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Abstract: IoT devices include RFID tags, microprocessors, sensors, readers, and actuators. Their main
characteristics are their limited resources and computing capabilities, which pose critical challenges
to the reliability and security of their applications. Encryption is necessary for security when using
these limited-resource devices, but conventional cryptographic algorithms are too heavyweight and
resource-demanding to run on IoT infrastructures. This paper presents a lightweight version of AES
(called LAES), which provides competitive results in terms of randomness levels and processing time,
operating on GF(24). Detailed mathematical operations and proofs are presented concerning LAES
rounds design fundamentals. The proposed LAES algorithm is evaluated based on its randomness,
performance, and power consumption; it is then compared to other cryptographic algorithm variants,
namely Present, Clefia, and AES. The design of the randomness and performance analysis is based on
six measures developed with the help of the NIST test statistical suite of cryptographic applications.
The performance and power consumption of LAES on a low-power, 8-bit microcontroller unit were
evaluated using an Arduino Uno board. LAES was found to have competitive randomness levels,
processing times, and power consumption compared to Present, Clefia, and AES.

Keywords: lightweight cryptography; randomness analysis; internet of things

1. Introduction

NIST launched its lightweight cryptography project in 2013, highlighting the need
for lightweight cryptographic algorithms that meet the requirements of constrained envi-
ronments with limited processing speeds, resources, and energy. In 2015, NIST convened
the 1st Lightweight Cryptography Workshop to explore concerns such as application se-
curity and resource needs in limited environments, as well as the possibilities for future
lightweight primitive standardization. NIST’s 2nd Lightweight Cryptography Workshop
(2016) decided to create a portfolio to discuss lightweight algorithms through an open
process, similar to the criteria for block cipher selection. In October 2020, NIST’s 4th
Lightweight Cryptography Workshop (held virtually) negotiated different aspects of the
candidates and acquired useful feedback for the preference of the finalists [1].

This research addresses the problem of conventional cryptographic algorithms be-
ing inappropriate for IoT systems, due to requiring complex computations, and being
consequently slow and energy-consuming [2,3]. The security of IoT applications heavily
depends on robust and resilient lightweight cryptographic algorithms, which can balance
the trade-offs between the requirements of IoT-constrained devices and the need to provide
rigorous security for data transmission [4]. The design of novel lightweight cryptographic
algorithms should address three main constraints that can influence the design process,
usually referred to as the design trade-offs for lightweight cryptographic algorithms [5,6]:
security, performance, and the cost of the cryptographic algorithm. For example, although
a longer key and an increased number of rounds may offer higher levels of security, the
cost and performance of the algorithm may be adversely affected. Balancing these factors
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is an ongoing challenge. IoT-constrained devices, such as wireless sensors, need to provide
rigorous security for transmitting huge volumes of data while eluding several attacks
and vulnerabilities [7,8]. In order to achieve security when using these limited-resource
devices, encryption is required; however, conventional cryptographic algorithms are too
heavyweight and resource-demanding to run effectively on IoT infrastructures [9].

Cryptographic algorithm output should be random, so that output analysis cannot pre-
dict the algorithm. An algorithm of this kind is said to be indistinguishable from a random
permutation [10,11]; therefore, it is crucial to use statistical randomness tests to evaluate
algorithm output. As indicated by NIST, the randomness test should take place in the early
stages of cryptographic algorithm design, to determine whether or not the cryptographic
algorithm is suitable for a particular cryptographic application; further cryptanalysis can
then be applied to assess the robustness of its design. Usually, if a cryptographic algorithm
fails the randomness test, a relationship exists between the plaintext and ciphertext bits
that can be discovered through the use of the relevant cryptanalytic tools and analysis.

This paper is motivated by the advances of the information technology era, which
have led to increased connections between different types of IoT devices with special
security requirements based on multiple constraints. It is almost impossible to use common
cryptographic algorithms to meet these different cryptographic constraints, considering ap-
plication contexts and available resources [6,12,13]. Usually, IoT devices are characterized
by limited power resources (e.g., the limited computational power of microprocessors and
microcontrollers), limited memory size, compact hardware implementation, and limited
battery life. The research community and the International Organization for Standard-
ization (ISO) were prompted to standardize the principle of lightweight cryptography in
ISO/IEC 29192-2012, a multi-part international standard that specifies the prerequisites,
guidance, and design recommendations for lightweight cryptographic algorithms.

1.1. Contribution

A successful approach to designing a new lightweight cryptographic algorithm must
use the modality of a trusted, well-known cryptographic algorithm applicable in a heavy-
weight cryptographic approach under the constraints of a lightweight one. This approach
was successfully used to design the DESL [12] based on DES, and the DESXL [12] based
on DESX. This paper investigates the same approach by proposing a lightweight cryp-
tographic algorithm based on the Advanced Encryption Standard (AES), which we call
Lightweight Advanced Encryption Standard (LAES). This paper extends the design and
evaluation of [13], and makes the following main contributions.

1. Design and construction: Our approach utilizes the modality of a trusted crypto-
graphic algorithm in proposing a reduced version of AES, LAES, which is more
amenable to lightweight applications germane to the IoT.

2. Evaluation of randomness and performance: This paper evaluates LAES performance
with existing well-known lightweight cryptographic algorithms (Present, Celfia, and
AES). The four algorithms were challenged in identical scenarios to encrypt a range
of images of varying sizes. The randomness level of each algorithm was measured
using three metrics (i.e., frequency, block, and run tests), while the remaining metrics
were used to determine their time efficiency.

3. Evaluation based on the microcontroller: The performance of LAES was tested on
a low-power, 8-bit microcontroller using an Arduino Uno board. The evaluation
outcomes of LAES and its counterparts were compared and analyzed using six
measures [14]. These measures aimed to evaluate the proposed LAES from a different
perspective: The average required encryption time for block, round and entire process,
average CPU cycle required for encrypting block and round, as well as measuring the
average power and battery charge consumption required for encrypting a block.
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1.2. Road Map

This paper is organized as follows. The Related Work section discusses recent ap-
plications operating on IoT devices while requiring a certain degree of security, reviews
some literature on the applications of NIST randomness tests for verifying cryptographic
algorithms, and briefly discusses some well-known lightweight cryptographic algorithms
designed to provide security for IoT applications. The Material and Methods section
presents the LAES design. The following section presents the main components of trans-
formation for LAES encryption rounds that are mainly derived from AES. The Results
and Evaluation section presents the randomness and performance evaluation of LAES and
its counterparts, based on frequency test, block test, runs test, and processing time. Six
different measures for LAES were conducted using an 8-bit microcontroller Arduino Uno
board (MCU). Finally, the conclusion section summarizes the main findings.

2. Related Work
2.1. Lightweight Cryptographic Applications

The world is witnessing the unprecedented growth of interconnected devices in al-
most every aspect of life. IoT devices and applications are now proliferating in every
industry, including automobiles, health, and appliances, in addition to smart homes and
smart cities, and monitoring systems for power, electricity, water, and gas [15]. IoT services
and applications that could operate on billions of IoT nodes increasingly demand more
robust lightweight cryptographic algorithms to secure their operations. These futuristic
IoT services and applications include social IoT, and IoT search engines, services comput-
ing, recommendation systems, analytics, and experimental platforms [16,17]. Since the
IoT trend first began, many researchers and institutions have introduced lighter-weight
encryption algorithms to enhance security in a variety of IoT applications, including
health applications, smart homes and cities, monitoring, tracking and surveillance, and
location-based services (LBSs) [18,19].

The authors in [20] proposed a novel cryptographic technique named KE-IBE, which
relies on identity-based cryptography (IBC) and overcomes its key escrow issue. The
researchers presented a privacy-preserving eHealth solution to ensure patient privacy and
better fulfill IoT environment requirements. The technique provides anonymity while
running at a reasonable speed. In the same context of medical applications for IoT, the
authors in [21] improved an intrusion detection approach for the Internet of Medical Things
(IoMT). The authors highlighted that sensitive patient data transmitted over IoMT can
be vulnerable to different types of attacks, such as man-in-the-middle, remote hijacking,
password guessing, DoS attacks, and many others. The authors utilized the grey wolf
technique to optimize the feature extraction process. The proposed approach resolved
the problem of local minimum optimization and obtained faster convergence compared
to counterpart optimizers. The proposed approach provided an enhancement of 15% for
accuracy and reduced time complexity by 32%, based on comprehensive experiments and
benchmarking using an intrusion detection dataset.

Data visualization was used by [22] to propose a technique for zero-day malware
detection using a similarity matrix. This approach is useful for IoT environments where big
data are generated and collected from different sources, such as servers, network sensors,
and mobile devices. The authors of [23] addressed the challenge raised by the rapid growth
of multimedia texts, audio, images, and videos that are continuously generated and must
be transmitted securely every second. These researchers proposed a secure surveillance
framework for healthcare applications using intelligent integration of the efficient chaotic
map to extract data in a monitored scene using a visual sensor (camera). Their results
showed that the proposed framework fulfilled the security requirements for surveillance
applications.

The authors in [24] showed an augmented reality (AR) application in a smart city.
Using smartphones and augmented reality technologies, it enables citizens to access crucial
information such as bus routes, transportation arrival times, and tourism attractions in
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an easy and effective manner. Images and geo-location markers activate AR information,
which is delivered via a secure IoT infrastructure. The IoT infrastructure is built on bus-
mounted IoT devices that move information to linked cloud servers via a secure platform.
System security is ensured by the use of lightweight cryptography in conjunction with
low-power IoT devices. As explained in [25], the system is built on an attribute-based
encryption (ABE) scheme for fine-grained access control without a lengthy user permission
process.

Table 1 compares the lightweight approaches discussed in this section.

Table 1. Comparison between lightweight approaches.

Study Context IoT Application Security Objective Improvement Concern for IoT

[20,26] IoT eHealth

Privacy-preserving eHealth
system to achieve patient
privacy and address IoT

environment requirements more
effectively using Identity-Based

Cryptography

Low communication
computation, memory, and

energy consumption

[20,21] Internet of Medical Things
(IoMT)

Improve an intrusion detection
approach for the IoMT

Increased accuracy and
reduction in the time required
for training the classification

model

[21,23] Surveillance for IoT healthcare
application

Intelligent integration of chaotic
encryption to secure the
healthcare application

Competitive and real-time
encryption throughput

[23,24] Application of augmented
reality (AR) within a smart city

System security guaranteed
through deployment of

lightweight encryption used
with low-powered IoT devices

Fine-grained access control
without a lengthy user
authorization process

2.2. NIST Tests for Cryptographic Algorithms

NIST recommends several techniques to verify the randomness of binary sequences
generated from cryptographic algorithms and pseudorandom number generators. In April
2010, the NIST test suite was first presented in a special publication (800-22rev1a) [10].
NIST tests are used for hypothesis testing and are usually conducted to determine if a
data sample shows that a certain condition is true for an entire population. The tests are
designed to evaluate data sequences for a specific null hypothesis. If the outcome of the test
satisfies the null hypothesis, it is concluded that the data sequence is random. Conversely,
if the outcome of the test satisfies the alternative hypothesis, then it is concluded that
the data sequence is not random. Each test examines the data sequence based on the
null hypothesis, to determine whether the cryptographic algorithm is producing random
values.

The NIST test suite [10,27] has been used to assess the randomness of several cryp-
tographic algorithms [28–31]. The competition process for selecting the AES involves a
rigorous series of randomness evaluations. The experiment was fixed to 0.01 significance.
The author in [28] evaluated several cryptographic algorithms, including Rijndael, Serpent,
Twofish, RC6, and Mars, highlighting the fact that the randomness of the ciphertext is
correlated with a specific number of rounds for each cryptographic algorithm. For example,
Rijndael passed the randomness tests after the 3rd round, Serpent and RC6 after the 4th,
and Mars after the 6th.

The authors in [29] presented a framework based on the NIST suite to evaluate the
randomness outcomes of cryptographic algorithms. The proposed framework used three
NIST statistical tests to evaluate the randomness of block ciphers and stream ciphers,
including TEA, Camellia, and LEX. The results of statistical tests indicated the percentage
of successes from different generated sequence lengths. The authors concluded that the
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selected cryptographic algorithms showed a reliable degree of randomness based on the
selected NIST tests.

2.3. Development and Evaluation

The author of [32] found that AES is not appropriate for constrained environments,
such as RFID tags and sensor networks; therefore, they proposed a lightweight crypto-
graphic algorithm called Present, based on substitution–permutation network primitives.
Present works on a block length of 64 bits, supporting two options for key lengths of 80
and 128 bits. For lightweight applications requiring moderate security levels, the authors
recommended deploying the cryptographic algorithm using the 80-bit key length mode.
Present consists of 31 rounds of encryption that use a single 4-bit S-box and a single-bit
permutation table. The authors also showed that Present is robust against different types
of attacks, such as differential and linear cryptanalysis [33,34].

Celfia [35] is a lightweight cryptographic algorithm proposed by Sony Corporation
labs. Celfia components are based on a Feistel networking structure divided into four
data lines. Celfia uses two F-functions, each with 32 bits, for each encryption round. The
F-functions were developed based on the concept of the diffusion switching mechanism
(DSM) [36], and two different S-boxes were employed to enhance the overall diffusion. The
number of rounds was therefore reduced to 10, 11, or 12 for the key lengths of 128, 192, and
256 bits (respectively). Celfia has shown robustness against different types of attacks and a
processing encryption time comparable to that of AES.

Mini-AES [37] was designed for educational purposes rather than to be considered for
use secure applications. This algorithm is designed to operate in the finite field of GF(24).
The plaintext is divided into blocks of 16 bits, each of which enters an encryption round that
consists of four main components: NibbleSub, ShiftRow, MixColumn, and KeyAddition.
16-bit key length is used in Mini-AES encryption rounds. Mini-AES components operate
in the same manner as Rijndael [38], but the design of the components is not justified
in the finite field of GF(24). The work of [37] also illustrated the vulnerability of Mini-
AES to square attacks. The work of [39] presented another AES variant that operates
in GF(24) with the objective of performing cryptanalysis experiments on a simplified
AES version, in order to understand how attacks might work. Their results suggested
that the simplified version of AES is still robust against algebraic and man-in-the-middle
attacks. The work of [40] highlighted the importance of the design trade-off between
robust security solutions and performance optimization in terms of the area of system
chips, power consumption, and memory utilization for lightweight applications. They
implemented AES using the Xilinx ISE-13.2 suite and provided full pipeline encryption and
decryption to utilize silicon costs. The authors also highlight the benefits of lightweight
cryptographic algorithms and integrated 8-bit Kogge stone adder with x-tea to provide
faster computation for large applications. The work of [41] also designed a variant of the
AES S-Box to maximize performance, achieve high throughput, and utilize area efficiency.
The problem of arithmetic implementations usually consuming exorbitant amounts of
power is solved by implementing a solution for S-BOX construction based on Galileo’s field.
The proposed solution is implemented using Die-to-Die (D2D) and With-In-Die (WID)
variations.

Table 2 compares the cryptographic algorithms discussed in this section. We focused
mainly on AES, Present, and Celfia due to the fact that, among multiple block ciphers,
both Present and Celfia have been certified and published in ISO/IEC 29192-2:2019 [42] as
suitable cryptographic algorithms for lightweight applications. AES also has gained a lot
of popularity in the era of lightweight encryption for the purpose of secure transmission
between IoT devices, due to its friendly software implementation [43]; however, [32]
indicated that AES is not suitable for extremely constrained environments, such as RFID
tags and wireless sensor networks, and they stressed the need for a new optimized block
cipher. More recently, it was reported that AES may not act as an ultimate choice for the
IoT environment, due to the fact that it requires extensive hardware resources [43]. The
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software evaluation of [44] compared Present and Celfia in terms of security strength,
performance, and resource utilization, demonstrating that Present requires fewer memory
footprints than Celfia, due to the fact that the latter utilizes two S-boxes; however, Present
requires more encryption time and average CPU cycles than Celfia.

Table 2. Comparison between cryptographic algorithms.

Cryptographic
Algorithm Block Size (Bit) Key Size (Bit) Number of Rounds Structure Proposed Use Limitation

AES 128 28/192/256 10/12/14 SPN Conventional
applications

Requires a large number
of hardware resources

Present 64 80/128 31 SPN RFID tags and sensor
networks

Less throughput than
Celfia

Celfia 128 128/192/256 18/22/26 Feistel network Very limited resource
environment

Provides less memory
utilization compared

with Present

Mini-AES 16 16 10 SPN Educational purposes Not applicable for real
IoT environments

3. Materials and Methods

The design of LAES takes into consideration the following modifications: S-box
arrangements, operation of finding the inverse in GF(24), affine transformation, and key
expansion process. These changes allow the algorithm to operate on 64-bit plaintext input.
This section presents an overview of the main components of the proposed 64-bit LAES
cryptographic algorithm that uses a 128-bit encryption key. The LAES consists of ten
rounds that use an expanded key generated from the initial key. The operation of LAES is
described as follows, as illustrated in Figures 1 and 2 (the major components are described
in the next section):

1. The plaintext is divided into 64-bit blocks using a state matrix generator, which
reshapes the 64 bits into 4 × 4 matrix, whereby each element has 4 bits.

2. The encryption key is divided into two 64-bit parts. The left part of the key is XORed
with the text generated from the state matrix generator, to obtain the state matrix text.
The left part is fed to the key expander to generate the round keys for the first nine
rounds.

3. The state matrix text is substituted to the S-box using the LSubNibble component,
which enhances non-linearity during each round.

4. Each row in the resulting 4 × 4 matrix text obtained from step 3 is rotated cyclically
by offsets of 0, 1, 2, and 3. This step is inherited mainly from the original AES, to
enhance the diffusion and confusion of the LAES.

5. The mixing column has the same objectives of the previous step, multiplying the
resulting matrix from step 4 by a constant matrix that has entries from GF(24).

6. The key expander generates a round key based on the left part key. The generated
round keys are dependent on each other. The matrix generated in step 5 is XORed
with the round key.

7. Steps 3 to 6 are repeated nine times.
8. The resultant text after the ninth round is processed using steps 3, 4, and 6. The key

expander generates the key round based on the right part of the key.
9. Finally, the resulting matrix is reshaped into a 64-bit vector, which represents the

ciphertext.
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Figure 1. Main components of LAES.

Figure 2. Encryption process of LAES process.

3.1. S-Box and Inv S-Box Generation

This section illustrates the process of generating the S-box and its inverse. This process
reduces the finite field of GF(28) that represents the basic primitive polynomial in AES into
GF(24), to represent the basic primitive polynomial in the design of LAES. This reduction is
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intended to simplify both the software and hardware design, and to speed up the process
of generating and looking up the entries of the S-box and Inv S-box [45].

3.2. Substitution Table

The generation of the substitution tables of S-box and Inv S-box in LAES is based on a
primitive polynomial of GF(24), defined as f(x) = x4 + x + 1, where x is a 4-bit input. The
multiplicative inverse of x is computed, and then the affine transformation is applied to
it. The output from the affine transformation forms an entry to the S-box lookup table. In
GF(24) the expected input to the S-box is a hexadecimal number. Inv S-box is constructed
in a basically similar way; however, the 4-bit input to the Inv S-box is manipulated by
the affine transformation, then the multiplicative inverse is computed. The output of this
computation forms the entries of the Inv S-box lookup table. The S-box and the Inv S-box
are used in the processes of encryption, decryption, and key expansion to directly substitute
a 4-bit value with another 4-bit value of the same finite field.

3.3. Multiplicative Inverse

Table 3 describes the computation of the inverse of 4-bit values over the finite field of
GF(24). The details of this calculation can be found in [46], describing the multiplicative
inverse of a polynomial function over GF(2p). Table 4 represents the inversion values in
hexadecimal.

Table 3. Inversion table computation over GF(24).

Primitive Polynomial Inverse in Primitive
Polynomial x x−1

0 0 0 0 0 0 0 0 0 0
1 x0 0 0 0 1 0 0 0 1
x x 0 0 1 0 1 0 0 1
x2 x2 0 1 0 0 1 1 0 1
x3 x3 1 0 0 0 1 1 1 1
x4 x4 = x + 1 0 0 1 1 1 1 1 0
x5 x5 = x. x4 = x2 + x 0 1 1 0 0 1 1 1
x6 x6 = x. x5 = x3 + x2 1 1 0 0 1 0 1 0
x7 x7 = x. x6 = x3 + x + 1 1 0 1 1 0 1 0 1
x8 x8 = x. x7 = x2 + 1 0 1 0 1 1 0 1 1
x9 x9 = x. x8 = x3 + x 1 0 1 0 1 1 0 0
x10 x10 =x. x9 = x2 + x + 1 0 1 1 1 0 1 1 0
x11 x11 = x. x10 = x3 + x2 + x 1 1 1 0 0 0 1 1
x12 x12 = x. x 11 = x3 + x2 + x + 1 1 1 1 1 1 0 0 0
x13 x13 = x. x12 = x3 + x2 + 1 1 1 0 1 0 1 0 0
x14 x14 = x. x13 = x3 + 1 1 0 0 1 0 0 1 0

Table 4. Inversion table values in hexadecimal.

Input (x) 0 1 2 3 4 5 6 7 8 9 A B C D E F

Output (x−1) 0 1 9 E D B 7 6 F 2 C 5 A 4 3 8

3.4. Affine Transformation

The affine transformation can be achieved in the finite field GF(24) modulo of the
irreducible polynomial x4 + x + 1 using Equation (1), for 0 ≤ i < 4, where bi is the ith bit of
the 4-bit input (b), and Ci is the ith bit of a 4-bit constant (C = 0110 b). For example, the
affine transformation of 0 is computed by first finding the inverse of 0 from Table 4, then
the affine transformation is computed using the constant C.

b0’ = b0 ⊕ b2 ⊕ b3 ⊕ c0 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
b1’ = b1 ⊕ b3 ⊕ b0 ⊕ c1 = 0 ⊕0 ⊕ 0 ⊕ 1 = 1
b2’ = b2 ⊕ b0 ⊕ b1 ⊕ c2 = 0 ⊕ 0 ⊕ 0 ⊕ 1 = 1
b3’ = b3 ⊕ b1 ⊕ b2 ⊕ c3 = 0 ⊕ 0 ⊕ 0 ⊕ 0 = 0
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bi’ = bi ⊕ b(i+2) mod 4 ⊕ b(i+3) mod 4 ⊕ Ci (1)

Similarly, this transformation can be achieved in a matrix notation in GF(24) modulo
with the irreducible polynomial f(x) = x4 + x + 1 using Equation (2), where matrix A is
invertible over GF(2), and C could be a compatible constant number in GF(24). In this
design, we set the constant C to 616, which is equal to the vector 0110. Matrix A used in the
current implementation is represented as follows:

A =


1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1


where A has an inverse over GF(2), given by:

A−1 =


1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1


x′ = A·

(
x−1 ⊕ C

)
(2)

The S-box table is constructed using Table 4 and Equation (1). The entry of the S-box
that corresponds to an input x is computed first by finding the inverse of x from Table 4,
then applying the affine transformation in Equation (1) to the output of Table 4. This
produces the S-box lookup shown in Table 5.

Table 5. S-box lookup.

Input (x) 0 1 2 3 4 5 6 7 8 9 A B C D E F

Output (x′) 6 1 A E 7 4 2 5 9 8 0 C 3 B F D

Table 6 shows the Inv S-box lookup table used in the decrypting function. The entries
of the Inv S-box table are computed after the multiplicative inverse is applied to the output
of Equation (3). Table 6 illustrates the entries for the Inv S-box over GF(24).

x = (A−1·
(
x′ ⊕ c

)
)
−1

(3)

Table 6. Inv S-box.

Input (x
′
) 0 1 2 3 4 5 6 7 8 9 A B C D E F

Output (x) A 1 6 C 5 7 0 4 9 8 2 D B F 3 E

3.5. Key Expander

The 128-bit length of the LAES key keeps the design persistent in terms of the agent’s
brute force attack, in comparison to the smaller key size used in previous studies [32,35].
The key is divided into two halves, each of which is a 64-bit 4 × 4 matrix. Each entry in the
matrix consists of 4 bits, instead of the 8 bits in AES.

The key expander simply expands the left part of the key during each round until
the ninth round of LAES is completed. The right part of the key is then expanded during
the final round. The basic principles of AES key expansion were followed in the design of
LAES [38]:

• The total number of round key bits is equal to the block length multiplied by the
number of rounds, plus 1.
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• The key is expanded into an expanded key.
• Round keys are taken from this expanded key.

The S-box lookup and the round constant tables are used during the expansion process
of generating 36 new columns from the left part and 4 new columns from the right part. The
S-box lookup and the round constant tables are used to minimize the correlation between
the key parts, and to eliminate symmetricity and enhance the non-linearity of the expanded
key, which affects the LAES diffusion property.

The left part of the key consists of 64 bits arranged into a 4 × 4 matrix, where each
entry has 4 bits. The matrix is then expanded by joining 40 more columns. Considering
that the initial values of key columns are C (0), C (1), C (2), and C (3), the new columns are
defined as in Equation (4).

C(i) =
{

C(i− 4) ⊕ C(i− 1) , i % 4 6= 0
C(i− 4) ⊕ Tr(C(i− 1)), i % 4 = 0

(4)

where Tr(C(i − 1)) is the transformation of C(i − 1) obtained as follows. Let the elements
of C(i − 1) have the values a, b, c, and d. Shift-left these elements cyclically to obtain b, c,
d, and a, then replace each of these values with the corresponding element in the S-box
lookup table, to obtain the values e, f, g, and h. Finally, Tr(C(i − 1)) is the column vector
that equals e ⊕ r(i), f, g, and h, in which r(i) is a round constant of the ith round. In this way,
columns C(4) . . . C(39) are generated from the initial four columns of the left part key. The
final four columns generated (C(40), C(41), C(42), and C(43)) from the right part of the key
are obtained using a similar algorithm. Figure 3 illustrates the algorithm of key expansion
in LAES.

Figure 3. Expand key.

3.6. Round Constant Reconstruction

The round constant table of AES needs to be reconstructed to GF(24), which in this
case comprises a 10 × 4 matrix of zeros except for the first column, which contains 4-bit
values conforming with powers of 2 modulo for the primitive polynomial x4 + x + 1.
The polynomial nature of this multiplication by 2, which is actually a bit-shifting to the
left, does not have any influence on the result as long as the product does not exceed a
value of 15; therefore, the first four elements are obtained by the multiplication of 2 over
GF(24). Once the value exceeds 15, one more bit is needed to represent the generated value,
and this is not achievable for one entry value in GF(24) and the value is folded back into
GF(24) by modular reduction. Table 7 shows the round number and its corresponding
round constant.
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Table 7. Round constant table.

Round
Number 1 2 3 4 5 6 7 8 9 10

Round
constant 1 2 4 8 3 6 C B 5 A

3.7. Mix Column Permutation

The AES constant matrix was selected based on factors that provide the encryption
and decryption process with less computation and higher diffusion power [38]. These
factors include the linearity over GF(2) and the invertibility of the constant matrix. The
matrix should be invertible to perform the decryption process and support a quick handing
process. As per AES, an entry of 0 or 1 requires no multiplication process [38]. In LAES, the
choice of the coefficients of C(x) are 3, 2, 1, and 0, which allows easier implementation for
software and hardware multiplication process. Columns of the state matrix are considered
as a polynomial over GF(24) modulo x4 + x + 1, with a fixed polynomial C(x) = 3x3 + 1x2 +
1x + 2. Although the polynomial x4 + x + 1 is not irreducible, the operation is invertible,
since the polynomial C(x) is co-prime to x4 + x + 1.

The coefficients of the polynomial C(x) and the polynomial of state column matrix are
in themselves polynomials in GF(24). The inverse of C(x) is C-1 (x) = 9x3 + Ex2 + Bx + 4,
which is needed to construct the matrix in the decryption process.

The 0th column of the constant matrix can be represented by s3,0x3 + s2,0x 2 + s1,0x +
s0,0, where the coefficient 3 in C(x) is actually the polynomial x + 1 in GF(24), the coefficient
1 is the polynomial 1, and the coefficient 2 is the polynomial x in GF(24).

The multiplication by C(x) modulo x4 + x + 1 can also be represented as a matrix
transformation. For example, if we take the 0th column, which has four elements (s0,0, s1, 0,
s2, 0, s3, 0), the mix columns component produces the 0th column of the result (s’0,0, s’1, 0, s’2,
0, s’3, 0), in the manner seen below. Similarly, the operation is repeated for the other columns.

s′0,0
s′1,0
s′2,0
s′3,0

 =


x x + 1 1 1
1 x x + 1 1
1 1 x x + 1

x + 1 1 1 x

 ·


s0,0
s1,0
s2,0
s3,0


3.8. Encryption Process in LAES

The main transformations components of LAES encryption rounds are mainly inher-
ited from the original AES; however, the AES encryption components operate on GF (28),
while the LAES encryption components operate on GF(24). This means that the compo-
nents of the LAES operate by following the same logical operations of the AES, but the
entries of each component are completely different, and operate on a smaller scale. For
example, the S-box in the AES is a lookup table of 256 entries, while the S-box of the LAES
is a lookup table of 16 entries. The input to the encryption process is a block of 64 bits,
and it is reshaped into 4 × 4 matrix. This matrix is called a state matrix, which is modi-
fied based on the encryption rounds until the 10th round of the encryption is completed.
The first nine rounds of LAES consist of four transformation components: LSubNibble,
LShiftRows, LMixColumns, and LAddRoundKey. The final round of LAES contains only
three transformations components, similar to the AES, which are LSubNibble, LShiftRows,
and LAddRoundKey, as described below.

LSubNibble: This component is used to perform the simple transformation of the state
matrix bits into another matrix based on the S-box lookup table (see Table 5). For example,
the state matrix entry of 0 will be transferred into 6. Different bits of the state matrix
are transformed into different bits from the S-box lookup table. The S-box is intended to
provide an invertible transformation of the state matrix entries during this component,
which is inverted by the LInvSubNibble in the decryption process by the entries of the
Inv S-box (see Table 6). In AES, the S-box is a 16 × 16 matrix covering a total of 256 bytes,
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represented in hexadecimal, and indexed in a column and row pattern. The work in [45]
indicated that the SubBytes component in AES has an egregious processing time and
power consumption, and the use of smaller lookup tables with sizes ranging from 16 to 128
bytes has become more reliable for obtaining higher speeds to meet the needs of different
lightweight applications, such as smartphone applications, sensor networks, smart cards,
and RFID. In LAES, the S-box and the Inv S-box are reduced into 16 nibbles, indexed from 1
to 16, which is expected to improve the processing speed of LAES and provide the required
confusion for lightweight applications.

LShiftRows: This component operates similar to the ShiftRows in AES, by shifting
the entries of each row of the state matrix cyclically. The LShiftRows operates on a state
matrix of 64 bits. The shift is made by certain offsets of 0, 1, 2, and 3 for rows 1 to 4 of the
state matrix, respectively. The objective of this component is to avoid the columns of the
state matrix form being linearly independent, and to enhance the overall diffusion of the
encryption process. For the decryption process, the LInvShiftRows component cyclically
shifts the rows of the state matrix to the right by certain offsets of 0, 1, 2, and 3 for rows 1 to
4 of the state matrix, respectively.

LMixColumns: In this component, the state matrix obtained from the LSubNibble
is diffused to provide a further level of diffusion following the operation performed by
LShiftRows component. The LMixColumns performs permutation at the column level of
the state matrix, which provides another level of diffusion over the LShiftRows component.

The LMixColumns transformation is computed as illustrated in Equation (5), where S’
is the new state matrix, P is the polynomial coefficient, and S is the current state matrix.

S′ = P · S (5)

This transformation can be defined by the polynomial coefficient matrix multiplication
on the state matrix as follows:

s′0,0 s′0,1 s′0,2 s′0,3
s′1,0 s′1,1 s′1,2 s′1,3
s′2,0 s′2,1 s′2,2 s′2,3
s′3,0 s′3,1 s′2,3 s′3,3

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

 ·


s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s2,3 s3,3


The inverse mix column transformation, called LInvMixColumns, is defined by the

following matrix multiplication:
9 E B 4
4 9 E B
B 4 9 E
E B 4 9

 ·


s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s2,3 s3,3

 =


s′0,0 s′0,1 s′0,2 s′0,3
s′1,0 s′1,1 s′1,2 s′1,3
s′2,0 s′2,1 s′2,2 s′2,3
s′3,0 s′3,1 s′2,3 s′3,3


LAddRoundKey: This component XORs the state matrix and the round key. The

LAddRoundKey is a simple transformation that affects every bit of the state matrix. LAd-
dRoundKey and the other LAES components provide the required level of confusion and
diffusion. The InvLAddRoundKey is the component that performs the inverse of LAd-
dRoundKey transformation. The decryption process is the reverse of the transformation
components of the encryption process. The input to the decryption process is the ciphertext
processed by the invertible components.

4. Results and Evaluation

LAES was assessed and compared against the well-known lightweight crypto algo-
rithms Celfia and Present. The evaluation was conducted using several measures designed
based on the guidance of the NIST statistical test suite for cryptographic applications [27]:
frequency test, block test, runs test, effective (total) encryption time, average encryption
time for a single block, and average encryption time for a single round. Facing identical
cases, the three algorithms were challenged to encrypt various images with sizes from 1
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KB up to 4 MB. The experiments included the encryption of around 15,000 image files. The
randomness level was measured using the first three measures, while the rest were used to
indicate the encryption latency for LAES and its counterparts.

4.1. Frequency Test

The frequency test is an important measure that assesses whether the number of
zeros and ones in a sequence are equivalent, as would be expected for a truly random
sequence [10]. This test computes a p-value for a series of bits to determine its randomness;
if the computed p-value is less than 0.01, this means that the sequence is not random [14].
To compute the p-value for a binary sequence X, where Xi represents the ith bit of the
sequence, the bits are first converted into +1 and −1 values. This process is conducted by
converting the zero binary digits to −1 and the ones to +1; then, Equation (6) is applied to
find the sequence sum (S) that has a length of (N). Sobs is then calculated to find the absolute
value of the sum using Equation (7). Finally, the p-value is calculated using Equation (8),
where erfc is a function as explained by [10]:

S =
N

∑
i=0

Xi (6)

Sobs =
|S|√

N
(7)

p− vlaue = er f c
(

Sobs√
2

)
(8)

Figure 4 displays the rate of success for frequency testing obtained from the cipher output
of LAES 128, Present 128, Clefia 128, and AES on various sizes of files. The x-axis identifies
the success rate for each cryptographic algorithm on a specific size of the file, and the y-axis
identifies the file size. It can be seen that very good randomness properties were exhibited
by all of the algorithms, with success rates generally ranging between 80–100%. The trend
lines for the LAES and its counterparts also show anticipated performance for cryptographic
algorithms that are supposed to produce a random cipher (to avoid exposing confidential
information), which could be useful for undesired cryptoanalysis. It can be seen that the
percentage of success increased with a larger file size, which is attributable to the statistical
features of the test, which is directly affected by the large number of sequences generated
from larger file sizes (which usually have a higher volume of chaotic data).

Figure 4. Frequency test.
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4.2. Block Test

The focus of this test is the ratio of ones and zeros in the sequence. It begins by
partitioning the sequence into blocks, as indicated in Equation (9), where M is the block
length, n is the length of the sequence, and N is the number of blocks [14]. πi, which
indicates the proportion of ones, is calculated using Equation (10) for each M-bit block,
where 1 ≤ i ≤ N. Equation (11) calculates X2(obs) to measure how well the ones within a
given M-bit block match the expected 50% value. The p-value is finally computed using
Equation (12), where igamc is a function as explained by [10]. A p-value of less than 0.01
is considered to indicate failure (i.e., a non-random sequence). This test can be viewed
as a restricted version of frequency test, where each block of the sequence is examined
individually; if one block fails the test, then the overall success rate for the sequence is
degraded.

N =
n
M

(9)

πi =
∑M

j=1 X(i−1)M+j

M
(10)

X2(obs) = 4M
N

∑
i=1

(
πi −

1
2

)2
(11)

P− value = igamc
(

N
2

,
X2(obs)

2

)
(12)

Figure 5 shows the block test success rate achieved by LAES 128, Present 128, Clefia
128, and AES on files of different sizes. The x-axis identifies the rate of success for each
crypto algorithm on a specific size of file, and the y-axis identifies the size of the files.
Figure 5 shows that the randomness trend lines for the algorithms are above 40%. The
trend lines for the LAES show a higher success rate for larger files, almost similar to the
AES trend line. This indicates that despite the higher number of rounds in the LAES
counterparts, it was able to produce a higher degree of diffusion on files consisting of a
higher number of blocks.

Figure 5. Block test.
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4.3. Runs Test

This test evaluates the total number of runs in the sequence. The non-empty elements
that consist of adjacent equal values in the sequence are considered a run. The main
purpose of the runs test is to determine whether the number of runs of ones and zeros of
various lengths is as expected for a random sequence [10]. The test starts by conducting a
frequency test as a prerequisite; if the frequency test fails, then the run test is not applicable,
and the p-value is set to zero. If the frequency test is passed, then Equation (13) is applied to
count the number of ones in the sequence X, where Xi represents the ith bit of the sequence,
and n is the length of the sequence. The total number of runs Vn(obs) is then computed
as shown in Equation (14), where R(i) equals zero if Xi and Xi+1 are identical, and one
otherwise. Finally, Equation (15) computes the p-value. If the p-value is less than 0.01, this
means that the sequence failed the test [14].

π =
∑n

i Xi

n
(13)

Vn(obs) =
n−1

∑
i=1

R(i) + 1 (14)

P− value =

(
|Vn(obs)− 2nπ(1− π)|

2
√

2nπ(1− π)

)
(15)

Figure 6 shows the runs test success rate obtained from the cipher output of LAES 128,
Present 128, Clefia 128, and AES on files of various sizes. The x-axis identifies the success
rate for each crypto algorithm on a specific size of the file, and the y-axis identifies the file
size. The figure shows very good randomness outcomes for the algorithms, and success
rates ranging between 80–100%. The trend lines for LAES and its counterparts show very
close success rates.

Figure 6. Runs test.

To conclude the results of these three tests, a random sequence should consist of a
finite number of elements, with each element of the sequence being generated with uniform
probability; in other words, a binary random sequence should have equal probabilities,
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and be unpredictable and uniform [47]. The outcome performance of LAES regarding the
frequency, block, and run tests satisfy the properties required by cryptographic algorithms
and outperform its counterparts. For example, the trend line for LAES outperforms Celia,
Present, and AES for both frequency test and run test, and is very close to AES in block test
for large file sizes. This indicates that the cipher produced by LAES satisfies the properties
of binary random sequence with a high degree of confidence.

4.4. Processing Time

The time efficiency of LAES and its counterparts were measured using three metrics,
as shown in Figures 7–9. Figure 7 shows the effective (total) encryption time achieved
by LEAS and its counterparts. It illustrates that the encryption time of LEAS increases
modestly with file size, but in contrast, it increases exponentially for Present and AES.
This behavior is attributable to Present having a large number of rounds (n = 31). While
Celfia demonstrates a lower encryption time than Present, the lowest encryption time was
achieved by LEAS, with an average difference of 79.7%, 95.0%, and 97.4% lower than Celfia,
Present, and AES, respectively. These outcomes also conform to the outcomes displayed in
Figure 8, indicating the required encryption time for a single block.

Figure 9 shows the encryption time for a single round achieved by LEAS, Present,
Celfia, and AES. LEAS evidently outperforms both Present and Celfia regardless of file
size, with an average difference of 79.8% and 82.7% lower (respectively). This is due
to the deceleration propagated from the key generation process in Present, and the bit
permutation method it uses. Celfia also shows relatively slower round encryption time
compared to LAES due to its internal structure, which is based on a generalized Feistel
structure, with four data lines having two 32-bit F-functions per round (comprising two
different 8-bit S-boxes), followed by a diffusion matrix multiplication [35]. This elaborate
process slows down Celfia compared to LAES.

Figure 7. Effective (total) encryption time.
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Figure 8. Average encryption time for a single block.

Figure 9. Average encryption time for a single round.

4.5. Microcontroller-Based Evaluation

This section assesses the performance and simplicity achieved by the encryption
process for LAES and its counterparts in terms of CPU cycles, consumed power, and
the amount of charge required. This experiment used an 8-bit microcontroller Arduino
Uno board (MCU). The popularity of the Arduino board is due to its ease of use, its
extendibility for managing a large number of sensors, and the fact that installation and
maintenance of its components are inexpensive [48]. The Arduino Uno board has been
used in many lightweight IoT applications, including smart cities [49], wearable sensor-
based IoT sensors [50], temperature measurement devices [51], and heart rate monitoring
systems [52].
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The Arduino Uno used in this experiment was powered and connected to computers
through a USB port. It can also be powered via an AC/DC adapter. The experimental setup
and specifications are similar to those used by [14], whereby sketch programming was
used to implement the proposed LAES and its counterparts on the Arduino board. When
the board was turned on, the cyclic encryption mode started immediately, and a built-in
timer was used to measure the time required for each cycle. A fixed-size block of random
data was encrypted 10,000 times, and several measures were obtained using a multimeter
to compute the average power consumption for block encryption. Table 8 shows the results
of the evaluation for LAES and its counterparts using the measures below, which aimed to
evaluate the proposed LAES from a different perspective: the average required encryption
time for (1) block, (2) round, and (3) entire process; the average CPU cycle required for
(4) encrypting block and (5) round; (6) the average power and battery charge consumption
required for encrypting a block.

Table 8. Evaluation outcomes based on the 8-bit microcontroller Arduino Uno board.

Measures
Cryptographic Algorithms (Block Size/Key Size/Number of Rounds)

Present (64/128/31) Clefia (128/128/18) AES (128/128/10) LAES (64/128/10)

Average block encryption time (us) 3212 2846 4834 1920

Average number of CPU cycles for the block encryption 51,392 45,536 77,344 30,720

Average round encryption time (us) 103.613 158.11 483.40 120.23

Average number of CPU cycles per encryption round 1658 2530 7734 1550

Average power consumption for block encryption (mWh) 1.10189 × 10−4 9.80289 × 10−5 1.71876 × 10−4 6.37333 × 10−5

Average battery charge consumption for block encryption (mAh) 2.20379 × 10−5 1.96058 × 10−5 3.43751 × 10−5 1.27467 × 10−5

The evaluation results show that LAES outperforms its counterparts in the specified
measures. LAES required fewer CPU cycles, less power, and less charge consumption
for block encryption. As indicated in Table 8, the number of CPU cycles per encryption
round required by Present is less than LAES, AES, and Clefia; however, the fact that Present
requires 31 rounds for block encryption causes the cipher to consume additional CPU
cycles and energy. Clefia requires more CPU cycles and energy than Present and LAES, due
to some complex operations during the encryption round and the key generation strategy.
LAES shows promising performance in terms of the number of CPU cycles required, as
well as efficient energy consumption and battery charge consumption for block encryption,
which are important measures for resource-constrained devices in IoT.

5. Conclusions

This paper presents a streamlined AES variant called LAES that employs a key whiten-
ing technique and operates on GF(24). We evaluated and compared the operation of LEAS
with three lightweight cryptographic algorithms: Celfia, Present, and AES. The evaluation
was conducted using randomness analysis and time efficiency using six measures: the
frequency (Monobit) test, the block test, the runs test, effective (total) encryption time,
average encryption time for a single block, and average encryption time for a single round.
The four algorithms were assessed with similar scenarios. The evaluation showed that
LAES achieves comparable randomness to Celfia, Present, and AES for most scenarios in
terms of randomness testing. The randomness average of LAES increases with relatively
larger files; however, in terms of effective (total) encryption time, average encryption time
for a single block, and average encryption time for a single round, the results for LEAS
were clearly lower than those of Present and Celfia. This supports our objective to achieve
high randomness levels with lower encryption time. The evaluation revealed outstanding
improvements (i.e., reductions) in processing time and power consumption for LAES com-
pared to Present, Clefia, and AES. Furthermore, LAES and its counterparts were evaluated
and compared based on different measures using an 8-bit microcontroller Arduino Uno
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board. LAES required fewer CPU cycles, less power, and less charge consumption for the
block encryption.

In future work, we plan to perform different cryptoanalysis techniques such as linear
and differential attacks for LAES, and to evaluate its hardware implementation in order to
measure its energy consumption and footprint compared to other well-known lightweight
cryptographic algorithms. We also plan to implement the proposed LAES on hardware
to evaluate the number of gates it requires and compare it with its counterparts. Another
possible research direction will focus on evaluating LAES with different types of big data,
including multimedia data such as audio and video. The proposed LAES will also be
implemented and evaluated on real IoT applications that manipulate sensitive data, such
as eHealth, smart homes and cities, tracking and surveillance, and location-based services
applications.
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