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Abstract: This work highlights how the stiffness index, which is often used as a measure of stiffness
for differential problems, can be employed to model the spread of fake news. In particular, we show
that the higher the stiffness index is, the more rapid the transit of fake news in a given population.
The illustration of our idea is presented through the stiffness analysis of the classical SIR model,
commonly used to model the spread of epidemics in a given population. Numerical experiments,
performed on real data, support the effectiveness of the approach.
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1. Introduction

The birth of the Internet, and in particular of social media, has radically changed the
way we transmit news. In fact, nowadays, the majority of the population considers the
Internet and social media as the main channels of transmitting news. However, at the same
time, social media are also believed to be the main sources of transmission of disinformation
and fake news [1–18].

Fake news is created by completely ignoring the editorial rules and processes used to
ensure its compliance and truthfulness [19]. Actually, it is created for different purposes;
the most common is certainly the electoral one in order to discredit a political opponent
by conditioning public opinion. The other purpose is the profit that is obtained online in
proportion to the number of visitors to the article.

The problem of the spread of fake news has always existed, but what seems to
have clearly changed, compared to the past, is the quantity of fake news present in the
information and the weight they take on. Therefore, the truthfulness of the news we receive
online is a problem that requires great attention [20].

In recent years, many authors have tried to create adequate mathematical models
capable of predicting the spread of fake news, in order to limit in advance the effects that
the spread of these are having on our society: the interested reader can refer, for instance,
to [12,21–29] and references therein.

In this article, we use a famous model for the spread of a disease, i.e., the SIR model,
as a model for fake news diffusion. SIR model, well known in the existing literature of
mathematical epidemiology (see, for instance, the very first contributions on compartmental
models [30–34], as well as the monographs [35–42] and references therein), describes
the effects of the spread out of an epidemics in a population ideally divided into three
subgroups (susceptible, infected and recovered people). As is visible in the literature (see,
for instance, [19,23,43,44]), epidemiological models can be profitably used to describe the
diffusion of fake information as an infectious disease. Most of these models are given by
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nonlinear differential equations, whose dynamics can be understood first looking at the
eigenvalues of the Jacobian of the linearized problem. Here, we show how the spread
of fake news is closely linked to the stiffness ratio (i.e., the ratio between the largest
and the smallest moduli of the eigenvalues of the aforementioned Jacobian matrix) that
characterizes the underlying differential problem. We highlight that, in the spirit of this
manuscript, the SIR model is only the channel we use to provide our idea: the stiffness
ratio can help us understand the requested time to recover the truth in a given country
exposed to a certain fake news. To some extent, we aim to provide a novel element to
understand the effectiveness of modeling for the diffusion of fake news, as well as to the
re-establishment of the truth: the higher the stiffness ratio, the faster the re-establishment
of the truth after the diffusion of fake information. This kind of argument is not advisable
in the literature, to the best of our knowledge. The work is organized as follows: Section 2
will describe the stiffness analysis of the SIR model for fake news diffusion; Section 3 is
dedicated to numerical tests, performed on real data, confirming our thesis; and some
concluding remarks are given in Section 4.

2. Stiffness Analysis of the SIR Model for the Diffusion of Fake Information

As aforementioned, the SIR model was first introduced in 1927 by Kermack and
McKendrick [31], even if seminal contributions on compartmental models are also advisable
in [30,32–34]. It represents an extremely simple mathematical model for describing the
transmission of an infectious disease. This model describes the mutual interactions of
three populations of individuals: the population S of susceptible people, i.e., the healthy
individuals who can contract the disease; the population I of the infected, i.e., individuals
who have contracted the disease and are able to transmit it; and the population R of the
recovered, that is, individuals who are healed.

In our model for the spread of fake information, above populations are described
as follows:

• S(t): potentially authoring the spreading of fake news;
• I(t): the wide variety of authors highly active in posting fake information;
• R(t): authors who are inactive to the spreading of fake news.

The model is based on the continuous interaction between susceptible and infected
individuals along time. The corresponding system of ODEs is then given by:

dS(t)
dt

= −βS(t)I(t),

dI(t)
dt

= βS(t)I(t)− αI(t),

dR(t)
dt

= αI(t),

(1)

where α is the rate of recovery and β the contact rate. Specifically, since the purpose of our
method is to compare the impact of fake news in different countries, the parameters β and
α, are related to two important indices, commonly used to describe the social, economic
and cultural performance of our society. In particular,

β =
i

10
, α =

h
100

,

where i is the internet penetration index of the country and h is the human development
index of the same country. These values are commonly provided in the annual report of
United Nations Development Programme [45] (also see the projects [46,47]). In general,
the value of α is smaller than that of β because it is easier to spread a lie than reaffirming the
truth. Table 1 shows, for instance, the values of α and β for selected countries, i.e., Australia,
Brazil, France, India, Italy, Mexico, Mozambique and the USA, referring to the year 2019.
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Remark 1. It is crucial to highlight the different power of the denial of a fake news and that of
the fake news itself [48]. Fake information circulates online much faster than true one and is more
prone to be shared by users who encounter it; on the other hand, the re-assessment of the truth is
nowhere viral and reaches far fewer people than those who have read or spread fake information.
Due to this intrinsic characteristic of true news compared to false news, the former require a much
greater commitment on the part of individual users than that related to the spread of fake news.
Above all, the spread out of fake information does not necessarily require a particularly strong
human presence: often fake news are circulated by bots created specifically by someone or shared by
fake accounts, so they do not correspond to real people. Real people, on the other hand, are necessary
and represent the only option to restore the truth. This motivates the choice of the recovery rate α
linked to human development index per country and the contact rate β to the spread of the internet
in the same country.

Table 1. Values of the constants α, β, for France, India, Italy, Mexico and the United States, referring
to 2019.

α β

Australia 0.009 0.087
Brazil 0.008 0.072
France 0.009 0.089
India 0.006 0.035
Italy 0.009 0.061

Mexico 0.008 0.064
Mozambique 0.005 0.021
United States 0.009 0.075

In our analysis, it is relevant to consider a linearization around the initial value vector S0
I0
R0

 =

 S(0)
I(0)
R(0)

,

leading to 

dS(t)
dt

= βS0 I0 − βI0S(t)− βS0 I(t) + high order terms,

dI(t)
dt

= −βS0 I0 + βI0S(t) + (βS0 − α)I(t) + high order terms,

dR(t)
dt

= αI(t),

(2)

Correspondingly, let us compute the Jacobian matrix of the linear part of the vector
field in (2), i.e.,

Jα,β(S0, I0) =


−βI0 −βS0 0

βI0 βS0 − α 0

0 α 0

,

whose spectrum consists in one eigenvalue equal to 0 and two real eigenvalues λmin
α,β (S0, I0)

and λmax
α,β (S0, I0), with |λmin

α,β (S0, I0)| < |λmax
α,β (S0, I0)|. Correspondingly, the ratio

σα,β(S0, I0) =
|λmax

α,β (S0, I0)|
|λmin

α,β (S0, I0)|
, (3)
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meaningful in the analysis of stiff problems [49], provides the so-called stiffness ratio of (1).
Table 2 reports the stiffness ratio for each country, related to the initial value S0

I0
R0

 =

 0.7
0.1
0

, (4)

i.e., assuming that 70% of the initial population is susceptible, 10% are infected and there
are no recovered people. The results reveal that, the higher the internet penetration index i,
the bigger the stiffness ratio. As a consequence, the corresponding model (1) is more stiff
and the spread of fake news should be more damped in time. In other terms, the more (1)
is stiff, the more the corresponding country exhibits a faster transit of fake news. Countries
with a lower internet penetration index i are characterized by a less stiff model and, as a
consequence, the transit of fake information is slower and circulates for much more time.

Table 2. Values of the stiffness ratios (3) in France, India, Italy, Mexico and the United States, referring
to 2019, assuming the vector (4) as initial point.

Sα,β(S0, I0)

Australia 20.03
Brazil 20.85
France 23.07
India 8.38
Italy 12.35

Mexico 17.13
Mozambique 4.39
United States 17.00

3. Numerical Experiments and Conclusions

In this section, we aim to give numerical evidence of the arguments contained in
the previous section, i.e., the spread of fake news is closely linked to the stiffness ratio
of Equation (1). For each listed country, Figures 1–8 show the solution of problem (1) in
the interval [0,1000], computed by the standard Matlab built-in function ode15s, and the
pattern of the ratio τα,β(S(t), I(t)) between the maximum and minimum moduli of the
non-zero eigenvalues of the matrix

Jα,β(S(t), I(t)) =


−βI(t) −βS(t) 0

βI(t) βS(t)− α 0

0 α 0

,

that corresponds to the Jacobian of the problem (1), frozen at time t. To some extent, we
aim to check the evolution in time of the stiffness ratio σα,β(S0, I0).

Each figure confirms that the higher the stiffness ratio, as listed in Table 2, the faster
the transit of fake news will be. In some countries, such as India or Mozambique, where
the internet penetration index is small, the function τα,β(S(t), I(t)) grows much than in
the other cases (corresponding to countries with higher internet penetration indices). As a
consequence, smaller values of the stiffness ratio correspond to a slower achievement of
the maximum number of infected people and, consequently, to a slower dispersion of fake
news. The observed number of time units needed to achieve the maximum number of
infected is listed in Table 3: one can observe that the number of time units is coherent with
the stiffness ratio, so the smallest value is for France, while the largest is for Mozambique.
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Figure 1. Solution to the SIR model (1), with initial value given by the vector (4), for Australia (left)
and corresponding pattern of τα,β(S(t), I(t)) (right).
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Figure 2. Solution to the SIR model (1), with initial value given by the vector (4), for Brazil (left) and
corresponding pattern of τα,β(S(t), I(t)) (right).
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Figure 3. Solution to the SIR model (1), with initial value given by the vector (4), for France (left)
aand corresponding pattern of τα,β(S(t), I(t)) (right).
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Figure 4. Solution to the SIR model (1), with initial value given by the vector (4), for India (left) and
corresponding pattern of τα,β(S(t), I(t)) (right).
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Figure 5. Solution to the SIR model (1), with initial value given by the vector (4), for Italy (left) and
corresponding pattern of τα,β(S(t), I(t)) (right).
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Figure 6. Solution to the SIR model (1), with initial value given by the vector (4), for Mexico (left)
and corresponding pattern of τα,β(S(t), I(t)) (right).
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Figure 7. Solution to the SIR model (1), with initial value given by the vector (4), for Mozambique
(left) and corresponding pattern of τα,β(S(t), I(t)) (right).
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Figure 8. Solution to the SIR model (1), with initial value given by the vector (4), for United States
(left) and corresponding pattern of τα,β(S(t), I(t)) (right).

Table 3. Number of time units required to reach the maximum of infected in France, India, Italy,
Mexico and the United States, referring to 2019.

Number of Time Units

Australia 66.15
Brazil 77.00
France 61.16
India 145.75
Italy 88.90

Mexico 87.02
Mozambique 234.40
United States 74.05

4. Conclusions

The analysis carried out in this paper is useful to give a measure, suggested by the
stiffness ratio, of the speed of re-affirmation of the truth after the spread out of a fake
news. In particular, the analysis suggests to use SIR models with high stiffness ratio
to describe the diffusion of fake information when the country is exposed to a slower
transit of fake news. Less stiff models are particularly suitable when the transit of fake
news is slower and its survival time in the exposed population is higher. The employed
model is the standard SIR system of differential Equation (1), but certainly more complex
deterministic and stochastic models may be used in order to describe the diffusion of fake
news as an epidemic phenomenon as, for instance, in [50–58]. Moreover, it would be worth
investigating how to detect fake news through sentiment analysis of tweets as suggested
by [59,60].
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