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Figure S1. Comparison of Google Trends index with and without the state’s full name in 50 U.S. states. Each curve 

corresponds to an individual state, with the values smoothed by a 3-day-average. (a-b) Using keyword ‘coronavirus’. (c-d) 

Using keyword ‘COVID’. (e-f) Using keyword ‘COVID-19’. 

 

Table S1. Spearman correlation coefficient between 𝑐∗ and 𝑙∗ (N = 50) from Twitter data and the Google search data. The 

significance level is denoted by stars in red: *** 𝑝<0.01. 

Twitter 
Google Trend 

(coronavirus) 

Google Trend 

(COVID) 

Google Trend 

(COVID-19) 

0.564*** -0.247 0.063 0.162 

 



 
Figure S2. The number of COVID-19 related tweets in 50 U.S. states available in the used dataset from January 27, 2020 to 

May 30, 2020. 

 

Figure S3. The state-level early infection rate calculated as the proportion of residents (per 100,000) being infected in the 

earliest 𝑇 days.  

 



 
Figure S4. Number of COVID-19 related tweets, Google Trends index using different COVID-19 keywords (integrated with 

the state’s full name) and daily infection numbers till September 30, 2020. The values of each curve are first smoothed by a 

3-day-average to reduce the noise and are then normalized to [0, 100] for comparison. 

 



 
Figure S5. The highest correlation strength 𝑐∗ between the COVID-19 daily infection and the Internet data vs. the studied 

period in 46 remaining states. The x-axis denotes the end date of the studied period for a given state, while the start date is 

chosen as the date when the first case was reported in this state. Each point of 𝑐∗ is obtained by applying the lagged Spearman 

correlation analysis 

 



 

Figure S6. Value of the highest correlation strength 𝑐∗ vs. the studied period for the COVID-19 daily testing number and the 

Google index using ‘COVID testing + state’s name’ in 46 states. 

 


