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Abstract: Privacy protection has been an important concern with the great success of machine
learning. In this paper, it proposes a multi-party privacy preserving machine learning framework,
named PFMLP, based on partially homomorphic encryption and federated learning. The core idea
is all learning parties just transmitting the encrypted gradients by homomorphic encryption. From
experiments, the model trained by PFMLP has almost the same accuracy, and the deviation is less
than 1%. Considering the computational overhead of homomorphic encryption, we use an improved
Paillier algorithm which can speed up the training by 25–28%. Moreover, comparisons on encryption
key length, the learning network structure, number of learning clients, etc. are also discussed in
detail in the paper.

Keywords: multi-party machine learning; privacy preserving machine learning; homomorphic
encryption

1. Introduction

In the big data era, data privacy has become one of the most significant issues. Thus
far, there exist plenty of security strategies and encryption algorithms which try to ensure
that sensitive data would not be compromised. In addition, among them, most of the
security strategies assume that only those who have secret keys can access the confidential
data. However, with the wide use of machine learning, especially the centralized machine
learning, in order to train a useful model, data should be collected and transferred to a
central point. Therefore, for those private and sensitive data, it will inevitably face the
risk of data leakage. Thus, how to do machine learning on private datasets without data
leakage is a key issue for sharing intelligence.

Based on privacy protection, machine learning with multi-party privacy protection
could help users of all parties to jointly learn with each other’s data, on the premise
of ensuring the security of their own data [1–3]. Among them, federated learning [4,5]
is a typical one that could help to solve the privacy problems under the multi-party
computation. In this paper, we developed a privacy protected machine learning algorithm,
named PFMLP, based on homomorphic encryption. Basically, the model is trained jointly
by gradient learning under the protection of multi-party privacy. In detail, the model is
optimized by gradient descent in each iteration, and one could learn from other users’ data
by transmitting the gradient. However, according to member inference attack mentioned
in [6], malicious users in the training might use the plaintext gradient to train a shadow
model to compromise the data security of other users. Thus, we introduce homomorphic
encryption against this attack, which allows one to perform calculations on encrypted
data without decrypting it. In addition, the result of the homomorphic operation after
decryption is equivalent to the operation on the plaintext data [7]. Since the operation is not
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able to identify the data being operated in the whole process of homomorphic operation,
the security of privacy data can be guaranteed.

The multi-party privacy protected machine learning based on homomorphic encryp-
tion proposed in the paper has a wide range of scenarios in practical applications. In
addition, the main contributions of the work are as follows:

- It provides a multi-party privacy protected machine learning framework that com-
bines homomorphic encryption and federated learning to achieve the protection of
data and model security during model training. In addition, the proposed framework
can maintain the privacy data security when multiple parties learn together.

- It verifies that the model trained by our proposed algorithm has a similar accuracy
rate as the model trained by traditional methods. From experiments on the MNIST
and metal fatigue datasets, the accuracy deviation does not exceed 1%.

- About the time overhead of homomorphic encryption, it analyzes the impact of dif-
ferent key lengths and network structures, and finds that, as the key length increases
or the structure becomes more complicated, the time overhead increases. Trade-off
between performance and security level should pay more attention.

The organization of the rest of the paper is as follows. The related work is summarized
briefly in Section 2. In Section 3, the federated network algorithm and Paillier federated
network algorithm are discussed in more detail from the point of security, interaction, and
network structure. The experimental results are presented in Sections 4 and 5 summarizes
the whole paper.

2. Related Work
2.1. Distributed Machine Learning

Distributed machine learning is a kind of multi-node machine learning which was
designed to improve the performance, increase the accuracy, and scale the data to a large
amount easily. In NIPS 2013, a distributed machine learning framework was proposed [8].
It proposed a state synchronous parallel model to solve the problem of ordinary synchro-
nization or to train in a massive data volume and massive model size. In 2015, Xing et al.
proposed a general framework for solving the data and model parallel challenges sys-
tematically in large-scale machine learning [9]. Xie et al. proposed an effective factor
broadcast (SFB) calculation model, which is effective and efficient in distributed learning
of a large matrix parameterized model [10]. Wei et al. maximized the efficiency of network
communication under a given network bandwidth among machines to minimize parallel
errors while ensuring the theoretical fusion for large-scale data parallel machine learning
applications [11]. Kim et al. proposed a distributed framework STRADS, which optimized
the throughput for classical distributed machine learning algorithms [12].

In distributed deep learning, in 2012, Jeffrey et al. proposed Google’s first-generation
deep learning system Disbelief, and split a model into 32 nodes for calculation [13]. In 2013,
data and model parallelism in distributed machine learning were introduced into deep
learning and implemented in the InfiniBand network [14]. In 2014, Seide et al. theoretically
compared the efficiency of distributed SGD (stochastic gradient descent) training in model
and data parallel, and pointed out that increasing the size of minibatch can improve the
efficiency of data training [15,16].

2.2. Secure Multi-Party Computation and Homomorphic Encryption

Since distributed machine learning is based on a center dispatching tasks to the
outside, and, in this case, data are transparent to the system, and data privacy cannot
be protected effectively. Generally, distributed learning involves multi-party computing,
which often gives the complicated or unknown computing process to a third party. In 1986,
Yao proposed the Garbred Circuit method based on the millionaire problem, which can be
used to solve general problems, including almost all two-party password problems [17]. In
addition, then, in 1998, Goldreich proposed the concept of secure multi-party computation
(SMPC) [18]. Thus far, SMPC is regarded as a subfield of cryptography that enables dis-
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tributed parties to jointly compute an arbitrary functionality without revealing their won
private inputs and outputs.

Currently, homomorphic encryption has become a commonly used method in SMPC.
In 1978, Rivest et al. proposed the concept of homomorphic encryption for bank applica-
tions [19]. As one of the first public-key cryptosystems, the well known RSA (Rivest-Shamir-
Adleman) has multiplicative homomorphism [20,21]. In 1999, the Paillier algorithm was
invented [22]. Since Paillier satisfied the addition of homomorphism, it has been widely
used in cloud ciphertext retrieval, digital auction, digital elections, and some other privacy
protected applications. In 2009, Craig Gentry first proposed a fully homomorphic encryp-
tion (FHE) algorithm based on ideal lattices which satisfied both additive homomorphism
and multiplicative homomorphism [23]. Since FHE has extremely high security, it has been
widely used [24–26]. Especially in cloud computing, homomorphic encryption has made
great contributions to privacy protection [27].

Besides that, differential privacy is also a privacy assurance technique used to prevent
privacy leakage by adding noise to the samples [28–30]. Since introducing noise, when
the amount of data is small, the influence of noise will inevitably affect the model training.
How to reduce the influence is a big challenge.

2.3. Federated Learning

Concerning the data privacy protection and multi-party joint learning, a machine
learning named federated learning was proposed by Google in 2016 [31]. As a multi-party
cooperative machine learning, federated learning has gradually attracted much attention in
research and industry [32,33]. At the beginning, the purpose of federated learning was to
help the Android users to solve the problem of updating their models locally. Furthermore,
federated learning can be applied in various fields of machine learning. In 2019, Google
scientists mentioned that they built a scalable production system for joint learning in the
field of mobile devices based on tensorflow [34]. In addition, in 2019, more related works
have been proposed. Wang focused on the problem of learning model parameters when
data distributed across multiple edge nodes, without sending raw data to a centralized
node [35]. There is also some work focusing on federated transfer learning, such as the
framework designed in [36], that can be flexibly applied to various secure multi-party
machine learning. About performance, in [37], it proposed a framework SecureBoost with
almost the same accuracy compared with the five privacy protection methods.

Federated learning has been widely used in various fields. For example, the Gboard
system designed by Google realizes keyboard input prediction while protecting privacy and
helping users improve input efficiency [38,39]. In the medical field, patients’ medical data
are sensitive, thus federated learning is very useful [40,41]. Besides this, natural language
processing [42] and recommendation systems [43] are also applicable for federated learning
as well.

In addition, in recent years, there is a lot of work on privacy protection machine
learning worthy of attention. Zhou et al. proposed using differential privacy to protect
privacy in machine learning, and SMC was used to reduce the noise caused by differential
privacy [44,45]. In 2020, Zhang et al. proposed a batchcrypt algorithm, which is based on
the optimization of the FATE framework [46]. It encodes a batch of quantized gradients as
a long integer, and then encrypts it at one time, which improves the efficiency of encryption
and decryption by reducing the amount of calculation. Wei Ou et al. proposed a vertical
federated learning system for Bayesian machine learning with homomorphic encryption,
which can achieve 90% of the performance of a single union server training model [47].

3. Method and Algorithm
3.1. Multi-Sample Cooperative Learning Based on a Federated Idea

The idea of federated learning is that, in the case of data areolation, through the
interactions of intermediate variables in the training process, one can use the information
of other party’s data to optimize their own model, as shown in Figure 1. From the different
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data split, federated learning can be divided into two categories, horizontal federated
learning (sample expansions), and vertical federated learning (feature expansions).

Figure 1. Two different kinds of federated learning from sample or feature expansions. A is the data
owner of yellow rectangle area, and B is the data owner of green rectangle area.

The idea of horizontal federated learning is machine learning with sample expansions.
Supposing that D represents data, X represents features, Y represents samples, and I
represents the data index. Horizontal federal learning can be represented as:

Xi = Xj, Yi = Yj, Ii 6= Ij, ∀Di, Dj, i 6= j (1)

It indicates that different users have different data which may or may not have
intersections. The main idea of horizontal federated learning is to help multiple users using
their own data to jointly train a reliable model, while ensuring the privacy and security of
data. However, for sample expansions, the data of all parties need to be aligned first to
ensure that all parties involved in the training have the same feature domain. This helps all
parties build the same model architecture and iterate synchronously. Similarly, for vertical
federated learning, all the participants have samples with different features.

3.2. Federated Network Algorithm

The main target of federated learning network proposed in this paper is to help all
parties jointly train the same model by passing intermediate variables in the training
process. Considering that most neural networks are trained by gradient descent, here, we
choose gradients as its intermediate variables. Although the gradient cannot represent
all the data directly, it can represent the relationship between the model and the data
which facilitate model training. The architecture of federated learning network is shown in
Figure 2, and it contains a computing server and several learning clients.

Figure 2. The architecture of the federated neural network.
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3.2.1. Learning Client

For learning clients, they have their own private data and, supposing all the data
have been aligned, their quantitative dimensions with other learning participants. For
the learning client, the main functions include initializing the same initial model with
other clients, training data locally, extracting gradients during the training, computing the
gradients with computing server, collecting server responses, passing the results, updating
the model, and iterating repeatedly until the model converges.

3.2.2. Computing Server

The computing server is an intermediate platform in the learning process. The main
functions are receiving the gradient information from multiple learning clients, performing
calculations on the gradients, integrating the information learned by multiple models, and
transmitting the result to each learning client separately.

3.3. Federated Multi-Layer Perceptron Algorithm

Here, we propose a federated multi-layer perceptron algorithm (FMLP) based on
the traditional multi-layer perceptron. FMLP can train a simple model for each client in
a multi-party data areolation environment through gradients’ sharing. The multi-layer
perceptron, also known as a deep feed-forward network, is a typical deep learning model.
An example of its architecture is shown in Figure 3.

Figure 3. Multi-layer perceptron model.

All the parameters and their meanings involved in the algorithm are shown in Table 1.

Table 1. The parameters and descriptions in the PFMLP algorithm.

# Parameter Meaning

1 x the sample in the Dataset
2 θ the parameters of the model
3 f p feed forward process
4 out the output of each iteration
5 f ∗ activation function
6 loss loss function
7 c loss calculated by loss function
8 ε minimum error
9 bp back-propagation process
10 grad gradient calculated by bp process
11 lr learning rate

Supposing the parameter of the model is θ = {ω1 · · ·ωn, b1 · · · bn}, the learning rate of
training is lr. The data set can be represented as x = {x1 · · · xn}. The purpose of the model
is to approximate a distribution f ∗. The forward process of the network is to calculate the
output of the training that can be defined as:

out = f p(x, θ) (2)
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The loss function that calculates the distance between the output and the ideal value
can be defined as:

c = loss( f ∗(x), out) (3)

The function of the back-propagation is to calculate the gradients and propagate them
from the loss function backwards to help the network adjust the parameters according
to the gradient to reduce the error between the output value and the ideal one. The
back-propagation process can be defined as:

grad = bp(x, θ, c) (4)

The model-update process is to adjust the network parameters based on the gradient
obtained by backpropagation, which can be expressed as:

θ
′
= θ − lr · grad (5)

Through the federated network realized by MLP, we can get a federated MLP (FMLP).
Then, a copy of the MLP model is stored in the local memory of each learning client. It
contains an input layer with x units, n hidden layers with y units each, and an output layer
with z units. The size of x depends on the feature dimensions of the input data. In addition,
the size of z depends on the required output of the network that is closely dependent on
target output of the real applications.

The main function of the computing server is to fuse the gradient data, helping the
model to accelerate the gradient descent while learning the data from each client. Before
the model is updated, each learning client passes the gradients to the computing server
for model training. In addition, then the computing server integrates all the gradient data
from all clients, and returns the calculated new gradient to each client for model updates.
Finally, when the loss of each client is less than ε, the model converges. In addition, then
all the clients can get the same federated model. The specific steps of FMLP are shown in
Algorithm 1.

Algorithm 1 Federated Multi-Layer Perceptron

Input: Dataset x
Output: Model θ f inal

1: Initialize model parameters θ
2: for i in iteration do
3: Forward propagation: outi = f p(xi, θi);
4: Compute loss: ci = loss( f ∗(xi), outi);
5: if ci < ε then
6: Break
7: else
8: Back propagation: gradi = bp(xi, θi, ci);
9: Send gradients to computing server and get new gradients;

10: Update: θi+1 = θi − lr ∗ gradnew;
11: end if
12: end for
13: return Model with parameters θ f inal

3.4. Paillier Federated Network

The federated network proposed in this paper allows multiple parties to perform
cooperative machine learning with isolated data. However, in practice, what the cracker
actually needs is not only the data provided by the participants, but also the final model
trained by multiple parties.

According to a member inference attack proposed by Shokri et al. in 2017, the cracker
can invade the server and infer several shadow models from the data in the server. Based
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on the idea of ensemble learning, the cracker can finally get a prediction that is similar to
the model trained by actual cooperation based on these shadow models. In other words,
the federated model under this condition can only solve the data security problem, not the
model security.

Therefore, for model security, homomorphic encryption can be introduced into the fed-
erated learning. In addition, the core idea of homomorphic encryption is, after encrypting
plaintext a to ciphertext c, the result of performing some operations on c in the ciphertext
space, which is equivalent to the result of encryption operations on a in plaintext space.
The encryption operation can be expressed as:

E(a)⊕ E(b) = E(a⊗ b) (6)

In Equation (6), E represents an encryption algorithm, and a and b represent two
different plain texts. ⊕ and ⊗ represent operators. If the operation is a multiplication
operation, then the homomorphic encryption satisfies the multiplicative homomorphism,
for instance, the RSA algorithm [20]. If the operation is an addition operation, the homo-
morphic encryption algorithm satisfies the additive homomorphism. The Paillier algorithm
is the most famous one [22]. In addition, if the algorithm satisfies both additive and mul-
tiplicative homomorphism at the same time, then the encryption algorithm satisfies full
homomorphism [23]. Since in MLP we need to sum the gradient data, the Paillier algorithm
can thus be used to do homomorphic encryption.

3.4.1. Paillier Algorithm

As mentioned above, Paillier encryption is a partially homomorphic encryption satisfy-
ing additive homomorphism. It can be divided into three parts: key generation, encryption,
and decryption.

Key generation: First of all, select two primes p and q that are sufficiently large and
equal length that also satisfy gcd (p ∗ q, (p− 1) ∗ (q− 1)) = 1. Then, calculate n and λ as:

n = p · q (7)

λ = lcm(p− 1, q− 1) (8)

An integer g is selected randomly and satisfies g ∈ Z∗n2 , so that n can divide the order
of g. Then, define L(x) to calculate µ as:

L(x) =
(x− 1)

n
(9)

µ = (L(gλ mod n2))−1 mod n (10)

Thus far, we can get the public key as (n, g) and the private key as (λ, µ).
Encryption: Assuming the plaintext is m, and the ciphertext is c, the encryption

process with the public key can be noted as:

c = gm · rn mod n2 (11)

Decryption: Accordingly, using a private key to decrypt the ciphertext c and the
plaintext m is:

m = L(cλ mod n2) · µ mod n (12)

3.4.2. Improved Paillier Algorithm

However, due to the high complexity of the Paillier algorithm when doing encryption
and decryption, it will affect the efficiency of network training. Therefore, we use an
improved version of Paillier, and the correctness and efficiency of the optimization have
been proved in detail in [48].
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Key generation: Use α as the divisor, if λ replaces the position of the λ in the private
key. We can modify g in the public key and ensure that the order of g is αn.

Encryption: Assuming that the plaintext is m, the ciphertext is c, and r is a random
positive integer, and satisfies that r is less than α. The improved encryption process can be
shown as:

c = gm · (gn)r mod n2 (13)

Decryption: The Decryption process can be shown as:

m =
L(cαmod n2)

L(gαmod n2)
mod n (14)

It can be seen from the above algorithms that the biggest advantage of using α instead
of λ is in the decryption. The number of power operations has changed from 2 · λ times to
2 · α times. Since α is a divisor of λ, the time overhead has been significantly reduced. The
computational complexity of Native Paillier is O(|n|3), and the computational complexity
of improved Paillier is O(|n|2|α|) [49].

3.4.3. Architecture of the Paillier Federated Network

Here, we use Paillier encryption to protect the gradient data. Thus, even if crackers
compromise the computing server, they cannot know the specific information of the
gradient data from each learning client. In addition, it is impossible for crackers to use
these encrypted gradient data to train shadow models.

Since Paillier encryption requires key pairs, in order to generate and manage key pairs,
we add a key management center (KMC) in the algorithm. The Paillier federated network
is shown in Figure 4. It includes KMC, computing server, and several learning clients.

Figure 4. The architecture of a Paillier federated network.

3.5. Paillier Federated Multi-Layer Perceptron (PFMLP)

The basic structure of PFMLP is quite similar to FMLP. Since PFMLP needs to interact
with KMC, the learning client should send a request to the KMC before training starts. The
KMC confirms that each participant is online, and then generates key pairs and returns
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them to learning clients. After getting the key pairs, each learning client performs multi-
party machine learning based on encrypted data. The flow chart of PFMLP is shown in
Figure 5.

Figure 5. The flow chart of the Paillier federated multi-layer perceptron algorithm.

Compared with FMLP, PFMLP adds another three parts: (1) Encryption and decryp-
tion operations in the learning clients; (2) Homomorphic operations in the computing
server; and (3) Generation and distribution of key pairs in the key management center
(KMC). In PFMLP, it contains learning clients, computing server, and KMC. The algorithm
for learning clients is shown in Algorithm 2.

Algorithm 2 PFMLP in the Learning Client

Input: Dataset x
Output: Model θ f inal

1: Request key pairs from KMC
2: Initialize the model parameters θ
3: for i in iteration do
4: Forward propagation: outi = f p(xi, θi);
5: Compute loss: ci = loss( f ∗(xi), outi);
6: if ci < ε then
7: Break
8: else
9: Back propagation: gradi = bp(xi, θi, ci);

10: Use public key of client i to encrypt the gradient: Enc(gradi) = EncPaillier(Publickey, gradi);
11: Send Enc(gradi) to the computing server and receive: Enc(gradinew);
12: Use private key of client i to decrypt the gradient: gradi = DecPaillier(Privatekey, Enc(gradi));
13: Update: θi+1 = θi − lr ∗ gradnew;
14: endif
15: endfor
16: return the model with parameters θ f inal ;

The learning client does not immediately update the local model after calculating
the gradient for each learning iteration. It homomorphically encrypts the gradient data
and transmits it to the computing server, and then waits for the server to return the new
encrypted gradient data after doing homomorphic operation. For the decryption phase,
once the client decrypts the new encrypted gradient data, it can update the local model of
each learning client with the new gradient. Thus, the new gradient contains other client’s
private data implicitly, in order to protect the data privacy indirectly.



Future Internet 2021, 13, 94 10 of 20

Since PFMLP performs Paillier encryption on the gradient data, even if the computing
server is compromised by a cracker, the leaked data only show the encrypted gradient data
Enc(grad). Thus, the threat of inference attacks can be avoided.

The algorithm for KMC is shown in Algorithm 3. In addition, its main functions are
generating and distributing key pairs. That is, when it receives a request from a learning
client, it generates a key pair and distributes it to the client.

Algorithm 3 PFMLP in KMC

Input: requests
Output: KeyPair

1: while listening request from Clients do
2: if receive a request from a client then
3: Generate a KeyPair;
4: return a KeyPair to the learning client;
5: endif
6: endwhile

For the computing server, it performs homomorphic operations on the encrypted
gradient data provided by each learning client. In addition, when the computing server
receives a request from a client, it performs homomorphic operations on the encrypted
data and returns the results to the client. The PFMLP algorithm for computing server is
shown in Algorithm 4. Since the computing server does not obtain the key throughout the
whole process, all of these guarantee the data privacy during the model training.

Algorithm 4 PFMLP in the Computing Server

Input: requests
Output: GradientData

1: while listening requests from Clients do
2: Initialize GradientData;
3: if receive a request then
4: Push Encrypted Data Enc(data) to the Queue;
5: if the requests number == learning clients then
6: for i in the number of learning clients do
7: GradientData = GradientData⊕ Enc(datai)
8: endfor
9: return GradientData to each client;

10: Break;
11: endif
12: endif
13: endwhile

3.6. Algorithm Security Analysis

In PFMLP, the key management center is only responsible for key generation and can
not access any data. For the key management center, it does not even know what data
the client has encrypted with the key, so it cannot collude with other parties to access the
data illegally.

The data received by the computing server is the ciphertext encrypted by the client,
and all operations are homomorphic operation without a decryption process. It means
that, on the computing server, all data are in the encrypted format, so, even if the server is
compromised, the plaintext data cannot be obtained.

The learning client obtains the key pair from the key management center, and then
sends the encrypted gradient data to the computing server; after that, the computing server
returns the result that is still in the encrypted format to the client after the calculation is
completed. During the whole process, the client cannot access the data of other clients. The
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only data participated in the process is the data uploaded and the result returned, and they
are all in the encrypted format, which can ensure data security.

If an attacker wants to obtain data by attacking the computing server or a communica-
tion channel, he/she can only get the ciphertext. Since we can change the key pair during
each iteration, even if the attacker is lucky enough to crack a few rounds of training results,
he/she cannot obtain the final result. Even if the attacker is a participant, he/she cannot
obtain data from other clients due to the client security analysis described above.

4. Experiments and Results Analysis
4.1. Experimental Datasets and Environment

Two datasets are used for verifications: MNIST and Metal fatigue strength data. For
the MNIST handwritten dataset [50], it contains 60,000 training samples and 10,000 testing
samples. In addition, the neural network model consists of 784 input layers, two hidden
layers with a default number of 64 units, and an output layer with 10 output units.

About metal fatigue data, it only has 437 records coming from the NIMS MatNavi open
dataset [51]. MatNavi is one of the world’s largest materials databases, including polymers,
ceramics, alloys, superconducting materials, composites, and diffusion databases. Here, we
select 437 pieces of metal fatigue strength data from MatNavi to build a regression model
to test different metals, like carbon steel, low alloy steel, carburizing steel, and spring
steel, under different testing conditions, such as different components, rolled product
characteristics, and subsequent heat treatment. Each piece of metal fatigue data contains 15-
dimensional features and 1-dimensional labels. According to the fatigue dataset, we divide
it into four categories as shown in Table 2. The model structure used in the experiment
includes one input layer with 15 units (15 dimensions), three hidden layers with 64 units,
and one output layer with four units. The network structure of PFMLP is shown in Table 3.

Table 2. Fatigue dataset for multi-classification tasks.

Dataset Data Range Data Amount

Fatigue

[200, 400) 56
[400, 500) 147
[500, 600) 148
[600, ∞) 86

Table 3. The network structure of PFMLP.

Dataset Input Layer Hidden Layers Output Layer

MNIST 784 (units) 2 (layers) · 64 (units) 10 (units)
Fatigue 15 (units) 3 (layers) · 64 (units) 4 (units)

Here, the DDataset
n represents the n− th data of the Dataset. In order to evaluate the

PFMLP algorithm and its optimization methods, several comparative experiments were
designed from three perspectives: (1) the prediction accuracy of the federated multi-layer
perceptron and the single-node multi-layer perceptron; (2) the time consumption of the
model training using different key length; (3) the time consumption of the model training
with different sizes of hidden layer units; and (4) the impact of different numbers of
learning clients on model performance.

The experimental environment is in Windows 10, Python 3.6 with scikit-learn 0.21.3
and phe 1.4.0. We deployed a computing server, a KMC, and multiple clients in the local
area network, and established communication between machines through the Socket. The
specific network deployment is shown in Figure 6.
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Figure 6. The network deployment in the experimental environment.

4.2. Accuracy Comparison

For comparison, the PFMLP and MLP algorithms use the same network structure for
model training while learning the same dataset. Supposing that there are two learning
clients, we split each dataset into two subsets and distribute them to two learning clients.

For the MNIST dataset, we select the first 4000 data as the train-set Dmnist, and then
divide the 4000 pieces of data into two parts, respectively: Dmnist

I = {Dmnist
1 , · · · , Dmnist

200 },
Dmnist

I I = {Dmnist
201 , · · · , Dmnist

400 }. The testing data use 10,000 testing sets provided by MNIST.
Meanwhile, we select 400 pieces of data from the metal fatigue strength dataset, and

divide them into two equal subsets for model training. Supposing that the original data are

DFatigue, randomize the original data noted as DFatigue
′
= random(DFatigue). The two sub-

datasets are DFatigue
′

I = {DFatigue
′

1 , · · · , DFatigue
′

200 }, DFatigue
′

I I = {DFatigue
′

201 , · · · , DFatigue
′

400 }. In
addition, then we use 70% as the training set and the remaining 30% as the testing set. In
addition, the experimental result is shown in Table 4.

Table 4. Comparison results of prediction accuracy of MLP and PFMLP on two datasets.

Dataset Data Subset Algorithm Accuracy

MNIST

Dmnist
1 MLP 0.8333

Dmnist
2 MLP 0.9033

Dmnist MLP 0.9245
Dmnist

1 PFMLP 0.9252
Dmnist

2 PFMLP 0.9252

Fatigue

DFatigue′

1
MLP 0.9013

DFatigue′

2
MLP 0.7833

DFatigue′ MLP 0.8583

DFatigue′

1
PFMLP 0.8833

DFatigue′

2
PFMLP 0.8167

DFatigue′ PFMLP 0.8500

From Table 4, it shows that the model trained by PFMLP is more accurate than that of
local MLP. The final model trained by PFMLP is almost equivalent to or even better than
that of the model trained by MLP using all data from each client.

The experiments on the MNIST dataset show that the model trained by PFMLP can
reach an accuracy rate of 0.9252 on the testing set, while the model trained by MLP using
all of the data of training set can reach an accuracy rate of 0.9245, just 0.007 lower than that
of the PFMLP algorithm.
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For the metal fatigue strength dataset, since models on each client learned from the
same PFMLP, we can perform a weighted average of the results of the two experiments
based on the amount of the testing set, and get a final prediction accuracy rate of 0.85.
Compared with the MLP model with an accuracy rate of 0.858 after learning all the data,
the accuracy rate has only decreased by 0.008.

Therefore, from the experimental results on two datasets, it shows that the PFMLP
algorithm can train a model with almost the same accuracy rate as the MLP on all data
from multiple parties. Detailed results are shown in Figure 7.

4.3. Comparison of Model Training Time for Different Key Lengths

Due to the threat of membership inference attacks, transmitting gradient data in plain
text may be exploited by a malicious user to train his own shadow models. The privacy
related data security of other clients will be violated. Here, we use Paillier homomorphic
encryption in PFMLP. In addition, the encryption is operated during the gradient data
transmission, and homomorphic operations are performed in the computing server to
ensure that the encrypted gradient data will not be leaked, even if the server has security
vulnerabilities.

Figure 7. Prediction accuracy between MLP and PFMLP.

In Paillier, the key length is an important factor that affects the security level. Generally,
the longer the key length, the higher the security level. However, using a long key, the time
overhead for generating the ciphertext also increases. For the MNIST and metal fatigue
dataset, three comparison experiments are conducted. In addition, the model structure is
fixed, and different key lengths are the core factors of time cost of model training. Table 5
shows the details.

Table 5. Impact of different key lengths on total training time.

Encryption Algorithm Dataset Key Length (Bits) Time (Seconds)

None

MNIST

- 7.92
Paillier 128 12,033.25
Paillier 256 45,467.44
Paillier 512 199,915.70

None

Fatigue

- 9.84
Paillier 64 2567.44
Paillier 128 4480.02
Paillier 256 13,428.92
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From Table 5 in both datasets, the impact of Paillier key length is proportional to the
time consumption. Meanwhile, as in Figures 8 and 9, it is a line chart of the training time
for each round of learning for PFMLP on two datasets. Since in each round, it requires the
encryption and decryption of gradient data, and the encrypted gradient is transmitted to
the computing server for further operation, it is reasonable that, as the key length increases,
the time overhead of each round of training increases. Thus, we can choose an appropriate
key length that is a trade-off between security level and time performance. In addition,
in order to upgrade the security level, we can update the key in each round of training.
In this way, even if a certain round of keys is cracked, it will not affect the security of the
overall training process to achieve the higher level of data security.

From the above experiment, it shows that, under the same model and the same key
length, 4000 pieces of data take 358.14 s per iteration, 8000 data 733.69 s, and 12,000 data
1284.06 s. Thus, it says that the time overhead is positively related to the amount of
encrypted data.

We use the Improved Paillier algorithm to conduct experiments on the MNIST dataset,
and compare the time costs of encryption and decryption with the same gradient data in
the same round of iterations, as shown in Table 6.

Figure 8. Per-iterations time spent on the MNIST dataset for different key lengths.

Figure 9. Per-iterations time spent for different key lengths on the fatigue dataset.
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Table 6. The impact of different key lengths on the iteration time of each round.

Algorithm Size of Key Length (Bits) Time (Seconds)

Paillier
128 1068.38
256 6411.23
512 35,930.83

Improved Paillier
128 779.37
256 4716.37
512 26,148.56

From Table 6, it shows that, comparing with the Native Paillier algorithm, the im-
proved Paillier has significantly improved the performance of encryption and decryption
by nearly 25–28%.

4.4. Comparison of Training Performance with Different Sizes of Hidden Layers

For neural networks, the size of each layer will affect the time performance of forward
and backward propagation. In general, it shows a positive correlation between the network
size and the training time. Here, we design several comparative experiments on two
datasets, and the results are shown in Table 7. Specifically, the time overhead of each round
of training is indicated in Figures 10 and 11.

Table 7. Impact of different hidden layer sizes on total training time.

Dataset Size of Hidden Layer (Units) Time (Seconds)

MNIST
2 · 64 12,033.25
2 · 128 23,981.02
2 · 256 47,702.87

Fatigue
3 · 64 2615.42
3 · 128 6941.04
3 · 256 21,782.07

Figure 10. Per-iteration time spent on the MNIST dataset for different sizes of hidden layers.
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Figure 11. Per-iteration time spent on fatigue dataset for different sizes of hidden layers.

Therefore, since the algorithm requires encryption for the gradient matrix and more
hidden layer units, the time overhead will increase proportionally. In addition, as the
number of units in the hidden layer increases, the amount of data to be transmitted in the
network also increases. In order to reduce the time overhead of the PFMLP algorithm,
under the premise of ensuring the accuracy, the number of hidden layers and each hidden
layer units should be reduced as much as possible.

4.5. Different Numbers of Learning Clients on Training Accuracy and Time Overhead

PFMLP can support multi-party machine learning. In addition, theoretically, as the
number of clients increases, the learning algorithm should guarantee similar accuracy
and even shorter time overhead during model training. Here, we design a comparative
experiment with single node (MLP), two clients (2-Client-PFMLP) and four clients (4-Client-
PFMLP) on the metal fatigue strength dataset. In addition, the experimental results are
shown in Table 8. Here, the local accuracy is the accuracy rate of the model’s prediction
accuracy on the local test data set. The logical accuracy is the average accuracy on each
client. The detailed results are shown in Figure 12.

Table 8. The accuracy of PFMLP with different learning clients on the metal fatigue dataset.

Algorithm Dataset Local Accuracy Logical Accuracy

MLP DFatigue′

0−400
0.858 -

MLP DFatigue′

0−200
0.833 -

MLP DFatigue′

200−400
0.783 -

2-Client-PFMLP DFatigue′

0−200
0.867 0.850

2-Client-PFMLP DFatigue′

200−400
0.833 0.850

MLP DFatigue′

0−100
0.767 -

MLP DFatigue′

100−200
0.933 -

MLP DFatigue′

200−300
0.800 -

MLP DFatigue′

300−400
0.600 -

4-Client-PFMLP DFatigue′

0−100
0.833 0.850

4-Client-PFMLP DFatigue′

100−200
0.967 0.850

4-Client-PFMLP DFatigue′

200−300
0.867 0.850

4-Client-PFMLP DFatigue′

300−400
0.733 0.850
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Figure 12. Accuracy comparisons among single-node MLP, 2-client and 4-client PFMLP on the
fatigue dataset.

From Figure 12, the multi-client-PFMLP algorithm has significantly improved the
prediction accuracy. The logical accuracy rate is almost the same for two and four learning
clients. Compared with the local training of the divided data, the local accuracy of PFMLP
training has been improved. Especially in extreme cases, the accuracy is amplified. For
example, in a 4-Client-PFMLP experiment, the last learning client obviously has outlier
data, and the accuracy of PFMLP is 13.3% higher than that of MLP. The second learning
client has a local accuracy rate up to 93.3%, and using PFMLP still improves by 3.4%.

In addition, it can be seen from Table 8 that the number of clients has almost no effect
on the performance of the model trained by PFMLP. They are all close to the performance
of the model trained by a single MLP that collects data from all participants. Meanwhile,
since the core idea of N-Client-PFMLP is based on batch expansion, once each client has
less data, they will learn a smaller size of batch per round. Thus, the time overhead of the
training process will be reduced.

5. Conclusions and Future Work

Multi-party privacy protected machine learning proposed in this paper can help
multiple users to perform machine learning without leaking their own private data due to
the integration of homomorphic encryption and federated learning. Especially in privacy
data protection, the algorithm can train common models in the case of data areolation.
Experiments of the PFMLP algorithm show that the model trained by PFMLP has a similar
effect as the model trained using all data on a single machine. All parties just transmit the
gradient data and gradient fusion is performed by homomorphic operations in the central
computing sever. The learning model is updated based on the new gradient data after
homomorphic operations. However, homomorphic encryption will inevitably cause some
performance problems, such as the additional overhead of the encryption and decryption
process which will greatly affect the training efficiency. In addition, the network structure,
encryption/decryption key length, and key replacement frequency, etc. also affect the
final performance.

About the future work, firstly, more powerful and scalable federated learning should
be considered, like vertical federated learning algorithms splitting the features into different
clients. Secondly, highly efficient homomorphic encryption algorithms will accelerate the
learning performance. Finally, a more robust privacy protected learning algorithm should
be given more attention, including those hybrid algorithms, anti-malicious attack clients
algorithms, etc.
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