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Abstract: Cyber-Physical Systems (CPS) are a prominent component of the modern digital
transformation, which combines the dynamics of the physical processes with those of software
and networks. Critical infrastructures have built-in CPS, and assessing its risk is crucial to avoid
significant losses, both economic and social. As CPS are increasingly attached to the world’s main
industries, these systems’ criticality depends not only on software efficiency and availability but also
on cyber-security awareness. Given this, and because Failure Mode and Effect Analysis (FMEA) is
one of the most effective methods to assess critical infrastructures’ risk, in this paper, we show how
this method performs in the analysis of CPS threats, also exposing the main drawbacks concerning
CPS risk assessment. We first propose a risk prevention analysis to the Communications-Based
Train Control (CBTC) system, which involves exploiting cyber vulnerabilities, and we introduce a
novel approach to the failure modes’ Risk Priority Number (RPN) estimation. We also propose how
to adapt the FMEA method to the requirement of CPS risk evaluation. We applied the proposed
procedure to the CBTC system use case since it is a CPS with a substantial cyber component and
network data transfer.

Keywords: cyber-physical systems; failure mode and effect analysis; risk priority number;
communications-based train control

1. Introduction

Most modern engineering systems have close interaction between cyber and physical components,
leading to a new paradigm approach named Cyber-Physical Systems (CPS). CPS are networked
systems composed of physical and software components integrated through networking, computation,
and monitoring. They are usually misidentified for the Internet of Things (IoT) systems, although CPS
emphasizes real-time control and monitoring features [1].

With the integration of CPS in critical infrastructures, the risk assessment of those systems requires
important cautions to avoid social, environmental, and economic costs. Various authors deal with
this issue, for example, Lyu et al. [1] reviewed different methods for CPS risk assessment considering
safety and security concerns. Wu et al. [2] proposed a new risk assessment method based on real-time
risk calculation considering CPS run-time conditions. Amin et al. [3] suggested a game-theoretic
framework for CPS security risks assessment and systems’ failures defense. CPS risk is often addressed
with risk assessment methods without a risk prevention step. Regarding this concern, and that most
Communications-Based Train Control (CBTC) security problems arise from cyber-attacks’ effects, we
will analyze CBTC from a risk prevention perspective.
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Failure Mode and Effect Analysis (FMEA) is an engineering method designed to define, identify,
and present solutions for system failures, problems, or errors. FMEA identifies necessary decisions
to prevent individual system failures [4], and establish the risk priorities of failure modes through
the Risk Priority Number (RPN) [5]. To quantify each failure mode’s risk, this method takes into
consideration the severity, occurrence, and detectability of each failure mode. Each one of these
parameters is estimated in predefined categories. Then, calculating the RPN to prioritize the identified
vulnerabilities, through the product of the three parameters mentioned previously. Even though FMEA
is a renowned risk assessment method, its methodology presents various drawbacks, mostly when
considering CPS risk assessment requirements. For example, FMEA'’s has a critical dependence on the
study team evaluation experience, only covers single failures, and by not weighting the parameters
under analysis, and it does not consider the influence of each parameter. Finally, the RPN formula is
not focused on the economic impact of the systems’ failures. Further ahead, these RPN limitations will
be properly exposed and explained.

In this paper, we first demonstrate how the FMEA method behaves in assessing the CBTC system’s
risk. As the FMEA includes no risk prevention step in its methodology, we introduce a risk prevention
analysis for software faults prevention. Regarding FMEA risk score calculation method, we propose
an innovative RPN calculation, taking into consideration the failure modes” economic impact, which is
calculated by estimating social, infrastructure, delay, and environmental costs.

The main contributions of this work are the following;:

e  Provide a CBTC risk prevention analysis.

¢ Propose a novel approach to the FMEA’s RPN estimation, concerning CPSs’ risk
analysis importance.

e  Provide a CBTC risk analysis through our version of the FMEA RPN calculation.

The rest of this paper is organized as follows: In Section 2, we provide the state-of-the-art review
on CPS risk assessment. In Section 3, we explain FMEA, and propose an extension in Section 4. Next, in
Section 5, we introduce the CBTC, describing its main components, and performing a risk prevention
analysis to the CBTC system, regarding current approaches. In Section 6, we perform the FMEA risk
analysis to the CBTC system. Finally, in Section 7, we conclude our paper and propose future work.

2. Related Work

In this section, a collection of works that addressed CPS risk assessment and RPN estimation
improvements are presented chronologically and briefly described.

2.1. CPS Risk Assessment

Xie et al. [6] proposed a risk assessment for CPS using attack trees, assigning values to threats
according to different levels. After obtaining a threat vector and a vulnerability vector, the risk value
can be calculated for each attack tree path. However, the authors did not take risk prevention into
consideration, neither specified the damage classification criteria. Ruckin et al. [7], tackled the security
of CPS available in self-driving cars equipped with sensors for braking functionality. Through three
different perspectives, FMEA analysis, sensor trustworthiness analysis, and control safety analysis,
the authors aimed to exploit inter-domain vulnerabilities by specifying and verifying contained
assumptions and dependencies between analyses. Wu et al. [2] introduced a novel method to assess
the risk based on real-time risk calculation considering CPS run-time conditions. After gathering
information of cyber-attacks and system’s vulnerabilities, this data was used as an input to calculate
attack severity, success probability, and consequences for each system’s affected node. With these
results, and the consequent design of a risk change curve, users get a better insight into the system’s
real-time risk and can take on time actions accordingly. While a risk change curve allows users to
prevent risk, no risk prevention is taken into account throughout the paper. Ali et al. [8], addressed CPS
failure detection and prevention. Their approach was through a derivation of FMEA which also
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incorporates a Criticality analysis (Failure Mode Effects and Criticality Analysis—FMECA). The author
proposed a new framework, based on an ontology, to detect and prevent failure by using a knowledge
base on a Unified Modeling Language (UML) class diagram. Lyu et al. [1] addressed different methods
for risk assessment considering safety and security concerns, establishing an advanced collective of risk
assessment and management methods aiming at CPS and its safety and security integration. While it
is a foremost contribution for the state-of-art of CPS risk assessment methods, the authors did not
apply the method to an illustrative use case.

2.2. RPN Estimation Improvement

FMEA'’s traditional RPN has been heavily criticized for its calculation formula and its generic
parameters. Over the past decade, several studies aimed at improving RPN calculation.

Tay et al. [9] applied fuzzy logic to FMEA aiming to diminish the number of rules needed for
the RPN. The authors used a Guided Rules Reduction System (GRRS) where the user only had to
provide the most relevant rules to the fuzzy RPN model. The authors’ approach was assessed through
real-world scenarios, and the results state its effectiveness in reducing the number of rules while
maintaining the capability of predicting failure modes. Wang et al. [5] introduced a new RPN which
encompassed the fuzzy nature of the risk factor and their corresponding weights, to prioritize the
failure modes. According to the authors, their approach is more realistic, practical, and flexible than
the original RPN calculation. Moreover, by presenting a linguistic evaluation, the assessment is easier
rather than numerical values. Finally, they combined the three parameters of FMEA aiming to provide
a clear differentiation amongst them and arrange the failure modes. Liu et al. [10], addressed the
representation of uncertain information, labeled D numbers, through Grey Relation Projection (GRP) to
assess the RPN of failure modes. The D numbers tackle the subjective nature of FMEA. By presenting
an illustrative example, the authors state that their approach surpasses any drawback of the original
RPN, thus granting their framework increased value.

Wu et al. [11] proposed an improvement to FMEA by adding cost, casualty, downtime, probability
of occurrence, and detectability factors to the RPN calculation. Each factor value is obtained by
comparing the failure mode with the worst situation in the affected area, contrary to the usual rank
assignment by experts. To reduce the drawbacks of traditional RPN calculation, Kabak et al. [12]
suggested the use of Multi-Criteria Decision Making (MCDM) in the prioritization of failure modes.
The authors aimed to accomplish fitter results in prioritizing failure modes by using an Analytic
Hierarchy Process (AHP) and a Preference Ranking Organization Method for Enrichment Evaluation
(PROMETHEE) method. The authors prioritized the failure modes through an AHP scale and estimated
the weight of each failure mode by applying the AHP to the outcome of the decision matrix. Moreover,
the authors multiplied the weights of the failure modes by the RPN equivalents of the failure modes to
determine AHP-RPN values which, in turn, was used to sort the failure modes. Finally, the authors
concluded that compared to the other methods under scrutiny, the PROMETHEE method was more
accurate to prioritize failure modes in FMEA.

Rezaei et al. [13] adapted FMEA’s RPN equivalent to the needs of health-care systems.
New weights, scales, and coefficients were defined, considering patients and treatment data, for
severity, occurrence, and detectability parameters. The authors concluded that FMEA’s standard
parameters and categorization should be adapted with technical knowledge. Carpitella et al. [14],
merged reliability analyses, and MCDM in maintenance services optimization. The authors started
with a FMECA analysis and implemented a fuzzy logic method to rank the previously obtained
failure modes. To further develop the RPN calculation, the authors also used AHP to assess their
weight criteria to the parameters, which was evaluated through a sensitivity analysis. Following the
shortcomings of the original RPN calculation, Ciani et al. [15] analyzed and compared some alternative
methods within FMECA. The authors state that alternative RPN calculation formulas may be used
depending on the type of application, and further provide recommendations and suggestions for such
considerations. The authors used a scale reduction for the original parameters of the RPN, however,



Future Internet 2020, 12, 205 4 0f 18

did not introduce additional factors to the formula. Contrary to the previously described works, we
not only propose different parameters and formulas to FMEA’s RPN estimation, but also use this
approach to perform a risk analysis to the CBTC system.

3. Failure Mode and Effect Analysis

FMEA is an engineering method designed to identify potential failure modes and its failure
causes, assessing the effects these have within a given system. A failure mode is usually defined as a
fluctuation inside the performance criteria for the component (inability to perform the design functions).
The FMEA method identifies the decisions necessary to prevent individual system failures [4].
Nevertheless, FMEA has some associated problems, which Spreafico et al. [16] expose comprehensively,
from which we gathered, among others, subjectivity, time consumption, staff level, too expensive, and
late application. The authors also classified the FMEA’s problems into four main classes (Applicability,
Cause and effects representation, Risk analysis, and Problem-solving) and 18 different subproblems.
Additionally, regarding FMEA's solutions/improvements they used the same four categories and
19 types of solutions.

FMEA'’s risk assessment procedure can be divided into five fundamental steps: System
subdivision, failure modes identification, RPN calculation, prevention actions recording, and analysis
reporting. The first step consists of system subdivision, in which the system is broken down into
subsystems, with a complete list of components. In the second step, it is necessary to identify failure
modes, its causes for each component, and determining the consequences for each. Subsequently, the
third step is to assess the risk, considering Severity, Occurrence, and Detection of each failure mode.
Where Severity is the reckoning of the severity of the potential failure, Occurrence is a numerical
subjective assessment of the probability for each cause of failure, and Detection is the performance
of detecting the failure before failure occurrence [8]. This assessment is usually represented as a cost
caused by failures represented as probabilities [17]. Each one of these parameters is recorded and
estimated in predefined categories. Then, calculating the RPN to prioritize the identified vulnerabilities,
through the product of Severity, Occurrence, and Detection values. The fourth step consists of recording
actions to prevent serious consequences, correct failures, and to restore system functions. Finally,
the fifth, and last, step is to report the analysis, summarizing the FMEA process, and its results.
The FMEA method is universally used and easy to understand the method, mainly because it applies
to complex systems, and efficient for identifying all technical failure modes.

Table 1 represents the FMEA risk factors, evaluated through a 10-point scale [12]. Wang et al. [5]
provided the crisp ratings for each parameter with a thorough description, thus we refer to this paper
for a more in-depth analysis of the scale of each parameter.

Table 1. Failure Mode and Effect Analysis (FMEA) parameters for the Risk Priority Number (RPN)
calculation Variables.

Occurrence 1 2 3 4 5 6 7 8 9 10

(O) Nearly Impossible  Failure Almost Inevitable
Severity 1 2 3 4 5 6 7 8 9 10
S) No Effect Hazardous Effect
Detectability /1 2 3 4 5 6 7 8 9 10
(D) Almost Certain Absolute Uncertainty

However, the FMEA’s result outcome heavily depends on the study team experience, given
the fact that the RPN parameters and its values are categorized by them. Moreover, FMEA only
considers vulnerabilities that emerged from single failures, failing to identify vulnerabilities originated
by combinations of failures. From a structural point of view, FMEA'’s classical RPN formula for risk
index calculation has several drawbacks, such as the existence of gaps in the range of admissible values,
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duplicated values resulting from different combinations of the base factors, and the high sensitivity
to minor changes [15]. Because this formula has no parameter weighting on its multiplication, the
different relevance of each parameter is not considered. This means that RPN values cannot be
compared linearly [15]. For example, a failure mode with 10, 1, and 1 values assigned to the Severity,
Occurrence, and Detection parameters respectively, results in the precisely same RPN equivalent as a
second failure mode with 1, 2, and 5 values assigned to the same parameters. Moreover, Occurrence,
Severity, and Detection are difficult to quantify accurately quantify because the categories of RPN
values low, moderate, and high, despite the subjectivity of the categories associated with the user [15].
Moreover, when calculating the risk value from an economic point of view, detectability and occurrence
parameters become ineffective to the desired purpose. These two parameters are used to evaluate the
rate of detectability and the number of occurrences of the failure modes. Still, these are ignored in the
economic impact because they represent information not needed to the cost of each failure mode.

As a result of these limitations, we further suggest modifications to the RPN formula and
parameters, based on an economic perspective of railway risks, considering our approach to calculate
risk indexes. Our proposed RPN categorization was mainly designed for railway CPS systems although
it can be adapted to other use cases. We consider potential social, infrastructure, environmental,
and delay costs resultant from CBTC railway signaling system failure modes. Through different
procedures, we also estimate the economic impact of such costs. In the next section, we present our
newly RPN criteria and estimation formula.

4. New RPN Criteria and Formula

In this section, we propose a new approach to FMEA’s RPN calculation. Our goal is to assess the
risk of different system failure modes based on the economic impact they represent. For our approach,
we consider social, infrastructural, environmental, and delay costs. Our social parameters are fatalities
(F), serious injuries (SI), and light injuries (LI). The average cost to each one of this type of injuries
is 803,000 €, 107,400 €, and 7400 €, respectively. To obtain an estimated cost for each of these types
of injuries, we used the Portuguese Value of Preventing a Casualty (VPC) [18], which is the value of
preventing fatalities and significant damage (serious and slight injuries). The total cost (C) results from
adding all the representative costs of each rank. Table 2 shows that our social costs ranged from 1 to
10, where 1 corresponds to Low and 10 to Catastrophic.

Regarding infrastructure costs, we considered railway track and bogie damage, derailments,
Access Point (AP) destruction, and collisions between trains. The ranges of estimated values for each
rank are based on reports of railway accidents made available by the Portuguese “Aircraft Accident
and Railway Accident Prevention and Investigation Office” (GPIAAF) [19]. Concerning track damage,
1000 or fewer meters of damaged railway track represent low damage and more than 1000 m severe
damage. Table 3 shows that our infrastructural costs ranged from 1 to 10 where 1 corresponds to Low
and 10 to Catastrophic.

Table 2. Evaluation criteria to assess social impact.

Level Description Criteria

Reduced number of light injuries
1 Low 1<LIK10
7400 € < C < 74,000 €

Moderate number of light injuries
2 Low 10 <LI< 30
81,400 € < C £ 222,000 €

High number of light injuries
3 Low LI>30
C>222,000 €
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Table 2. Cont.

Level Description

Criteria

4 Moderate

High number of light injuries
Reduced number of serious injuries
LI > 30
1<SI<10
773,400 € < C < 1,203,000 €

5 Moderate

High number of light injuries
Moderate number of serious injuries
LI> 30
10 <SI <30
1,203,000 € < C < 3,331,000 €

6 Moderate

High number of light injuries and serious injuries
LI>30
SI > 30
C > 3,444,000 €

7 High

Reduced number of serious injuries and fatalities
1<SI<10
1<F<10
910,000 € < C < 11,252,000 €

8 High

Moderate number of serious injuries and fatalities
10 <SI <30
10 <F <30
8,137,400 € < C < 27,312,000 €

9 Catastrophic

High number of fatalities
F>30
C > 24,090,000 €

10 Catastrophic

High number of serious injuries and fatalities
SI>30
F>30
C > 27,312,000 €

6 of 18

Regarding delay costs, the agreed statistical cost formula associated with delays due to the
accident, available in “IMT—Calculation of Common Safety Indicators” [18], is used to calculate
the economic impact of delays. To a period of 12 h interruption of the railway track the associated
average cost is 25,000 €. The total cost (C) results of adding all the hours of railway track inactivity
and converting the sum to currency units. Table 4 shows our delay costs ranged from 1 to 10 where
1 corresponds to Low and 10 to Very High.

Table 3. Evaluation criteria to assess infrastructure impact.

Level Description Criteria
1 Low Low damage to the railway track (< 1000 m)
0 < C < 250,000 €

2 Low Low damage to 1 or more bogies

250,000 € < C < 500,000 €
3 Low Low damage to the railway track and 1 or more bogies

500,000 € < C < 750,000 €

1 or more bogies derailment
4 Moderate 750,000 € < C < 1,250,000 €

1 or more bogies derailment and access points destruction
> Moderate 1250,000 € < C < 1,750,000 €
Serious damage to the railway track (> 1000 m)

6 Moderate 1 or more bogies derailment and access points destruction

750,000 € < C < 2,250,000 €
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Table 3. Cont.

Level Description Criteria

2 trains collision

7 High 2,250,000 € < C < 3,250,000 €

2 trains collision and access points destruction

8 High 3,250,000 € < C < 4,250,000 €

2 trains collision, access points destruction and
9 Catastrophic severe damage to the railway track
4,250,000 € < C < 6,250,000 €

2 trains collision, 1 or more bogies derailment, access points
10 Catastrophic destruction and serious damage to the railway track
C > 6,250,000 €

Table 4. Evaluation criteria to assess delay impact.

Level Description Criteria

1 Low C <25,000€
(£12h)

2 Low 25,000 € < C < 50,000 €
3 Low 50,000 € < C < 75,000 €
4 Moderate 75,000 € < C < 100,000 €
5 Moderate 100,000 € < C < 125,000 €
6 Moderate 125,000 € < C < 150,000 €
7 High 150,000 € < C < 175,000 €
8 High 175,000 € < C < 200,000 €
9 Very High 200,000 € < C < 225,000 €
10 Very High C >225,000 €

Table 5 displays the environmental costs where we considered carbon dioxide (CO;) emissions
from fires. Our parameterization is based on the Sustainable Structural Design Methodology (SSD)
formula RSSD (CO,) = PCO, x QCO,, where RSSD (CO,) is the result of the financial value of
environmental impacts, PCO; is the carbon price of a ton of CO, emissions in euro/ton and QCO; is
the total CO; equivalent emissions developed from the Life Cycle Assessment (LCA) analysis, declared
in tons [20]. To calculate the total cost, we used the 2019 OCDE CO, emission tax for Portugal [21],
which is 25 €/ tonne (t) CO, and the formula already mentioned. Table 5 shows our categorization
for environmental costs, classified from 1 to 10, where 1 corresponds to Low and 10 to Catastrophic.
While we used Portuguese data to develop our RPN criteria, it can apply to railway systems in other
countries or even to other systems. However, for this purpose, our categorization will have to be
adapted to the country’s socio-economic context or the system’s requirements.

To a final risk estimation, we propose five different categories. Table 6 shows our 10 ranks
distributed through these five categories: Very low, low, moderate, high, and catastrophic.

Considering the RPN calculation formula and its limitations already referenced above, we also
propose a weight-oriented formula for calculating RPN ranks. Instead of the traditional multiplication
based formula, we suggest a sum-based formula, of weighted variables Social Factor (SF), Infrastructure
Factor (IF), Environmental Factor (EF), and Delay Factor (DF). Moreover, we imposed the weights’
sum to be equal to 1, following the same criteria of easy analysis. The amount of variation, amongst the
possible values of the parameters we considered in this process, was very high, having four variables
ranging from 1 to 10 and with associated weights ranging between 0.01 and 0.99. We trimmed the
possibilities by determining the parameters” weight according to the parameter’s economic impact,
which allows a straightforward and easy comparison. The social factor has a vital concern for human
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health, thus we decided its weight to be half of the sum of the values of the overall weights, because
human life is still more valuable than any other consequence. Nevertheless, this decision only curtails
some of the possibilities that arise to 1,176,490,000, as a result of four variables between 1 and 10,
and three weights that could range from 0.01 and 0.49 (10 x 10 x 10 x 10 x 49 x 49 x 49).

Table 5. Evaluation criteria to assess environmental impact.

Level Description Criteria
0 < QCO, < 500 tCO,
1 Low 0 <RSSD(CO,) < 12,500 €
) Low 500 < QCO, < 1000 tCO,
12,500 < RSSD(CO,) < 25,000 €
3 Low 1000 < QCO, < 1500 tCO,
25,000 < RSSD(CO») < 37,500 €
1500 < QCO, < 2000 tCO,
4 Moderate 5750 RSSD(CO,) < 50,000 €
2000 < QCO; < 2500 tCO,
5 Moderate 5 1) < RSSD(CO,) < 62,500 €
2500 < QCO; < 3000 tCO,
6 Moderate ., 5y . RSSD(CO,) < 65,000 €
; Hioh 3000 < QCO; < 3500 tCO,
& 65,000 < RSSD(CO,) < 67,500 €
g High 3500 < QCO; < 4000 tCO,

67,500 < RSSD(CO,) < 70,000 €

4000 < QCO, < 4500 tCO,
70,000 < RSSD(CO,) < 72,500 €

QCO;, > 4500 tCO,
RSSD(COy) > 72,500 €

9 Very High

10 Very High

Table 6. RPN Categories

Category RPN

Very Low [1-2]
Low [2-4]
Moderate [4-6]
High [6-8]

Catastrophic  [8-10]

Notwithstanding the associated subjectiveness, we also decided to give a higher weight value
to the infrastructure factor due to the fact of the associated cost, translated in economic impact, of
fixing tracks or bogies, among others. The remaining two variables have a similar economic impact,
however, we decided to give more importance to the delay factor by the result an interruption has,
compared to the CO, emissions. Equation (1) is the result of our assessment of the weights for each
variable, representing the new RPN calculation method that we are proposing in this paper.

RPN =SF x0.5 + IFx 035 + EF x0.05 + DF x0.1 D

Table 7 is a small representation of a series of tests in which we kept changing the weight values
that we assigned to the parameters. Within the provided examples, we display only high social impact,
medium to high infrastructure impact, and low to medium environmental and delay risks, which we
gathered amongst a table with all possible combinations of values and three examples of weight values
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to the four variables. In Example 1, we used the weights that we considered to be the fittest for our use
case. In Example 2, we subtracted some of the weight of the infrastructure variable and increased the
environmental and delay variables. In Example 3, we added even more weight to the infrastructure
variable and matched the weight of the two remaining variables. The RPN values do not change
considerably amongst the samples we provide in this paper, notwithstanding, for an easier comparison,
we provide, in Table 8 a comparison of three random sets of values, not only between the original RPN
calculations but also amongst the different assessed weights for the four variables.

In Table 9 we performed a statistical evaluation of the samples provided in Table 7. We assessed
three metrics, average, variance, and standard deviation for the original RPN and our three examples
of weights variations, which lead us to add a fourth example (“Ex 4”) as the average, variance,
and standard deviation of the three previous examples regarding the values of our approach. Thus,
we concluded that the weights we choose to use within this paper have a realistic representation of
data since the average between the examples is 6.50 which is very close to the average value with our
proposed weights, displayed in Example 1, and the standard deviation among all three is only 0.02.

We draw two main conclusions. First, the original RPN has values that correspond to 1.12% (112),
4.05% (405), and 11.2% (1120) of the available scale, meaning that even with high-risk values, the risk
failure assessment would still be considered very low. Second, the changes in the weights for the
other parameters rather than the social factor, lead to insignificant fluctuations. Allowing us to state
that the values we assessed and display in Equation (1) expose the results of our tests, driving us to
the conclusion that these values are fit to represent the economic impact we are evaluating. Next,
we proceed to a brief description of the CBTC system functioning and its components.

Table 7. Example of some results obtained when testing the weight values.

Original RPN Our Approach
Example 1 Example 2 Example 3
Social Infra Environ Delay RPN Social Infrastr Environ Delay RPN Social Infrastr Environ Delay RPN Social Infrastr Environ Delay RPN
Structure  Mental 0.5 0.35 0.05 0.1 0.5 0.25 0.1 0.15 0.5 04 0.05 0.05

7 4 1 1 28 7 4 1 1 5.05 7 4 1 1 4.75 7 4 1 1 52
7 4 2 2 112 7 4 2 2 52 7 4 2 2 5) 7 4 2 2 53
7 4 3 3 252 7 4 3 3 5.35 7 4 3 3 5.25 7 4 3 3 54
7 4 4 4 448 7 4 4 4 33 7 4 4 4 5.5 7 4 4 4 5.5
7 5 1 1 35 7 5 1 1 54 7 5 1 1 5] 7 5 1 1 5.6
7 5 2 2 140 7 5 2 2 5.55 7 5 2 2 525 7 5 2 2 57
7 5 3 3 315 7 5 3 3 5.7 7 5 3 3 55 7 5 3 3 58
7 5 4 4 560 7 5 4 4 5.85 7 5 4 4 5.75 7 5 4 4 B
7 6 1 1 42 7 6 1 1 5.75 7 6 1 1 525 7 6 1 1 6

7 6 2 2 168 7 6 2 2 5.9 7 6 2 2 55 7 6 2 2 6.1
7 6 3 3 378 7 6 3 3 6.05 7 6 3 3 5.75 7 6 3 3 6.2
7 6 4 4 672 7 6 4 4 62 7 6 4 4 6 7 6 4 4 6.3
7 7 1 1 49 7 7 1 1 6.1 7 7 1 1 55 7 7 1 1 6.4
7 7 2 2 196 7 7 2 2 6.25 7 7 2 2 5.75 7 7 2 2 6.5
7 7 3 3 441 7 7 3 3 6.4 7 7 3 3 6 7 7 3 3 6.6
7 7 4 4 784 7 7 4 4 6.55 7 7 4 4 6.25 7 7 4 4 6.7
8 4 1 1 32 8 4 1 1 5D 8 4 1 1 B2b 8 4 1 1 bY
8 4 2 2 128 8 4 2 2 57 8 4 2 2 55 8 4 2 2 58
8 4 3 3 288 8 4 3 3 5.85 8 4 3 3 575 8 4 3 3 59
8 4 4 4 512 8 4 4 4 6 8 4 4 4 6 8 4 4 4 6

8 5 1 1 40 8 5 1 1 59 8 5 1 1 55 8 5 1 1 6.1
8 5 2 2 160 8 5 2 2 6.05 8 5 2 2 5.75 8 5 2 2 6.2
8 5 3 3 360 8 5 3 3 62 8 5 3 3 6 8 5 3 3 6.3
8 5 4 4 640 8 5 4 4 6.35 8 5 4 4 6.25 8 5 4 4 6.4
8 6 1 1 48 8 6 1 1 6.25 8 6 1 1 5.75 8 6 1 1 6.5
8 6 2 2 192 8 6 2 2 6.4 8 6 2 2 6 8 6 2 2 6.6
8 6 3 3 432 8 6 3 3 6.55 8 6 3 3 6.25 8 6 3 3 6.7
8 6 4 4 768 8 6 4 4 6.7 8 6 4 4 65 8 6 4 4 6.8
8 7 1 1 56 8 7 1 1 6.6 8 7 1 1 6 8 7 1 1 6.9
8 7 2 2 224 8 7 2 2 6.75 8 7 2 2 6.25 8 7 2 2 7

8 7 3 3 504 8 7 3 3 6.9 8 7 3 3 65 8 7 3 3 71
8 7 4 4 896 8 7 4 4 7.05 8 7 4 4 6.75 8 7 4 4 7.2
9 4 1 1 36 9 4 1 1 6.05 9 4 1 1 5i75 9 4 1 1 6.2
9 4 2 2 144 9 4 2 2 62 9 4 2 2 6 9 4 2 2 6.3
9 4 3 3 324 9 4 3 3 6.35 9 4 3 3 6.25 9 4 3 3 6.4
9 4 4 4 576 9 4 4 4 6.5 9 4 4 4 65 9 4 4 4 6.5
9 5 1 1 45 9 5 1 1 64 9 5 1 1 6 9 5 1 1 6.6
9 5 2 2 180 9 5 2 2 6.55 9 5 2 2 6.25 9 5 2 2 6.7
9 5 3 3 405 9 5 3 3 6.7 9 5 3 3 65 9 5 3 3 6.8
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Table 7. Cont.

Original RPN Our Approach
Example 1 Example 2 Example 3
Social Infra Environ Delay REN Social Infrastr Environ Delay RPN Social Infrastr Environ Delay RPN Social Infrastr Environ Delay RPN
Structure  Mental 0.5 0.35 0.05 0.1 0.5 0.25 0.1 0.15 0.5 0.4 0.05 0.05

9 5 4 4 720 9 5 4 4 6.85 9 5 4 4 6.75 9 5 4 4 6.9
9 6 1 1 54 9 6 1 1 6.75 9 6 1 1 6.25 9 6 1 1 7
9 6 2 2 216 9 6 2 2 6.9 9 6 2 2 65 9 6 2 2 7.1
9 6 3 3 486 9 6 3 3 7.05 9 6 3 3 6.75 9 6 3 3 7.2
9 6 4 4 864 9 6 4 4 2 9 6 4 4 7 9 6 4 4 7.3
9 7 1 1 63 9 7 1 1 7.1 9 7 1 1 65 9 7 1 1 74
9 7 2 2 252 9 7 2 2 V225) 9 7 2 2 6.75 9 7 2 2 2]
9 7 3 3 567 9 7 3 3 74 9 7 3 3 7 9 7 3 3 7.6
9 7 4 4 1008 9 7 4 4 7.55 9 7 4 4 7.25 9 7 4 4 7.7
10 4 1 1 40 10 4 1 1 6.55 10 4 1 1 6.25 10 4 1 1 6.7
10 4 2 2 160 10 4 2 2 6.7 10 4 2 2 6.5 10 4 2 2 6.8
10 4 3 3 360 10 4 3 3 6.85 10 4 3 3 6.75 10 4 3 3 6.9
10 4 4 4 640 10 4 4 4 7 10 4 4 4 7 10 4 4 4 7
10 5 1 1 50 10 5 1 1 6.9 10 5 1 1 6.5 10 5 1 1 7.1
10 5 2 2 200 10 5 2 2 7.05 10 5 2 2 6.75 10 5 2 2 7.2
10 5 3 3 450 10 5 3 3 72 10 5 3 3 7 10 5 3 3 7.3
10 5 4 4 800 10 5 4 4 7:85; 10 5 4 4 7.25 10 5 4 4 7.4
10 6 1 1 60 10 6 1 1 7.25 10 6 1 1 6.75 10 6 1 1 7.5
10 6 2 2 240 10 6 2 2 74 10 6 2 2 7 10 6 2 2 7.6
10 6 3 3 540 10 6 3 3 7.55 10 6 3 3 25 10 6 3 3 7.7
10 6 4 4 960 10 6 4 4 7.7 10 6 4 4 75 10 6 4 4 7.8
10 7 1 1 70 10 7 1 1 7.6 10 7 1 1 7 10 7 1 1 7.9
10 7 2 2 280 10 7 2 2 ) 10 7 2 2 7.25 10 7 2 2 8
10 7 3 3 630 10 7 3 3 79 10 7 3 3 75 10 7 3 3 8.1
10 7 4 4 1120 10 7 4 4 8.05 10 7 4 4 7.75 10 7 4 4 8.2

Table 8. Example of three results.

Original RPN Our Approach
Example 1 Example 2 Example 3
Social Infra Environ Delay RPN Social Infrastr Environ Delay RPN Social Infrastr Environ Delay RPN Social Infrastr Environ Delay RPN
Structure  Mental 0.5 0.35 0.05 0.1 0.5 0.25 0.1 0.15 0.5 0.4 0.05 0.05
7 4 2 2 112 7 4 2 2 572 7 4 2 2 3 7 4 2 2 53
9 5 3 3 405 9 5 3 3 6.7 9 5 3 3 6.5 9 5 3 3 6.8
10 7 4 4 1120 10 7 4 4 8.05 10 7 4 4 7.75 10 7 4 4 8.2
Table 9. Statistical evaluation of the sample.
RPN
Original Ex.1 Ex.2 Ex.3 Ex. 4
Average 350.625  6.55 6.25 6.70 6.50
Variance 81,961.7 0.494 04688 0.525 0.0008

Standard Deviation  288.553 0.708 0.6901 0.7303 0.02

5. Communications-Based Train Control

CBTC is a modern communication-based system that uses radio communication to exchange train
control information between trains and wayside equipment. Xu et al. [22] provided a complex CBTC
system architecture which we compacted into Figure 1. Onboard the train the Automatic Train Control
(ATC) functions, namely Automatic Train Protection (ATP) and Automatic Train Operation (ATO)
actuate in consideration of the exchanged information between the train and the wayside devices.
The train continuously sends traveling data, such as location and traveling speed, to the wayside
equipment over a Wi-Fi connection. With this information, the limit of movement authority (LMA),
which consists of the limit of speed and distance the train is permitted to travel, is calculated on the
wayside’s traffic control center and sent back to the train [23]. Based on this information, the train
onboard ATC equipment continuously keeps the safety distance to any preceding trains adjusting the
train speed. We chose CBTC as a use case for our CPS risk assessment study because, besides being
a safety and time-critical system, the CBTC system is highly dependable on-network data transfer
and software availability. Moreover, the social and economic impact of CBTC software faults may be
catastrophic, as train collisions and fatalities emerge as the worst consequences.
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Wayside ATP Interlocking ~ Wayside ATO
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Figure 1. Communications-Based Train Control (CBTC) system architecture.

Further ahead, we succinctly describe the most essential components of a CBTC system, as well
as the networked communication between the train and the wayside devices. This network consists
of the following three integrated networks: Train onboard network, trackside backbone network,
and train-to-trackside network. The first two networks communicate through Ethernet, while the last
one generally uses Wi-Fi [24].

Following, we will disciss the major onboard components of a CBTC system: The Vehicle
Onboard Computer (VOBC), the onboard ATC, and the Radio Communication System (RCS). Together,
these components represent the train onboard network. VOBC is the system responsible for consistently
sending train control information to the wayside. This system either includes, or works together with,
the onboard ATP, and ATO subsystems of the ATC. ATO is in charge of the train driving functions
and ATP takes care of safety-related functions. The ATP subsystem helps avoid collisions when the
driver ignores the speed limitations. This system automatically audits and regulates the train speed,
and if necessary, uses the brakes. The ATO subsystem is responsible for automating the train operation,
which includes starting and stopping the train, acceleration, braking, and stopping accuracy. The RCS
stands also as an essential onboard component, having a critical influence on sending and receiving
data from the wayside AP. RCS includes software and hardware, radios, and antennas, and its primary
function is to establish the communication between the train and the wayside AP.

Regarding the wayside components, the Zone Controller (ZC), which in most cases includes
the wayside ATP and ATO subsystems, is responsible for its correspondent zone inside the railway
network. The railway network is divided into independent zones, such that each zone constitutes its
respective wayside infrastructure. The primary function of a ZC is to prevent trains from colliding
inside its zone. The ATP subsystem of a ZC is responsible for all the data exchange with the trains
in its zone. This subsystem is also in charge of calculating the movement authority for every train
inside its zone. The ATO subsystem supplies the train destination and dwells times to all the trains
in its zone.

The Computer-based Interlocking (CI) is responsible for defining routes for trains and controlling
signals and switch machines regarding these trains’ destinations. The Automatic Train Supervision
(ATS) system, which is charged for scheduling and supervising the traffic, is also a trackside
component but independent from the ZC [24]. The trackside cells, each one represented by one
AP, receive trains’ connections through Wi-Fi, and then continuously exchange data for the proper
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system’s functioning [24]. Urban railway systems are progressively more dependent on unified
communications, integrated wireless signals, and computers. This transformation raises crucial
cyber-security concerns [23]. In the next section, a risk prevention analysis of the CBTC system is
performed, with the main focus on this system’s cyber-security concerns.

CBTC Risk Prevention Analysis

As a modern railway control system, the CBTC system contains several network and information
components, which requires high cyber-security responsibilities. CBTC’s most problematic security
issues are cyber-attacks exposure and high-risk vulnerabilities in critical devices [25].

Thus, security measures are required not only to help prevent unauthorized users from
intermediate in train-to-wayside communications with their Wi-Fi devices but also to avoid traffic
sniffing and signal jamming. Hence, jamming attacks and Man-in-the-Middle (MitM) attacks require
primordial attention when considering CBTC security’s most relevant concerns. While jamming attacks
cause interference into wireless communications [26], MitM attacks may cause, not only traffic sniffing,
but also wrong control messages injection, and consequent train derailment and collision [27].

With a jamming attack, the attacker intends to jam the wireless signal to disrupt the
communication between the train and wayside ATP. Through the emission of an electromagnetic
wave, the attacker confuses the train which is unable to distinguish between the jamming signal and
the correct data signal from the wayside ATP. The train perceives the electromagnetic wave as noise,
significantly lowering the signal-to-noise ratio (SNR) for the wayside ATP signal. In the worst-case
scenario, this may cause a communication failure. If the wireless signal continues to be jammed and
consequently the communication disconnected, the train stops for safety [28].

In MitM attacks, the attacker assumes control of the communication between the two network
nodes. Depending on the type of the attack, the attacker may replay, drop, or even spoof messages,
according to its malicious intentions. As Wi-Fi networks are susceptible to MitM attacks, these can be
carried at the data-link layer of the Open System Interconnection (OSI) model, which is the base for
the Wi-Fi communication protocol. The Address Resolution Protocol (ARP) spoofing is one of many
methods for performing a MitM attack [28].

In our analysis, we consider two different types of MitM attacks, message spoofing and replay
attacks. The Message spoofing attack consists of injecting unauthorized packets on a communication
assuming a false authorized identity [29]. This attack is a significant threat to the CBTC system, since
the attacker can identify himself as a CBTC AP and inject wrong control messages. This attack’s
consequences may be unexpected abrupt braking, train location loss, train speed control loss, train full
stop, train derailment, and train collision. In a replay attack the intruder copies targets” exchanged
packets and sends extra copies into the network. This attack generates data overflow and may originate
an incoherent system’s behavior. In a CBTC environment, the critical consequences may be train stop
and train control performance breakdown. The message dropping attack creates a false node inside
the network and intentionally drops the received packets. Causing Denial of Service (DoS) to many
system nodes and eventually to the entire system. This attack’s repercussions to CBTC are the same as
the ones jamming attack may cause and change to conventional operation.

As end-to-end data encryption and authentication methods rise as adequate solutions to prevent
message spoofing and replay attacks, Melaragno et al. [30] introduce Rail Radio Intrusion Detection
System (RRIDS) as a command replay and message corruption detection system. Using a pTime
Efficient Stream Loss-tolerant Authentication (TESLA) approach called pTesla, this system highly
increases burnout on the intruder, which decreases intrusion efficiency and ramification. The RRIDS
makes use of a subset of pTesla, appropriated to CBTC systems, with algorithms built on the originating
seed and salt variations. RRIDS also is capable of analyzing Radio Frequency (RF) and detecting
real-time threats.

Moreover, preliminary results showed that RRIDS was able to detect replay and message
corruption attacks with a 100% success rate, and close to 0% CPU usage, throughout the experience.
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Nam et al. [31] proposed an innovative version of the ARP protocol for ARP poisoning prevention.
This MitM prevention strategy compensates for the ARP lack of authentication and security
consideration, with Internet Protocol (IP)/Media Access Control Address (MAC) mapping retaining
until the machine goes offline. The proposed MitM-Resistant Address Resolution Protocol (MR-ARP)
uses a long-term IP/MAC mapping table with three fields, IP, MAC, and a timer for checking if the
machine is still running. Moreover, uses a Voting-based Conflict Resolution (VbCR) for cases where
a node with an empty ARP cache and long-term table may receive first ARP malicious responses.
Its solution consists of allowing neighbor hosts to send the correct MAC of the host to the first node,
which is trying to communicate with it.

Xie et al. [32] designed a message dropping attack detecting scheme based on node querying after
messages exchange. Each sampled node must reply with an authenticated acknowledgment (ACK)
where if each bit is 1 means that the node received the message and 0 means it missed the message.
The authors ranked all the overlay network nodes with a static balanced tree-structured topology.
While this scheme was defined mainly for systems with packet broadcasting and overlay networks, it
is possible to adapt its attack detection method of querying every node upon receiving a message to
the CBTC urgent concerns. Next, we proceed to our CBTC system risk analysis through our version of
the FMEA’s RPN calculation.

6. Failure Mode and Effect Analysis Application

In this study, we apply FMEA with our new RPN approach to the CBTC system. Besides being a
CPS, CBTC has a vital software component with substantial networked data exchange, which positively
contributed to our decision on choosing it. We will divide the FMEA application into four steps: System
Subdivision, Failure Modes, Causes and Effects, RPN Calculation, and Prevention Actions Recording.

6.1. System Subdivision

Initially, the system is divided into different units. We will focus our analysis on the train to the
wayside communication system, once it is the one where the failure modes are more related to our
previous CBTC risk prevention analysis. In Table 10, we subdivided CBTC into four main subsystems,
and display their main components.

Table 10. System Subdivision.

Subsystems Components
Local control system Automatic train supervision (ATS)
Zone Controller (ZC)

Wayside system Computer-Based Interlocking (CI)

Automatic train protection (ATP)
Automatic train operation (ATO)
Vehicle Onboard Computer (VOBC)
Data Communication System (DCS)

Vehicle onboard system

Radio Communication System (RCS)

Train to the wayside communication system Access Points (AP)

6.2. Failure Modes, Causes, and Effects

After performing the system subdivision, a unit is chosen, which will be the “train to wayside
communication system” unit. Then, a component from the subsystem is chosen, which will be the RCS
component, for which failure modes are identified, together with their causes, and effects. In Table 11,
we identify the failure modes for the RCS component and its possible causes, and effects. We do not
perform any further evaluation of the AP component because it has the same cyber-related failure
modes as the RCS component.
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Table 11. Failure Modes, Causes and Effects.

Failure Mode Failure Cause Failure Effect

Unexpected abrupt braking
Train location loss
Wrong Control Messages Message Spoofing  Train speed control loss
injection (Packet Spoofing) Attack Train full stop
Train collision
Train derailment

. . Train full sto
Message Droppmg Message Dropping Emergency bpraking;
(Packet Dropping) Attack Change to conventional operation
Train full stop
Signal Jamming Jamming Attack Emergency braking;

Change to conventional operation

Communication Delay (Extensive
packet duplication and forwarding)

Train control performance breakdown

Replay Attack Change to conventional operation

6.3. Risk Priority Number Calculation

After all failure modes are identified, with their causes and effects, we calculate the RPN for each
failure mode. Since we based our RPN calculation on the possible economic impact of the failure mode,
we will be always considering the worst consequences for each case. Starting with the “Wrong control
message injection” failure mode, which has the worst possible consequences, we assigned 10 to all its
RPN factors. Its train collision and train derailment possible consequences can result in several F and
SI, high infrastructure damage, severe environmental contamination, and considerable delays.

The “Message Dropping” and the “Signal Jamming” failure modes have the same consequences
since their both preceded by a variation of a DoS attack. We assigned 3 to the SF, 2 to IF and DF, and 1
to the EF. These two attacks train full stop and emergency braking consequences may cause light
damage to the track and bogies and low delays. To the “Communication Delay” failure mode factors,
we assigned 1 to the all four factors. Despite being a MitM attack, the replay attack intentions are to
provoke data overflow on the target, thus from our economic impact perspective, this failure mode has
the minimum RPN.

The values displayed in Table 12 are a direct result of consulting the Portuguese railway accident
reports [19], where we could find data relative to deaths, serious and light injuries, train, and railway
damage , delays, and environmental pollution. Accordingly, all the costs for all possible failure
mode consequences were estimated and summed, originating a total cost equivalent for each factor.
Then, we provide two RPN calculations, the original and our proposal, to grant an easy comparison
between both methods.

Table 12. Risk Priority Number values.

) Social Infrastr Environ Delay RPN
Failure Mode
0.5 0.35 0.05 0.1 Original Our Approach
Wrong control message injection 10 10 10 10 10,000 10
Message dropping 3 2 1 2 12 2.45
Signal jamming 3 2 1 2 12 2.45
Communication Delay 1 1 1 1 1 1

After gathering all the values for the RPN formula, we proceed with the RPN calculation:

*  Wrong control message injection:

10 x 0.5 4 10 x 0.35 + 10 x 0.05 + 10 x 0.10 = 10 @)
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*  Message Dropping:

3x054+2x0.35+1x0.05+2x0.10 =245 (©)]
e Signal Jamming:
3x054+2x035+1x0.05+2x0.10 =245 4)
e  Communication Delay:
1x05+1x035+1x0054+1x010=1 5)

Then, with all the RPN ranks gathered, we conclude that the “Wrong control message injection”
failure mode is the one with the highest rank, thus the most dangerous and the first to take into
consideration on the next step. Compared to the original method to assess the RPN, the main
differences are within the “Message Dropping” and the “Signal Jamming” failure modes, which go
from “Very Low” in the original method to “Low” in our evaluation. Besides, a small variation in
the social and infrastructure factors, for example from 3 to 5 and from 2 to 4, would not represent
any change in the outcome for the original RPN, however it would increase from “Low” (2.45) to
“Moderate” (4.15) with our approach, which would be more representative of the severity.

6.4. Prevention Actions Recording

On the Prevention Actions Recording step, prevention actions to the failure modes identified
above will be briefly summarized based on our risk prevention analysis section. We will suggest
actions based on our CBTC system knowledge and the previous risk prevention analysis.

1.  Wrong control message injection
¢  Originating seed and salt variation method for authentication.
*  Long term IP/MAC mapping table.
2. Message Dropping
*  Query node after messages are sent.
e  Time communications between two nodes with a limit waitable timer.
3.  Signal Jamming
e  Low transmission power deteriorates chances for attacker signal location.
¢  Transmission of short pulses on a broad spectrum of a frequency band at the same time.
4. Communication Delay
*  Originating seed and salt variation method for authentication.

¢  Long term IP/MAC mapping table.
e IP/MAC binding allows to prioritize traffic with static IP assignment reservation.

It is necessary to regard all these preventive actions in future analysis. The prevention of failure
modes is critical to the system’s functioning and the evolution of its risk analysis.

6.5. Discussion

While FMEA is a risk analysis method designed for industry and industrial processes, applying its
method to CPS has with some limitations. The subdivision step of the FMEA system made our study
faster and more intuitive since we intended to focus on the network communication component of the
CBTC system. The quantification of risk through RPN ranks also contributed positively to our study.
Identifying which failure mode was the most critical for the system was a fundamental part of the
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process. To assess the system from an economic impact point of view, we had to create new parameters
to calculate the RPN equivalent, since the traditional parameters were not suitable. The previously
mentioned limitations of the standard RPN formula, that consists of the multiplication of all parameters,
prompted us to propose a new formula to estimate RPN ranks, which not only consists of the sum
of all parameters but also uses assigned weights to each one of the parameters. Regarding our RPN
calculation formula, we perfected the weights as the result of several RPN calculation tests. These final
weights are the ones that best portray the economic impact of the parameters. Nevertheless, in other
studies, the study team may apply different weights to these parameters, and their approach would
neither be wrong nor worse. According to our evaluation, the presented values were considered fit to
the circumstances of the study case.

In this work, we demonstrated how FMEA can be applied to the CBTC system, more precisely to its
network communication component. Other CBTC subsystems will be analyzed as future work because
they also have vulnerabilities, and are crucial to the critical functioning of the system. We focused our
study on system failures caused by cyber-attacks since these are one of the primary sources of failures
in the system. We conducted our analysis to assess the risk through an economic impact perspective,
however, we will consider other perspectives of risk analysis in our future work.

7. Conclusions and Future Work

In this paper, we have shown how FMEA behaves analyzing highly critical CPS. The CBTC is
a critical system with an extensive software unit and frequent network data exchange that correctly
corresponded to our use case necessity. We briefly described this system’s functions along with its
primordial components.

Regarding CBTC risk prevention, we addressed existing works on MitM attacks and DoS attacks
risk prevention. Considering our perspective on the FMEA limitations, we proposed a novel approach
to FMEA’s RPN estimation that considers social, infrastructure, environmental, and delay costs,
concerning our CBTC use case. We also suggested a weighted sum based formula for RPN calculation.
We assessed CBTC risk, specifically the Train to wayside communication subsystem risks, through our
proposed FMEA version. Our results show that from an economic perspective, the message spoofing
attack has the highest risk to the CBTC system. We concluded that the existing risk assessment
methods, focused on industrial systems, must be improved to approach CPS risk analysis concerns.
For applying the proposed method to another country, the study team must use that country’s VPC,
CO; emission tax value, and accident reports.

In future work, we will apply our method to other CBTC subsystems, such as the CBTC local control
system, wayside system, and vehicle’s onboard system. Moreover, we intend to assess the risk of aircraft and
hydroelectric power systems using other risk assessment methods.
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