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Abstract: This paper proposes an approach to the geospatial assessment of a territorial road network
based on the fractals theory. This approach allows us to obtain quantitative values of spatial complexity
for any transport network and, in contrast to the classical indicators of the transport provisions of a
territory (Botcher, Henkel, Engel, Goltz, Uspensky, etc.), consider only the complexity level of the
network itself, regardless of the area of the territory. The degree of complexity is measured by a
fractal dimension. A method for calculating the fractal dimension based on a combination of box
counting and GIS analysis is proposed. We created a geoprocessing script tool for the GIS software
system ESRI ArcGIS 10.7, and a study of the spatial pattern of the transport network of the Ukraine
territory, and other countries of the world, was made. The results of the study will help to better
understand the different aspects of the development of transport networks, their changes over time
and the impact on the socioeconomic indicators of urban development.

Keywords: geoinformation technology; fractal dimension; territorial road network; box-counting
framework; script Python; ArcGIS

1. Introduction

The development of an efficient transport infrastructure is one of the most pressing problems
both for the whole territory of Ukraine and for other countries. As is known, a transport system has
fairly high dynamics of development, and the effectiveness of its function depends on the quality of its
organization and management. The presence of a large number of diverse properties and characteristics
makes it impossible and inefficient to manually process large flows of input information. This increases
the relevance of the development and implementation of automated approaches and analysis tools,
as well as appropriate tools for working with geodata. The best modern tool for the analysis of spatial
information is geographic information technology, which combines the functionality of traditional
cartography and intelligent data processing in geographic information systems (GISs) [1].

An important aspect of the application of GISs is solving environmental problems, including
terrain analysis, hydrological modelling, land use analysis and modelling, ecological modelling,
and ecosystem service valuation [2]. GIS techniques and procedures have an important role to play in
analyzing the multicriteria decision problems of planning and management. A variety of theoretical and
methodological perspectives on multicriteria decision analysis (MCDA) in GISs have been suggested
over the last 20 years [3]. Examples of spatial problems that are successfully addressed by integrating
MCDA and GISs are suitability multicriteria analysis and site selection analysis [4]. GIS technology can
also be useful in planning the development of engineering infrastructure facilities and the construction
of environmentally hazardous facilities [5]. In [6], practical examples of the use of GISs in sustainable
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urban planning are shown. GIS technologies allow one to observe and register changes in urban areas,
manage the complex process of urban growth, and also help assess the impact of various multicriteria
decision-making procedures for urban planning. Besides that, a GIS enables planners to develop and
analyze urban transport development models and solve various transport-related problems.

One of the important indicators characterizing the transport system of any country is the transport
provision of the territory. The transport provision level of the territory is traditionally estimated by
the transport network density, the calculation of which involves using the coefficients of Botcher,
Henkel, Engel, Goltz, and Uspensky [7]. A territory transport provision analysis example, based on
the calculation of the Engel and Uspensky coefficients for assessing the impact of the transport system
on economic security, is presented in [8]. The main drawback of the given coefficients is their use in
the calculation formulas of the entire area of the territory instead of the inhabited area, which does not
always adequately reflect the real picture. In order to take into account only the level of complexity of
the transport network itself, and to not tie the indicator of transport provision to the area, it is proposed
to calculate this indicator based on the fractals theory.

A fractal is a geometric figure that has the property of self-similarity; that is, it is composed of
an infinite number of parts, each of which is similar to the whole figure [9]. The basic property of all
fractal structures is their dimension. Although there is no exact definition of fractals, Mandelbrot B., the
scientist who was the first to introduce the concept of fractals into science [10], gave his definition, stating
that “A fractal is by definition a set for which the Hausdorff–Besicovitch dimension strictly exceeds
the topological dimension” [11]. Unlike Euclidean geometry, in which dimensions are expressed in
integers, the dimensions of fractal geometry can be expressed by fractional numbers between one and
two in a two-dimensional space [12]. The bigger the non-integer value of the Hausdorff–Besicovitch
dimension, the more irregular and complex the shape of the object.

The fractal geometry theoretical foundations development has contributed to the widespread use
of fractals to describe various spatial phenomena in urban geography, urban morphology, landscape
structure, and transport networks [13,14]. In [15], it was shown that the fractal geometry brings
very effective apparatus to measure an object’s dimension and shape metrics in order to supply,
or even substitute, other measurable characteristics of the object. Based on the fractal geographical
interpretation, scientists are exploring the relationship between various aspects of urban space and the
fractal dimension of cities and its changes over time [16,17]. In [18], it was shown how information
on the fractal dimensions of the urban bounder and urban area can be used as a parameter for
decision-making in the spatial development field, such as in the case of new residential area planning.
The calculation of the fractal geometry of urban land use, performed in [19], made it possible to study
the dynamics of urbanization and city expansion over recent years. Some aspects of the interpretation
of the results of fractal analysis, as well as the analysis of scientific publications on the use of fractal
models for urban analysis and planning, are presented in [20].

The calculation of fractal characteristics and research of the fractal pattern in the spatial structure of
urban road networks provide extremely useful information for urban planning [21,22]. In particular, [23] used
a modified box-counting method to describe the fractal properties of urban transportation networks and
investigated the relationship between the mass size of cities and the complexity of their road systems. In [24],
a box-counting method was applied to obtain a simple statistical model for determining the efficiency of
filling the space of the transport system and identifying the variation in the level of fractality within the city
itself and between parts of the city.

In this study, we propose a model for the geospatial assessment of the transport development of any
land area based on the fractals theory. By transport development, we mean the provision of a territory
with transport routes. This model will solve the problem that arises with the reliability of previous
indicators that assess the level of transport development, based on the ratio of the transport network
length and the territory area. Such areal indicators may give unreliable results when comparing the
transport development of different countries such as, For example, the territory of Bolivia, which has an
uneven population density associated with the presence of the Andean mountains, and the Amazonian
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jungle, which contributes to the lack of transport networks in that part of the country. Such features
should be taken into account, and when calculating transport development, only the area of inhabited
areas should be taken into account.

The use of the territory transport development indicator on the basis of the roads fractal dimension
will allow for excluding the use of the territory area value and take into account transport network
structure peculiarities by itself, while also getting a geospatial estimate of the road network complexity.

Thus, the purpose of this study is to create a model for the quantitative geospatial assessment of
the territorial road network, based on the fractal dimension of roads and its implementation in the
form of GIS-oriented software (scripted geoprocessing tool) for ArcMap 10.7.

2. Statement of the Problem

2.1. Classical Indicators of the Transport Provision of Territories

The concept of transport development of territories is associated with such concepts as transport
provision, which reflects the quality level of transport services for facilities and the population.
Obviously, the more developed the network of communication lines in a particular region, the higher
these indicators are. To assess transport provision, quantitative indicators are usually used that
express the ratio of the length of tracks to a unit area of a territory, or to a certain number of residents,
production volumes, or other factors. For example, there are the coefficients of Engel (1), Goltz (2),
and Uspensky (3) [8]:

kE =
L
√

SH
(1)

kG =
L
√

SN
(2)

kU =
L

3√SHt
(3)

where L is the length of the transport network in km, S is the area of the developed territory in
thousands of km2, H is the total population in thousands of people, N is the number of settlements,
and t is the total weight of the cargo sent to the territory.

When exploring the transport provision of a territory, it is not valid to compare the length of
the transport networks with the area of the territory. It is assumed that moving away from the areal
component and analyzing the level of complexity of the transport network itself may become more
rational. A good example is a study of the calculation of the transport provision of a territory based
on the theory of fractals, which is displayed in [25]. In contrast to the indicators in Equations (1)–(3),
an indicator based on the fractal dimension excludes the area of the territory and takes into account the
structural features and complexity of the road network itself, where the fractal dimension of each cell
of the territory reflects a certain level of its density of the road network.

2.2. Calculation of the Transport Provision of Territories Based on the Fractals Theory

It is known that the Hausdorff–Besicovitch dimension is a natural way to determine the dimension
of a subset in metric space. In three-dimensional Euclidean space, the Hausdorff–Besicovitch dimension
of a finite set is zero, the dimension of a smooth curve is one, the dimension of a smooth surface
is two, and the dimension of a set of nonzero volume is three. For more complex (fractal) sets,
the Hausdorff–Besicovitch dimension may not be an integer [26].

The determination of the Hausdorff–Besicovitch dimension can be considered by measuring the
dimension of a curve (Figure 1), which is covered by a fixed grid of squares with a side ε > 0. Each point
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of a linear object belongs to one of the squares. Squares in which there are no points are not taken into
account. The sum over all the squares covering the object (Hausdorff measure) has the following form:

mp =
∑

εp (4)

where p is an arbitrary parameter.
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There is a critical value of p0 such that lim
ε→∞

mp = ∞ for all p < p0 and lim
ε→∞

mp = 0 for all p > p0.
This value p0 = DH is the value of the Hausdorff–Besicovitch dimension.

For example, for a square Q having a unit size with ε = 1/10, the number of square boxes covering Q
equals N (ε) = ε−2 = (1/10)−2 = 100. The Hausdorff measure is mp (Q) = N(ε)εp = εp−2. Let us say ε→ 0.
Then, mp (Q)→∞ for all p < 2, and mp (Q)→ 0 for all p > 2. Thus, DH (Q) = DimQ = 2.

The dimension in general is determined by the law of similarity:

N(ε) ≈
1
εD (5)

By taking the logarithm of the right and left sides of Equation (5), we obtain

lnN(ε) = −Dlnε (6)

D = lim
ε→∞

lnN(ε)

ln(1/ε)
(7)

where N(ε) is minimal number of the square boxes covering the object and ε is the square box size.
Let us give a definition of the transport provision of the territory based on the fractals theory [20].
We will consider the geospace (territory) as a two-dimensional space, and the maximum transport

provision of the territory is the possibility of getting from each point of this territory to any other point
in the shortest distance.

By destination points, we mean areal objects (points) whose dimensions (area) in this scale of
research are negligible. Then, any territory can be represented as a finite number of such areal objects
on a certain scale. A hit at any point of the area of the object is equivalent to falling into its center.

Since it is necessary to cover with points the entire investigated territory, it is advisable to choose
the corresponding figure, a hexagon, as an area object. Thus, the transport development of the territory
will be at a maximum when all the centers of the hexagons are interconnected by faces (a linear object)
(Figure 2). These line features are actually roads on a territory map.
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Since any line to a certain scale is a fractal, the transport provision of the territory can be understood
as the desire of the roads to occupy the entire area on which they are located. Therefore, the level of
transport provision of the territory (TP) can be represented as the ratio of the fractal dimension of the
studied road to the dimension of the area (equal to 2) or, taking into account Equation (7) [25], this can
be expressed as

TP =
1
2

lim
ε→0

lnN(ε)

ln(1/ε)
(8)

3. The Main Research

3.1. Research Methodology

The research methodology provided for the development of a model for the geospatial assessment
of a territory’s transport development is based on the fractals theory, in accordance with Equations (7)
and (8).

In this study, the box-counting method was used to calculate the fractal dimension [9,27].
The essence of the method is as follows. The original dataset was split into a square box of size ε as a
fixed grid (Figure 1). Next, the minimum number of square boxes N (ε) that cover the original object
was calculated. Calculations of N(ε) were performed for various sizes of ε. For a small ε value, the
square box number should behave like ~ε−D, and in this case, logN(ε) = D·log1/ε. According to the
data obtained, we constructed a dependence of the following form:

lnN(ε) = f (ln(1/ε)) (9)

Then, we calculated its slope d, defined as

D = − lim
ε→0

lnN(ε)

ln(ε)
(10)

To find the slope of Equation (8) in logarithmic scale, we had to build the general linear regression,
expressed in the following form:

lnN(ε) = α+ βln(1/ε) + ∆ (11)

where ∆ represents the error of a linear approximation.
The transport development of the territory was calculated as the ratio of the studied road

dimension to the area dimension (i.e., a dimension equal to 2), based on Equation (8).
To implement the model, was created a Python script that calculated the fractal dimension for a

polyline shapefile with a road network in the ArcMap program of the ArcGIS platform. In accordance
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with the proposed model, the study area was covered with a network of hexagons of a given size.
Then, using the box-counting method, the road network fractal dimension and the territory transport
development within each hexagon were calculated, as in Equation (8).

The script execution result was a polygonal shapefile, the attribute table of which had a numerical field
added with the territory transport development’s calculated value for each polygonal object (hexagon).

As they were required for the script to work, base maps of the administrative area (boundary)
and the road network were imported from the OpenStreetMap dataset in .shp format [28].

Modeling was performed for the following countries: Ukraine, Germany, and Bolivia. To compare
their transport development level values, the same hexagon size was chosen, equal to 1000 km2, so that
most settlements had a single transport development and did not introduce additional errors into the
study on the selected scale of countries. In the attributive tables of polyline layers of the road networks
of countries, using an SQL query, only major trunk roads of international and regional importance were
selected. These polyline features are tagged with highway = (motorway; trunk; primary; secondary).

Testing of the script was also carried out for a large-scale map, representing the territory of the city
of Odessa (Ukraine). All road types were considered, including streets and roads within residential
areas. The hexagon area was chosen as 0.25 km2. The results obtained made it possible to compare the
network fractal dimension indicators within the same settlement.

3.2. Results

For geospatial assessment of the transport provision of territories, a geoprocessing tool was
created: an autonomous Python script that allowed one to calculate the fractal dimension for vector
geodata with a linear geometry type.

ArcGIS contains a large library of geoprocessing tools for spatial modeling and the analysis
of geographic data. The tools are grouped into toolboxes by the type of actions they perform
(e.g., 3D Analyst, Spatial Analysis, and Cartography) [29,30]. To provide access to all standard ArcGIS
geoprocessing tools via Python code, the ArcPy library was imported. In addition, the NumPy and
SciPy libraries were imported into the script, allowing the use of high-level mathematical functions
with data arrays, including data linear approximation [31,32].

Two inputs to the script were entered: a polygon shapefile with the administrative boundary of
the study area and a polyline shapefile with the road network (Figure 3). In addition, it was necessary
to indicate the area scale for fractal analysis (i.e., the area of one hexagon on the ground).
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Figure 3. Python script interface.

When running the script using the GenerateTessellation() tool, a polygon shapefile (Hexagons.shp)
was created with regular hexagons of a given area (Figure 4), which covered the study area and was
then used to calculate the fractal dimension of the roads. The attribute table of this layer contained an
ID column with a unique code for each hexagon object.
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Figure 4. Hexagon polygon shapefile covering the study area.

Using the Intersect() tool, the intersection of linear objects of the Roads.shp road network with the
Hexagons.shp hexagon layer was performed. According to these results, each section of the road was
assigned the ID of the hexagon in which it was located. The combination of road sections belonging
to one hexagon into a single object that had an ID that matched the hexagon ID was performed
using the Dissolve() tool. The resulting polyline shapefile would then be used in a script called
HexagonsDiss.shp.

The calculation of the fractal dimension was carried out in a cycle for each polygonal object from
the Hexagons.shp attribute table. In each iteration of the cycle, using the CreateFishnet() tool, a grid
was constructed with the cell size ε, and the number of squares N(ε) that covered all linear objects
(roads) inside the current hexagon was calculated.

Calculations of N(ε) were carried out for various values of ε. There were five steps. Each hexagon
was covered by a grid with 1, 4, 16, 64, and 256 squares, and the size of the square decreased by 1, 2, 4,
8, and 16 times, respectively (Figure 5).
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Figure 5. Steps for executing the box-counting method.

The calculation of the fractal dimension was carried out using linear approximation by the method
of least squares. As an estimate of the fractal dimension, the slope value of the straight line was used.
The following is a fragment of the program code for a script that calculates the coefficients α and β of
the linear function in Equation (10) using the least squares method:

#Target function
fitfunc = lambda p, x: (p[0] + p[1] ∗ x)
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#Distance to the target function
errfunc = lambda p, x, y: (fitfunc(p, x) − y)
#Minimize the sum of squares of a set of equations; p1 = [α,β]
p1,success = optimize.leastsq(errfunc, [0,0], args = (logx, logy))
For the example shown in Figure 5, changes to N(ε) as a function of ε are given in Table 1.

The regression line to estimate the fractal dimension is shown in Figure 6.

Table 1. The change of N(ε) versus different values of ε for the example in Figure 5.

Steps Step 0 Step 1 Step 2 Step 3 Step 4

N(ε) 1 4 11 28 65
ε 1 0.5 0.25 0.125 0.0625
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After performing linear regression, an equation of the following form was obtained:
ln(N(ε)) = 0.1992 + 1.4852ln(1/ε) + ∆. The slope of this curve is equal to the box-counting dimension
d = 1.4852. Accordingly, the level of transport provision, in accordance with Equation (11), is equal to
TP = 1.4852/2 = 0.7426.

Figure 7 shows examples of roads of various fractal geometries and the values of the indicator of
transport provision of the territory calculated for them.
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Figure 7. Fractal dimensions and transport utilization rates for different road patterns.

The script operation algorithm is shown in Figure 8. The result of the script was a vector layer of
hexagons, the attribute table of which contained calculated values of the level of transport provision
for each hexagon in the TP field. The resulting value fell in a range from zero to one.
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4. Discussion

Using the created script, as an example of use, a map of the transport provision of Ukraine was
constructed, shown in Figure 9.
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The area of the hexagonal cell of the fixed grid was chosen, equal to 1000 km2. The resulting
vector map, consisting of 710 polygon features, was classified by the TP field, which contained the
calculated values of the transport provision indicator in accordance with Equation (11).



Future Internet 2020, 12, 201 10 of 13

The script execution time was 44 m 54 s. For simulation, a PC with modest technical characteristics
was used: an Intel Pentium Processor G4400 (3 M Cache, 3.30 GHz) with an Intel HD Graphics
510 integrated graphics processor, 4.00 Gb DDR4 RAM, and an Asus H110M-K motherboard.
When using a PC with better performance, one should expect a reduction in script execution time.

In the territory of Ukraine, low values of fractal dimensions are observed in the absence of
settlements and an increase in its values in the vicinity of cities. At the same time, the relationship
between the size of the population of the city and the growth of the area with a high fractal dimension
index around it is clearly traced.

In percentage terms, in 11% of the Ukraine territory, transport provision is less than 0.5 (very low
value with a sparse road network). In 14%, the level of transport provision is from 0.5 to 0.625
(low value with a sparse road network; that is, there are single primary roads crossing the territory).
In 63%, the value of the indicator is from 0.625 to 0.8 (average value; that is, there is a network of
primary roads between settlements). Lastly, in 12%, a high level of transport provision appears in a
range from 0.8 to 0.855.

If we compare the transport provision of different countries around the world, we can see the
relationship between the population density and the growth of the territory with a high fractal dimension
index. In Figure 10, (a) shows the result of calculating the transport provision of Bolivia, located on the
continent of South America, which has a low population density, and (b) shows Germany, a country
in Europe with a high population density. The area of the hexagonal cell of the fixed grid was also
chosen to be 1000 km2. The simulation results are presented in Table 2. In 61% of Bolivia’s territory,
the indicator of transport provision is less than 0.5, including 47% of the territory that lacks a road
network (i.e., the indicator is zero). This is due to the presence of large areas of Amazonian rainforests in
this part of the country. The Bolivia territory is also crossed by the Andean mountains, which contributes
to the scarcity of transportation lines. In the remaining 39% of the territory, various values of transport
provision are observed, with a predominance of values in the range from 0.5 to 0.79. As for Germany,
about 79% of its territory has a transport provision index above 0.625, including 34% above 0.75.Future Internet 2020, 12, x FOR PEER REVIEW 11 of 14 
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Table 2. Comparative characteristics of the calculation of transport development of a territory.

Specifications Ukraine Germany Bolivia

Area of the country (km2) 603,628 357,386 1,099,000
Length of paved roads (km) 78,660 45,395 31,216

Population (thousand people) 49,980 83,020 11,350
Hexagon area (km2) 1000 1000 1000
Number of hexagons 710 429 1190

Script execution time (s) 2694 1652 2435
TP < 0.5 (very low) (%) 11 11 60

TP = (0.5 ÷ 0.625) (low) (%) 14 10 23
TP = (0.625 ÷ 0.8) (average) (%) 63 67 17

TP = (0.8 ÷ 0.875) (high) (%) 12 10 –
TP = (0.875 ÷ 1) (very high) (%) – 2 –

Density of roads (km/km2) 0.130 0.127 0.028
Coefficients of Engel (KE) 14.3 8.3 8.8

Table 2 shows the comparative characteristics of the calculation of the transport provision of a
territory for different countries. We also presented these countries’ transport network density values,
calculated as the highway length ratio to the territory area, and the values of Engel’s coefficient,
in accordance with Equation (1). Although it is not possible to compare the indicators of transport
development calculated using Engel’s coefficient (generalized indicator) and the fractal method
(geospatial indicator), the main differences are still visible. The transport development of the territory
of Germany, based on the value of Engel’s coefficient (8.3), is almost 1.7 times less than the transport
development of the territory of Ukraine (14.3) and is practically equal to the transport development
of Bolivia (8.8). However, as can be seen in Figures 9 and 10, the values of transport development in
Germany in most of the territory, calculated by the fractal method, have medium and high values,
reaching 0.917 in individual hexagons, while for Ukraine, the maximum transport development value
does not exceed 0.855.

The transport network fractal dimension calculation, in accordance with the proposed algorithm,
can be performed for any land area, such as cities and towns. In this case, when using larger scale maps,
one should choose a smaller hexagon size. Figure 11 shows the result of modeling the fractal dimension
for the city of Odessa (Ukraine), the area of which is 163 km2. The data source is the OpenStreetMap
map service. All road types were considered, including streets and roads within residential areas.
The hexagon area was 0.25 km2.
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The obtained modeling results (Figure 11b) allowed us to identify differences in the level of
fractality within the city itself and compare the transport development indicator between parts of
the city. A high or very high level of transport development (0.8–0.94) was found for the central and
coastal regions, the most inhabited areas of the city of Odessa, while the suburban areas had a low
level of transport development (0.5–0.625).

5. Conclusions

This paper proposes a geospatial approach to the study of transport provision based on the
fractal dimension of roads, which allows one to obtain quantitative values of provision (level of spatial
complexity) for a road network of any land territory. An algorithm for calculating the fractal dimension
of roads based on the box-counting method was developed, and a scripted geoprocessing tool for
ESRI ArcGIS 10.5 was created. The Python code for the FractalDimensionCalculation script has been
uploaded to the GitHub repository, available to download for free (https://github.com/kuznichenko-s/
FractalDimension).

Using the developed script, a study of the density of the road networks of the territory of Ukraine
and other countries of the world was carried out. Additionally, the script was used to study urban and
suburban areas (for example, the city of Odessa). The resulting map of the geospatial assessment of the
transport development indicator made it possible to identify differences in the level of fractality within
the city itself and compare the indicator of transport development between parts of the city.

The proposed quantitative model and script can be useful for scientists studying urban transport
networks, in order to analyze the dynamics of their change over time, as well as to compare the level
of complexity of transport networks in individual urban areas and their impact on socioeconomic
indicators of urban development.

Given the high computational complexity of the algorithm, the development of parallel algorithms
for calculating the fractal dimension (for example, on GPUs) can be a vector of subsequent research in
this direction.
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