 16 3
Lighting 25 9 1 17 7
TV 140 1 1 18 5
Laptop 90 1 1 17 5
PC 140 1 1 18 6
Vacuum Cleaner 600 1 1 19 3
Water Heater 2000 1 2 17 6
Air-Conditioner 1280 1 2 14 7
Washing Machine 1350 1 3 19 3
Dishwasher 1250 1 3 18 3
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Power [W]
5
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3000 r I — L { ]
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(a) Generation and consumption profiles before the
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(b) Generation and consumption profiles after the
application of FASTTS
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Figure 12. Performance evaluation of FASTTS in the HEMS scenario. Parameters: N = 20 and
numPart = 2, the rest of parameters according to Case F in Table 5.
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Figure 13. Energy and consumption profiles of the case studies.
9.2. Analysis for Small-Scale Scenarios

9.2.1. Results in Small-Scale Scenarios

The evaluation of OPTTS and FASTTS is presented in Figures 14 and 15, and it shows that the
operation of the strategies contributes to a better use of Prs, which is reflected in a minimization of
Pres and Py 4ck(Ar=100%), and in an increase of AR. In all scenarios, OPTTS and FASTTS improve the
performance of the system by enabling the processing of services that could not be executed under
normal conditions (T = 0). As the value of time-shifting increases, the system has more facility
to move the workloads and, progressively, it is able to use all Pgg (i.e., Prps = 0 and AR = 100%).
Table 7 summarizes the improvements (AR gain) achieved by OPTTS and FASTTS. The most notable
improvement is obtained in Case B, in which, under normal conditions, no service could be executed
due to lack of energy. In the random cases, instead, lower AR gains are reached when compared to
Case A and Case B, because the conditions of the scenarios make it such that it is not possible consume
all Prg or reach an AR = 100%. An example of the combinations processed and the computational
resources needed for the execution of the algorithmic strategies is presented in Figure 16 for Case B.
In the scope of simulation, Figure 16 shows that FastTs requires approximately 4% RAM usage and
44% CPU usage when compared to capacity used by OptTs to process 100% of energy demands.

Table 7. AR metric for small-case scenarios.

No Strategy OptTs FastTs
Scenario
Initial AR Final AR AR Gain Final AR AR Gain
Case A 33.33% 100% 66.67% 92.59% 59.26%
Case B 0% 100% 100% 100% 100%
Case C 74% 93% 19% 92% 18%
Case D 67% 95% 28% 94% 27%

Case F 75% - - 95% 20%
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Figure 14. Performance evaluation of the OPTTS and FASTTS for Case A and Case B. Parameters:
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Figure 15. Performance evaluation of OPTTS and FASTTS for Random Cases in small-scale scenarios.
Parameters: N = 6 and numPart = 2 for all cases, the rest of parameters according to Case C and Case
D of Table 5.
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Figure 16. Combinations processed and computational resources used to execute OPTTS and FASTTS
within the scope of simulation. Parameters: According to the Case B in Table 5, with numPart = 2
for FASTTS.

Regarding the application of FastTs in the HEMS scenario, Figure 12b shows that, even though
the improvement in the AR metric is only 20%, as shown in Table 7, the application of the adaptive
management model produces a reduction of the peak power. This operational feature in energy
systems is essential to allow uniform power distribution among users and avoid extra generation from
non-renewable sources. The evaluation in the HEMS scenario is also useful to verify that the FastTs
strategy not only allows to exceed the limit in the number of services processed by OPTTS, but also the
maximum values of TX. In case F, a T¥ = 12 h enables the processing of 95% of energy demands.

9.2.2. Comparison between OPTTS and FASTTS

To evaluate the difference between strategies, the criterion of approximation ratio (p) has been
adopted [28]. This parameter estimates how many times bigger the approximate solution is compared
to the exact result, and it is typically defined as the ratio between the suboptimal and optimal
solutions [28]. However, because Prrs and P;ocx may be zero, its definition has been adapted
to the conditions of the strategies, as shown below:

k
0—1- 1 i |OptTs; — FastTs;|
Tk

s j=1 diSOptTSi (35)

j 1 if OptTs; = OptTs,
disOptTs; = 56
1sOptTs; { |OptTs; — OptTsg|  if OptTs; # OptTs. (36)

where, the first term in Equation (35) represents the exact solution, while the second term corresponds
to the mean absolute error of all time-shifting values, except for T¥ = 0. As shown in Equation (35),
each absolute error 7 is weighted to the disOptTs; parameter (Equation (36)), which corresponds to the
maximum distance between the optimal value (OptTs;) and the initial conditions of the system (OptTs,
when T = 0) in order to obtain the proportional error of each time-shifting i. The p parameter ranges
from 0 (no improvements in the system) to 1 (when FASTTS and OPTTS produce the same results);
an intermediate value (0 < p < 1) represents the similarity or closeness factor to the optimal solution
(FASTTSs = OPTTS x p). For a better understanding of the computation of the p factor, Figure 17
presents an example for metric AR of Case A. The computations of the absolute errors that correspond
to T¥ = {1,---,3} and the resulting p 4 are presented in Equation (37).

1 <66.7 —55.6 100—-88.9 100 — 88.9> — 078 (37)

= 1 —_ =
PAR 37\ 667-333 " 100-333 ' 100333
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Figure 17. Example to evaluate the difference between OPTTS and FASTTS. Parameters: Case A, AR,
and T¥ = 2 [time slots] for all Sj.

The result of Equation (37) shows that the heuristic solution is similar to the optimal solution in a
factor equal to 0.78 (78% similarity), or that FASTTS can produce a solution that is within ~1.3 times
the optimal result. The p factors for small-scale scenarios are summarized in Table 8 and reveal that
FASTTS produces not only near-optimal or optimal solutions, but also a stable performance. Even in
the worst case (i.e., pp, ,, = 0.71), the heuristic solution is within only ~1.4 times the optimal result.
In addition, for random scenarios we observe that the best results are achieved for Case D. Therefore,
the conditions of this case study are taken as the baseline for the evaluation of FASTTS for larger

N values.

Table 8. Approximation ratio for small-scale scenarios.

Case A Case B CaseC CaseD
P Tdl Td2 Td3 Tdi1 Td2 Td3 Td Td, Pd
0 Pgrs 0.78 0.83 1 1 0.70 0.87

1 1
PAR 1 0.78 0.83 1 1 1 0.73 0.97
OPpack 1 092 098 1 1 1 0.71 0.95

9.2.3. Running Time Analysis

The simulations results show that FASTTS is hundreds or thousands of times faster than OPTTS,
and the specific difference or real gain in time (Gg) between both strategies not only depends on the
number of combinations to be processed, but also on the problem instance and the computer equipment
used. Table 9 summarizes the average running and the Gy factor for all small-scale scenarios.

Table 9. Average running time in small-scale scenarios.

Cases Running Time OPTTS [s] Running Time FASTTS [s] GRr
Case A 5.04 x 10° 1.00 x 102 ~5000 x
Case B 9.72 x 10° 2.20 x 102 ~4400 x
Random scenarios, 50 iterations 1.87 x 10% 8 x 10! ~230x
Case F - 3.53 x 10° -

9.3. Analysis for Large-Scale Scenarios

A set of simulations for large N values have been conducted in order to demonstrate the scalability
of FASTTS. These tests have been limited up to N = 1000; however, this is by no means a restriction of
the applicability of FASTTS to larger scenarios.
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Results Large-Scale Scenarios

For these scenarios, the number of partitions has been calculated so that the size of each partition
is smaller than four services (e.g., numPart = 15 partitions for N = 50 services). This criterion has been
considered based on the high quality results and p factor obtained for Case D (Table 8). For practical
reasons, only the evaluation of FASTTS for N = 100 is shown in Figure 18, and the rest of metrics for
the different N values and partitions schemes are summarized in Table 10. The simulation results
demonstrate that FASTTS enables a better Prg utilization (decrease of Prgs and Pj 4ck, and increase of
AR), and in all cases. it produces improvements greater than 13%. In addition, the metrics obtained
for the different N values (Table 10) are very similar to each other because of the use of the same
power generation and consumption profiles (Figure 13c), which can be used in order to estimate the
performance metrics for larger scenarios (N > 1000) as long as the profiles of Figure 13c are used.

The results presented in Table 10 also show that an increase in the number of partitions can
significantly reduce execution time, keeping quality in solutions. This reduction is mainly observed
for the smaller scenarios (e.g., N = 50), because the total execution time grows linearly based on the
number of partitions processed. To enhance the running time for larger scenarios, a method that could
be complemented to FASTTS is the parallel processing of partitions (each partition solved in a different
core), so the total execution time would decrease proportionally as the number of cores increases.

0.3 100 i
[ 0.4
0.25
80 X \"\u»*.._¢
02 - //' 03
. S 60 g .
Jeoist TN z 40,
A ol \ < 40 gl v
0.05 20 ‘
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Ts [Time slots] Ts [Time slots] Ts [Time slots]
(a) PRES/ N = 100. (b) AR, N =100. (C) PLACK/ N = 100.

Figure 18. Example of performance evaluation of FASTTS for a random case in a large-scale scenario.
Parameters: According to Case E of Table 5, for N = 100 and with numPart = 30.

Table 10. Average values of metrics and running time for FASTTS in large-scale scenarios for T = 4.

Running Time,

Pres Prack o o
Parameters Pes Pes AR (%) Gr (%) 50 Iterations [s]

N numPart No Strategy FASTTS No Strategy FASTTS No Strategy FASTTS FASTTS FASTTS
15 0.08 0.34 74.56 15.36 2.13 x 10°

50 20 0.26 0.09 0.42 0.35 59.20 72.72 13.52 3.04 x 102
25 0.10 0.36 72.66 13.46 5.84 x 10!

30 0.08 0.34 74.55 16.65 5.16 x 10°

100 40 0.26 0.09 0.42 0.35 57.90 73.02 15.12 8.01 x 102
50 0.10 0.36 72.68 14.78 1.67 x 102

300 0.07 0.35 74.77 15.97 1.67 x 10°

1000 400 0.26 0.08 0.43 0.35 58.80 73.99 15.19 433 x 10*
500 0.10 0.36 72.89 14.09 1.32 x 10*

9.4. Summary of Results

The simulations results demonstrate that the exact and heuristic strategies enable the efficient
(optimal) use of Prg, which is reflected in the decrease (minimization) of Prrs and Pr4ck and in the
increase of AR as the time-shifting value increases. From the analyzed scenarios, we have verified
that OPTTS and FASTTS offer improvements that range from small increases in consumption and
the processing of services to the full use of available power and, consequently, the processing of all
services, as shown in Case B, where the final AR = 100%. In addition, the evaluation of strategies
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demonstrates that an appropriate value of T for the full utilization of Pgg is the mean size of T¥,
since this value represents the complete displacement of the service. However, when considering that
the computational complexity depends on T, as shown in Equation (30), smaller values of TX equal
to Tsk = 1 [time slot] or T;‘ = 2 [time slots] can be used for practical applications. The simulations
reveal that the greatest improvements are obtained with small T¥ values. For example, for all random
scenarios, with Té‘ = 1 [time slot], the system reaches improvements over the 50%, with Tsk =2
[time slots] the improvements are 30% and, as the value of TX increases, the percentage of improvement
obtained decreases. Thus, this condition demonstrates that, for real implementations, large intervals of
Tk are not required to achieve notable improvements in energy consumption.

Regarding the heuristic strategy, the numerical results of the metrics Prrs, AR, Prack and p
(Table 8) indicate that FASTTS is able to produce near-optimal or optimal solutions (e.g., in Case B)
at a very low complexity cost (Table 9). In small scenarios, FASTTS offers solutions, which, in the
worst case, are within only ~1.4 times the optimal result and are at least three orders of magnitude
faster than OPTTS. In addition, in large-scale scenarios, we have verified that FASTTS improves the
energy utilization (decrease of Prgs and P; 4ck and increase of AR) and offers improvements of at
least 13% for all cases, as long as the strategy considers partitions smaller than six services to guarantee
its performance. The simulation results reveal that a controlled increase in the number of partitions
can produce high-quality solutions but with a reduced running time, which, in all cases, is of at least
an order of magnitude lower than the original partition scheme.

Finally, as a final result of the whole paper, Table 11 summarizes the requirements,
proposed solutions, and algorithmic strategies in order to carry out an ICT-enabled ecosystem for
adaptive energy management restricted to availability.

Table 11. Summary of requirements and proposed solution for adaptive energy management in an
Internet of Things (IoT) and NFV enabled ecosystem.

Requirement Proposed Solution Comments
- Use of management mechanisms to adapt consumption
to generation: (i) time-shifting capabilities on energy
demands; (ii) prioritization of energy supply according
to the priority level of the energy demand; and, (iii . N
. .  prionty gy dgen ( . ) The adaptation process must be carried out
Adaptive consumption the rejection of energy demands if available supply is
. . - . constantly, and one or all of the proposed
constrained to insufficient to cover all consumption. .
o . . management mechanisms can be used for
availability - Implementation of the management mechanisms

through algorithms, which must be deployed in this purpose.

infrastructures with high computational capacity due
to the complexity involved in the adaptive energy
management process.

Consumer-side
participation

- Availability of user-side connectivity and the use

of IoT technologies to participate in the energy
management ecosystem.

Interaction with the ES (specifically with the EM)
through a dynamic and programmable underlying
network (e.g., an SDN-based solution). This network
must guarantee a secure and reliable exchange of

consumption data and instructions between ES and ECs.

The participation of the ECs in the energy
management process is established through
contracts with the ES. These agreements detail
all of the technical aspects that are related to
the energy demands (e.g., priority) and the
possible incentives (e.g., reduce bills) that the
ECs can receive by modifying consumption
patterns to the availability.

Dynamic behavior
and scalable
computational
capacity for adaptive
energy management

Dynamic behavior by implementing algorithmic

management strategies through VENs forming SFCs.

These VENSs can be created, activated, or modified on
demand according to the conditions of consumption
and generation.

Scalable computational capacity (mainly in terms of
processing power and memory) available when NFV
technology (i.e., algorithmic strategies) is deployed on
cloud computing infrastructures.

An NFV-enabled solution also provides the management
entities (e.g., the NFVO) so that the ES, EM, and ECs
work orchestrated.

The NFV technology could be deployed on the
operations centers available in current smart
grids. Additionally, the communications
standards, such as SCADA, could migrate
to programmable solutions such as SDN.
Through these updates, current energy
systems could begin their transition to
adaptive consumption management.
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Requirement

Proposed Solution

Comments

The primary use of -
renewable energy

Specification of the contribution of renewable energy
sources in the total supply. In the characterization of the
ES in Equation (3) is considered to be the factor wg that
could be set to the value of 1 to promote the exclusive
use of green energy.

Dynamic consumption, according to the sporadic energy
production from green sources such as solar or wind, by
encouraging early or delayed consumption according
to availability. To leverage green energy production
capacity, all proposed management mechanisms can be
used; however, the use of time-shifting capabilities is
preferred to avoid the rejection of demands.

To ensure energy sustainability, future
energy, and communication systems
demand the progressive use of green energy
sources. Additioonally, the generation from
renewable energy sources is a key enabler in
the road to a true IoE. In this regard, adaptive
energy management solutions are essential
to delivering reliable and high-performance
energy systems.

Adaptive energy
management with
applicability to -
small-scale scenarios

Use of the algorithmic strategy OPTTS deployed on an
NFV and IoT enabled adaptive energy management
ecosystem. The OPTTS solution produces the optimal
utilization of available supply but at the cost of high
computational resources and running time.

Use of the algorithmic strategy FASTTS deployed on
an NFV and IoT enabled adaptive energy management
ecosystem. The FASTTS solution produces suboptimal

The optimal solution OPTTS is implemented
using a brute-force search method and it has
an exponential complexity that depends on
the maximum values of N and Tsk, as shown
in Equation (30). Reported limits in the
simulation scope are N = 9 services and T¥
= 6 time slots.

utilization of available supply, but with lower resource
utilization and running time, as compared to OPTTS.

- Use of the algorithmic strategy FASTTS deployed on The heuristic solution FASTTS is implemented

Adaptive energy an NFV and IoT enabled adaptive energy management while using a d1v1de-and-c.onquer .approach.
management with ecosvstem. The performance and the quality of the The complexity of FastTs in non-linear, but
applicability to y : P q y the growth rate is much lower than OPTTS.

solutions of FASTTS can be modified by varying the

large-scale scenarios .
8 number of partitions used.

Reported limits on simulation scope are N =
1000 services and TX = 12 time slots.

10. Conclusions

This paper studies and formulates an NFV-Enabled energy management model for renewable
and non-renewable energy sources in order to analyze the requirements and concerns about service
scheduling algorithms. Strategies, OPTTS, and FASTTS to enable efficient utilization of available power
are proposed for small and large-scale IoT scenarios. The evaluation results demonstrate that the
proposed algorithmic solutions that are supported by NFV result in improvements that range from
small increases in the consumption and processing of services up to the full utilization of Prg and the
processing of all demands (e.g., in Case B, AR = 100%). This better Prg utilization is reflected in a
decrease of Prgs and Pp ocx and in an increase of AR with respect to the non-application of the energy
management solution (i.e., TX = 0); specifically, we have verified that the greatest improvements in
energy consumption are achieved with small T¥ values (e.g., T¥ = 1).

In terms of complexity, it is verified that the Prps minimization problem, when considering
management strategies, such as the optimal workload scheduling and service rejection, is NP-hard and
that its optimal solution, OPTTS, has an exponential complexity that depends on the values of T¥ and
N (Equation (30)). This demands a robust and scalable computing infrastructure like the one offered
by NFV. In this context, in order to propose less complex and more scalable solutions, some heuristic
approaches have been analyzed, and a pre-partition strategy, FASTTS, has been evaluated. Regarding
the comparison between the exact and the heuristic solutions, in small scenarios, FASTTS is at least
three orders of magnitude faster that OPTTS, producing similar or equal results (e.g., in Case B).
In the worst case, the heuristics solution is within only ~1.4 times the optimal result. In addition,
in large-scale scenarios, the evaluation of FASTTS, for different services and partitioning schemes also
demonstrates improvements over 13% in all cases.

Future work will be devoted to the analysis of the incorporation of an energy storage component
for ensuring the execution of CS, the study of the service prioritization capability in the context of
network slicing, and the development of more scalable and faster approaches that are based on the
rest of the heuristic strategies presented in Table 4.
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