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Abstract: Continual mapping and monitoring of impervious surfaces are crucial activities to support
sustainable urban management strategies and to plan effective actions for environmental changes.
In this context, impervious surface coverage is increasingly becoming an essential indicator for
assessing urbanization and environmental quality, with several works relying on satellite imagery
to determine it. However, although satellite imagery is typically available with a frequency of
3–10 days worldwide, imperviousness maps are released at most annually as they require a huge
human effort to be produced and validated. Attempts have been made to extract imperviousness
maps from satellite images using machine learning, but (i) the scarcity of reliable and detailed ground
truth (ii) together with the need to manage different spectral bands (iii) while making the resulting
system easily accessible to the end users is limiting their diffusion. To tackle these problems, in this
work we introduce a deep-learning-based approach to extract imperviousness maps from multi-
spectral Sentinel-2 images leveraging a very detailed imperviousness map realised by the Italian
department for environment protection as ground truth. We also propose a scalable and portable
inference pipeline designed to easily scale the approach, integrating it into a web-based Geographic
Information System (GIS) application. As a result, even non-expert GIS users can quickly and easily
calculate impervious surfaces for any place on Earth (accuracy > 95%), with a frequency limited only
by the availability of new satellite images.

Keywords: FuseNet; U-Net; ResNet; impervious; land cover; remote sensing; deep learning; CNN;
Sentinel-2

1. Introduction

Human beings have been altering the face of the Earth for the last few centuries. This
process has seen a fast boost after the introduction of machines, resulting in drastic changes
to land cover. Identifying the physical aspect of the Earth’s surface (land cover) as well
as how we exploit the land (land use) is an essential task. Indeed, land-cover changes
may significantly influence several processes that can eventually lead to the degradation
of local ecosystems. By definition, Impervious Surfaces (IS) are artificial surfaces (such as
roads, driveways, sidewalks, parking lots, rooftops) through which water cannot infiltrate
into the soil [1]. With rapid urbanization, urban impervious surfaces have been greatly
expanded, decreasing previous surfaces, such as forests, green spaces, bare soils, and
wetlands. Consequently, in recent years impervious surface analysis and monitoring . have
emerged not only as an indicator of urbanization degree but also as a significant indicator
of environmental quality since IS cover quickly measures the impact of human activities on
alterations of the environment. Therefore, accurate methods for determining impervious
surface distribution are fundamentals for monitoring changes to urban areas and achieving
sustainable urban development [2]. IS cover monitoring can be done through on-place
surveys (made by experienced and specialized personnel) or by analysing satellite images
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(also commonly known as remote sensing). Although carrying out on-place surveys
produces more comprehensive and authoritative outcomes, performing it is an expensive
and time-consuming process, involving the movement of people and tools. Therefore,
automating this process is extremely useful for reducing the amount of work and to limit
the associated costs.

One of the aspects making automatic analysis non-trivial is that impervious areas
are usually made of different construction materials, resulting in significantly variegated
spectral signatures, and spatial patterns [3]. As for many other computer vision tasks,
in recent years, Deep-Learning (DL) algorithms, and in particular Convolutional Neural
Networks (CNNs), have been showing promising results in land-cover classification [4,5].
This has been firmly pushed by satellite images usually existing also in visible-light (RGB)
channels, thus allowing for the leverage of DL models designed for tasks requiring the
analysis of natural images. However, the situation is dramatically different when it comes
to imperviousness analysis, due to (i) the lack of high-quality labelled datasets and (ii) the
fact that RGB spectral data are usually not the most suited for the task. In addition, current
solutions providing land-cover maps through automatic algorithms show some issues
in addressing the high granularity of the data in an urban context, losing the essential
details needed for accurate analysis. To better understand the extent of this problem in
urban areas, in Figure 1 we compare different imperviousness maps for the same land
portion covering a small area in the city centre of Rome, Italy. In particular, Figure 1a
shows the area as it appears from very high-resolution (50 cm) Pleiades satellite image;
Figure 1b shows the imperviousness map at 10 m resolution realised by on-plane analysis
performed by the Italian National Institute for Environmental Protection and Research
(ISPRA (https://www.isprambiente.gov.it/)); Figure 1c reports a 10 m imperviousness map
realised by the Environmental Systems Research Institute (ESRI) using artificial intelligence
algorithms; finally, Figure 1d shows a 10 m imperviousness map currently available on the
Google Earth Engine under the name of “DynamicWorld”, automatically generated using
deep learning on Sentinel-2 imagery [6].

Furthermore, recent years have seen an enormous increase in the number of web-based
applications leveraging techniques derived from geographic information systems (GIS).
Even though it should be good news to have access to spatial data as well as advanced
mapping and spatial analysis over the Internet as a critical point to pursue reduction of
the distance between data, information and decision-makers, it has often been observed
that many publicly available map layers are actually only accessible by people skilled
with GIS. In this work, we want to tackle these problems by assembling a novel dataset,
experimenting with a DL architecture designed to take advantage of Sentinel-2 multi-
spectral data, and integrating the whole process in a proof-of-concept web application. In
particular, the main contributions of this work can be summarised as follows:

• To address the difficulties of the current solutions in the urban context, a new dataset
has been gathered using an authoritative imperviousness map (ISPRA) as ground truth.
ISPRA is a public institute, part of the Italian Ministry for the Environment, Territory
and Sea, promoting and supporting scientific, technical and research functions as well
as assessment, monitoring and control activities. Among other functions, it provides
several land-cover maps, including the imperviousness map used in this work. These
maps are produced semi-automatically from data provided by several European
projects and authoritative data available for Italian territory, and are generated and
released yearly;

• We introduce ReFuse, a new DL architecture for impervious surface extraction based
on a U-Net backbone [7], residual blocks (Re) [8] and the FuseNet principle (Fuse) [9]
to take advantage of Sentinel-2 multi-spectral bands despite their different spatial
resolutions. We also compared the performance of the proposed approach against
some state-of-the-art CNNs;

• We integrated imperviousness inference and visualization into a GIS web application
with a user-friendly interface for users without specific GIS competencies, imple-

https://www.isprambiente.gov.it/
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menting an inference pipeline leveraging modern distributed parallel computing and
MLOPs best practices. This enables fast deployment of the solution on HPC or cloud
computing systems, ensuring high scalability.

The rest of the paper is structured as follows: Section 2 reports some related works;
the process of the dataset generation, the proposed DL approach for impervious surface
extraction and the web tool are described in Section 3; Section 4 describes the experimental
setup; Section 5 reports and analyses obtained results while Section 6 provides some
conclusions and future perspectives.

(a) (b)

(c) (d)
Figure 1. High-resolution Pleiades satellite image of a dense urban area in Rome, Italy (a), and the
corresponding imperviousness maps from ISPRA (b), ESRI (c) and DynamicWorld (d). For impervi-
ousness maps, red indicates impervious areas while green corresponds to non-impervious ones.

2. Related Works

Computer vision and machine learning strongly contribute to satellite image classifi-
cation. Focusing on remote-sensing methods for impervious surface extraction, machine-
learning approaches can be divided into three groups: (i) pixel-based, (ii) texture-based
and (iii) semantic segmentation algorithms [10].

Pixel-wise classifiers typically exploit the spectral signature by relying on ad hoc fea-
tures. Usually, they leverage a similarity measure to measure the spectral differences
between impervious surfaces and other ground objects. Most commonly used indexes are
Normalised Difference Built-up Index (NDBI) [11,12], Normalised Difference Vegetation In-
dex (NDVI) [11,13], Index-based Built-up Index (IBI) [14], Normalised Impervious Surface
Index (NISI) [15], Combination establishment index (CBI) [16] and Corrected Normalised
Difference Impervious Surface Index (MNDISI) [17]. These methods are usually computa-
tionally not demanding. The flip side is that pixel-based approaches ignore spatial context
information. This implies that they can easily be misled by the noise and the within-class
variability, causing a salt-and-pepper effect within the classification result. Instead, the
texture-based approaches do not rely on the spectral information of imagery but rather exploit
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spatial information among neighbouring pixels to overcome the noise better and to capture
different types of spatial structures. Given a set of features to take into account, different
classification methods have been used to divide pixels into impervious and permeable
surfaces. Commonly used classifiers include Support Vector Machines [18,19], artificial
neural networks [20], decision trees [21] and random forest [22].

The wide variety of solutions so far described highlights the difficulty in finding the
best combination of features that suit the classification task due to the high variability
of impervious surfaces’ appearance on remote-sensing imagery [1]. Therefore, this task
can benefit from data-driven feature-learning approaches and end-to-end model training
provided by semantic segmentation algorithms [23]. In the past decade, deep learning
has proved to be effective on this task, with Convolutional Neural Networks (CNN)
outperforming many traditional machine-learning solutions. Nearly all state-of-the-art
architectures for semantic segmentation follow principles stated in [24], where semantic
segmentation using Fully Convolutional Networks (FCN) are demonstrated to be able
to achieve impressive results. The main idea consists of modifying traditional CNN so
that the output is no longer a probability vector but rather a probability map. That was
possible by replacing standard fully connected layers of CNNs with fully convolutional
layers to “densify” the single-vector output of a traditional CNN. A second feature was
the use of transposed convolutions, also called deconvolutions. A deconvolution layer
is used for up-sampling a feature map and obtaining a prediction of the same size as the
input image [25]. The third feature was the skip connections to combine dense prediction
at shallow layers and coarse predictions at deep layers, improving segmentation details.

On this line, several architectures have been so far proposed. The U-Net architec-
ture [7], designed for biomedical image segmentation, introduced the encoder–decoder
paradigm for up-sampling gradually from lower-size features to the original image size.
Since then, almost all CNN models for semantic segmentation have some form of en-
coder–decoder structure. The encoder reduces the spatial resolution of the input and
creates lower-resolution feature mappings that are highly effective at classifying objects.
The decoder increases the resolution of the feature representations to create a full-resolution
segmentation map. U-Net added several skip connections, which concatenates the feature
maps of the encoder part with the mirrored feature maps in the contracting path.

In [26], Sun et al. experimented with the use of a CNN to extract impervious surfaces
through Worldview-2 and airborne LiDAR. The findings showed that 3D-CNN had more
ability to extract features than SVM since it used pixel-level spatial information as well
as texture. Ref. [27] uses a deep-learning approach to extract impervious surfaces from
WorldView 2 and Pléiades-1A datasets automatically. In [28], the authors conducted a
comparative study for the impervious surface estimation mixing optical and SAR data; ex-
perimental results indicated the effectiveness of the proposed deep convolutional network,
which exhibited a better accuracy outperforming other benchmark methods. In [29], Fu et al.
proposed a solution based on a deep CNN to map impervious surfaces in town–rural areas
using China’s GF-2 Imagery. They showed the effectiveness of deep models and how
transfer learning could significantly boost overall accuracy.

Fewer studies are available on using Sentinel-2 imagery for built-up ISA extraction
and even less with a deep-learning approach. In [30] the authors assessed the feasibility
of using Sentinel-2 images for this task by means of an artificial neural network. In [31],
using Sentinel-2 satellite imagery, a CNN was employed as a deep feature extractor, and
the classification was made by means of a random forest classifier. Similarly, in [32] the
authors compared different machine-learning and deep-learning algorithms for the land-
cover classification, with a CNN showing the best performance in the classification of
impervious areas. Deep learning has also been investigated for multi-sensor and multi-
modal image segmentation. Multi-modal fusion strategies are of great interest in the field
of RS classification since satellite images usually consist of multi-spectral content. Similarly,
extensive research has also been conducted to combine heterogeneous data (multi-sensor
fusion), such as optical images with Synthetic Aperture Radar (SAR) and LiDAR data. In
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both cases, fusion models help reduce confusion from spectral heterogeneity in landscapes
and enhance classification accuracy. On this line, in [33] the authors use existing CNNs
(FCN or SegNet) as a base network to experiment with different data fusion strategies,
both in early and late fusion fashion. In the same way, Ref. [34] explores how deep
fully convolutional networks can be modified to handle multi-modal and multi-scale
remote-sensing data for semantic labelling. To this aim, the authors extended the FuseNet
architecture [9] by considering two branches, one trained with IR-R-G bands and one with
Normalised Digital Surface Model (NDSM), Digital Surface Model (DSM) and NDVI data.
The proposed approaches outperformed a SegNet trained only on IR-R-G bands, thus
proving the effectiveness of using multi-spectral data for remote-sensing classification.

3. Materials and Methods

As described in Section 1, in this paper we introduce a web-based system leveraging a
new deep-learning model for generating imperviousness maps from Sentinel-2 satellite
images. The resulting system has been integrated within a GIS web-based application to
support non-expert operators in easily generating imperviousness maps. Figure 2 shows
the interface presented to the user for requesting a map of imperviousness in a specific
part of the globe. Users only need to draw their area of interest and then select the date
range in which they are interested. Once the area and date range has been selected, a map
calculation phase for the specific area starts. An asynchronous process handles the whole
computation. All these processes happen in the background and are transparent to the user.
Figure 3 reports a logical diagram of the inference pipeline: after the user request, satellite
images are collected from the stores and sent to the inference pipeline, which produces
the imperviousness map as the final output. It is worth noting that such a web application
requires an inference process that can handle and scale toward enormous quantities of
satellite data. The following sections detail each of the three main components: Section 3.1
describes the steps followed for the training dataset generation; Section 3.2 introduces the
designed deep-learning model; Finally, Section 3.3 describes the inference pipeline in detail,
investigating the scalability requirements of the proposed solution.

Figure 2. Example of the area of interest selection in the proposed tool.
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Storage
Nodes

Prediction

HPC / Cloud computing

Figure 3. Inference Pipeline scheme. On the left, the process of the Sentinel-2 satellite imagery
retrieval. On the right, the execution of the prediction. As detailed in Section 3.3, we choose Docker
to set up the image for the inference. Dask makes the solution scalable by parallelising the execution.

3.1. Imperviousness Dataset Generation

This section describes the methodology we used to create the dataset to be used to
train our deep-learning model for generating imperviousness maps from Sentinel-2 satellite
images (dataset openly available in Zenodo at https://doi.org/10.5281/zenodo.7058860
accessed on 22 September 2022). The Sentinel-2 platform consists of two satellites equipped
with sensors able to acquire images with 13 spectral bands ranging from the visible range
to the short-wave infrared. Each sensor has a different spatial resolution, with RGB bands
and near-infrared (NIR) showing the highest one (i.e., 10 m). With a 12-bit radiometric
resolution, the image can be collected from 0 to 4095 possible light intensity values, enabling
the satisfactory identification of minor variations in reflected or emitted energy.

The lack of labelled data poses a serious obstacle to developing deep-learning algo-
rithms that detect impermeable surfaces. Most available imperviousness maps typically
have a coarse spatial resolution that does not adequately emphasize green spaces in urban
settings. In this work, we used the soil consumption map covering Italy provided by ISPRA
for 2017 with a 10 m spatial resolution. These data were built by merging regional Land
Use Land Cover (LULC) maps, in situ data provided to ISPRA by Regional Environmental
Agencies, Copernicus HRL Imperviousness products, OpenStreetMap, and local supple-
mentary data. The map consists of a hierarchical classification ID with each pixel having
up to three digits class: the first digit, starting from the left, describes whether a point is
consumed soil (i.e., a value of 1) or not consumed soil (i.e., a value of 2), while the other two
optional digits can specify the class with more detail (e.g., 112 stands for “soil consumed
by asphalt roads”). Since we were interested in the segmentation between impervious and
non-impervious surfaces, only the first digit was considered to label the data.

The flowchart in Figure 4 illustrates the process used in this work for generating
labelled training, evaluation, and testing data. Sentinel-2 granules are organized in a tiling,
partially overlapping grid. As for other image-processing domains, having a dataset repre-
sentative of the population is crucial. As the authors of this paper are Italian, we decided
to select Sentinel-2 tiles covering particular zones of the Italian peninsula containing a
variegate distribution of hills, waters, plains, mountains, etc., both in urban and suburban
realms. To further increase the variance, we extracted images recorded all over the year,
acquiring at least one image per season. Nonetheless, it is worth noting that only images
for 2017 were considered, to minimize labelling mismatch with the available ground truth.
Table 1 lists Sentinel-2 products used for the dataset generation while Figure 5 shows
selected patches distribution along the Italian peninsula.

https://doi.org/10.5281/zenodo.7058860
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Table 1. List of Sentinel-2 products used for the generation of the dataset.

Month Product Name Identifier

March S2A_MSIL2A_20170329T095021_N0204_R079_T33TVF_20170329T095024
June S2A_MSIL2A_20170613T101031_N0205_R022_T32TQR_20170613T101608
July S2A_MSIL2A_20170720T100031_N0205_R122_T33TUH_20170720T100027
July S2A_MSIL2A_20170706T102021_N0205_R065_T32TMQ_20170706T102301
August S2A_MSIL2A_20170806T095031_N0205_R079_T33TWF_20170806T095744
August S2A_MSIL2A_20170802T101031_N0205_R022_T32TQP_20170802T101051
October S2A_MSIL2A_20171014T102021_N0205_R065_T32TNR_20171014T102235
October S2A_MSIL2A_20171015T095031_N0205_R079_T33SVB_20171015T095944
October S2A_MSIL2A_20171028T100121_N0206_R122_T33TUG_20171028T134729
December S2A_MSIL2A_20171220T101431_N0206_R022_T32TPR_20171220T122057
December S2A_MSIL2A_20171224T095421_N0206_R079_T33TVG_20171224T122256

ISPRA Italian Soil
Consumption Map

Sentinel-2 
satellite images

Select tiles across Italy
for different seasons of

the year

download images

upsampling bands to 10
m spatial resolution

Overlay images

Data Cleaning (cloud and no valid data filtering)

Training Data 
(70%)

Validation Data 
(20%)

Test Data 
(10%)

Figure 4. Schematic representation of the impervious surface dataset generation.
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Figure 5. Localization of the Sentinel-2 tiles used in dataset generation.

Sentinel-2 bands with lower spatial resolution were up-sampled to 10 m per pixel using
cubic convolution. When necessary, ground-truth raster and acquired Sentinel-2 images
have also been reprojected to a common coordinate system to have two perfectly stackable
files. It is worth noting that a typical Sentinel-2 tile has a size of 10,980 × 10,980 pixels
for the 10 m spatial resolution. Since these dimensions are computationally infeasible,
we extracted non-overlapping patches of 244× 244 pixels from each ground-truth image.
Finally, a data-cleaning process excludes chips without corresponding ground truth, i.e.,
chips containing no data values or chips with clouds. To this aim, a cloud mask is computed
using the Scene Classification Layer within Sentinel-2 Level-2A products.

3.2. Multi-Spectral Bands Fusion Network

Semantic labelling of satellite images requires a dense pixel-wise image classification.
In this work, we started exploring some popular neural networks’ capabilities for pixel-wise
extraction of impervious surfaces. However, it is crucial to consider that Remote-Sensing
(RS) image data are more than a picture since they include electromagnetic wavelengths
ranging beyond the three RGB bands of natural images. In general, a CNN can take
an arbitrary number of spectral bands as input, modifying the depth of the first input
convolutional layer. However, exploiting the multi-spectral content of RS images is not as
simple as presenting more bands as input to the network. Indeed, increasing the number of
spectral input bands eventually results in the need for more extensive training datasets,
consisting of satellite images and corresponding ground-truth data, to avoid incurring in
overfitting. Moreover, this approach does not allow for leveraging transfer learning, which
instead proved to be effective for remote-sensing image analysis [35]. In a multi-sensor
setup, with more than three bands available, a possible approach is to employ two or more
neural network branches to analyse some of the bands separately, fusing the features at a
later stage in the network. However, the main drawback of this late fusion procedure is
that the number of weights doubles, thus requiring more computation time for both the
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training and inference phase. Considering the extension of satellite images, this limitation
might be too demanding to make the approach feasible in a real production environment.

In this paper, we thus focus on designing a CNN able to efficiently combine features
from multi-spectral bands, providing a good balance between the number of parameters
and segmentation performance. The proposed architecture, shown in Figure 6, comprises
three state-of-the-art ideas:

U-Net
decoder

U-net cross connections

residual residual residual residual

residual residual residual residual

Main branch
Secondary branch

Figure 6. The proposed ReFuse encoder–decoder architecture: the encoder consists of two parallel
ResNet-50 networks where every residual block output from the second branch is fused into the
main one by a feature map summation. Feature maps from the encoder are then connected with the
decoding part by feature map concatenation, such as in the U-Net cross-connections.

1. A U-Net as backbone architecture. Its encoder–decoder paradigm with cross-connections
for pixel-wise labelling and skip connections between same-sized parts in down-sampling\
up-sampling paths help to address the loss of fine detail during up-sampling [7];

2. To achieve better results as the depth of the network increases, the building blocks
of the standard U-Net encoder part were replaced with residual blocks. More in detail, a
ResNet-50 model has been used to replace the U-Net encoder down-sampling section.
The idea is to leverage residual blocks’ ability to reduce the problems associated with
the vanishing gradients strongly;

3. To exploits multi-spectral content, beyond classic RGB wavelengths, a FuseNet [9]
approach has been used. The FuseNet model jointly encodes both the RGB and depth
information using two encoders (in this case, two ResNet-50, as described in the
previous point) whose contributions are summed after each convolutional block. We
adapted the standard fusion approach to the use of residual networks by summing
contributions from different branches after each residual block.

The result is a U-Net-like network with the encoder replaced by two parallel ResNet-50
networks where the main branch inputs the RGB bands while the second uses bands B07,
B08, and B11. Every residual block output from the second branch is fused into the main
branch by employing feature map summation. After that, the fused map is connected
to a convolutional layer for the decoding part through concatenation, implementing the
classical U-Net cross-connections. All these solutions allow the proposed architecture to benefit
from the combination of short (i.e., residual skip connections) and long skip connection (i.e., U-Net
cross-connections) during the training strategy. We named this approach ReFuse after its two
core components: REsidual blocks and FuseNet.

Some minor changes were applied to the ResNet-50 encoder, following the minor
adjustments presented in [36]. At first, we modified the down-sampling block of a ResNet-
50, changing the stride of the first convolutional layer from 2 to 1. The idea behind this is
that a stride of 2 with a kernel size 1 × 1 ignores three quarters of the input feature map.
To leave unchanged the spatial size, we switched the size of the strides in the first two
convolutions, so that the second convolutional layer will have a stride of 2. Second, for the
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same reasons, we replaced a 2-stride convolution with an average pooling layer followed
by a 1 stride convolution, keeping intact the output dimensions: adding a 2 × 2 average
pooling layer with a stride of 2 before the convolution 1 × 1 with a stride of 1 the model
will not overlook any information. Finally, we changed the first convolutional layer of the
ResNet (i.e., a 7 × 7 convolution) with three 3x3 convolutions, since the replacement will
make the model easier to train [36].

Finally, to leverage transfer learning, we adopted a three-step training approach: (i) the
encoder weights are initialized from a ResNet50 pre-trained on ImageNet; (ii) the training
is started with all the encoder layers frozen (with the aim of training only the decoder ones);
(iii) the network is trained again by considering all the layers trainable. This procedure
helps the network to converge while giving the decoder enough information to learn how
to produce helpful segmentation masks properly.

3.3. Distributed Inference Pipeline

Serving a model in production is crucial, especially when we need to serve a web-
based application. Once the model is trained, we need to deploy it in a way that it can
serve the application. Building highly available, scalable, distributed systems for machine-
learning data pipelines is a complex task. In this work, we managed the whole process
as a workflow, a sequence of tasks representing units of business logic. Figure 7 shows
the workflow implemented for the prediction pipeline. The workflow is a Directed Cyclic
Graph (DAG) where each node is a task and arrows are dependencies between tasks. In
the extraction step, from the AoI and date range provided by the user, a first task searches
and downloads Sentinel-2 data. Any images with clouds are appropriately removed from
the process. The prediction is performed on the downloaded images after a subdivision
into patches of the size required by the deep-learning model. Finally, merging predicted
patches, the map is assembled and stored for later visualization.

Search

Download

Patches
Extraction

Prediction

Patches Merge

Store Data

EXTRACTION TRANSFORM LOAD

1 ... N 1 ... N

Cloud Filtering

Figure 7. Schematic representation of the inference pipeline workflow.

We implemented the whole approach through a Workflow Management System
(WfMS) (Source code is available at https://github.com/priamus-lab/ReFuse accessed
on 22 September 2022). A WfMS provides an infrastructure for a defined workflow’s
setup, performance and monitoring. Therefore, involving a WfMS gives flexibility and
extendibility to the approach because it implements off-the-shelf features such as data-
sharing between tasks, recovery from failure, retrying failed tasks, task scheduling for batch
runs, flow versioning and more. In this study, we use Prefect (https://www.prefect.io/
accessed on 31 July 2022), an open-source orchestration and workflow tool. However,
despite the choice made, this work aims to show a general approach, easily replicable
with similar tools. We can highlight five essential layers in every WfMS (Figure 8): (i) the
orchestration layer, which is responsible for the workflow’s life cycle; (ii) the agents, daemon-

https://github.com/priamus-lab/ReFuse
https://www.prefect.io/
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like processes that look for tasks and run them if any are available; (iii) the flow run layer,
which is responsible for defining where the flow run; (iv) the execution layer, which manages
where and how single tasks within the flow run; (v) the storage layer, which defines where
the flow’s code is stored, to be collected when needed. In addition, when tasks need to
pass data between them, we need a result layer which defines and manages where to store
task results.

Local

Cloud

Local

Docker

Kubernetes

Local

Docker

Kubernetes
Kubernetes
Kubernetes

Local

Local Dask

Cloud
Cloud

Dask

Orchestration Agents Flow Runs Execution

Local

Cloud Object
Storage

Code
repository

Storage

Local

Cloud Object
Storage

Results

...

how contol flow's
cycle of life wait for flow to run where flow block run where the task run

Figure 8. Workflow Management System layers. We use bold to highlight choices made in this work.

It is worth pointing out that in a fully distributed system such as the one we are
defining, the layers and components can be chosen from different types and deployed
in different places. This aspect makes the solution extremely flexible: for example, in a
development and test phase, one could choose to deploy an agent on a personal computer
but let the flow run in the cloud. Figure 8 highlights in bold choices made in this work.
Both agents and flows ran on a Kubernetes cluster; Prefect Cloud, a cloud-managed service,
performed the orchestration. Flow’s code and task results were stored in an object-based
storage, in particular an AWS S3 bucket. Kubernetes is a system that manages containers
where a container could be explained as a lightweight virtual machine. Containers encap-
sulate an application with all its dependencies, including system libraries, binaries, and
configuration files, making it portable across different hosts. Kubernetes can create and
scale these containerized applications automatically and manage storage among all the
containers. Instead, object-based storage is a strategy that manages and manipulates data
storage as distinct units called objects. Data are kept in separate storehouses versus files in
folders and is bundled with associated metadata and a unique identifier to form a storage
pool. Object-based storage effectively manages unstructured distributed content such as
our use case. This solution is adaptable to different scenarios because the business logic is
separate from the execution methods. Changing the configuration of one of the components,
e.g., where to store the code or execute the flow, does not require any change to the business
logic of the tasks. We choose to use a Dask cluster for the execution layer. This is the most
critical choice in our pipeline, as the choice of this executor allowed us to parallelise task
execution and potentially scale the approach indefinitely in a distributed environment.
Dask is an open-source Python library for parallel computing. In particular, we created an
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ephemeral Dask cluster, i.e., a cluster that scales up and down when needed and executed
tasks on them. Despite an initial latency time to start up the cluster, an ephemeral cluster
allows the leveraging of several machines but releasing them when the workload completes.
The WfMS was in charge of orchestrating all the tasks together, respecting dependencies
and data flow between them. Figure 7 highlights parallelisable computations within the
inference pipeline. It shows with green arrows the outputs of tasks that produce a list
of elements on which subsequent tasks can proceed in parallel. The designed workflow
involves parallelisation in processing the identified Sentinel-2 images and inferring over
the patches into which the image is divided. For example, if the initial search step identifies
100 Sentinel-2 images, subsequent processing can proceed in parallel on these. A workflow
such as this can be optimized with a map-reduce approach. Map-reduce is a powerful
two-stage programming paradigm, very famous in the big-data ecosystem, that can be used
to distribute and parallelise work (the “map” phase) before collecting and processing all the
results (the “reduce” phase). We can execute tasks dynamically across an iteratable input
with a map-reduce model. This, in turn, allows us to execute mapped tasks in a distributed
and parallel manner on a Dask cluster, drastically reducing the total execution time.

Figure 9 depicts the whole process. The first step is releasing the Docker image for
the flow execution into a Docker registry. A Docker image is an immutable template file
containing the source code, libraries, dependencies, tools, and other files needed to create
a container where the application will run. In this way, we are sure that nodes which
execute the inference pipeline will have all software dependencies correctly in place. The
model-serving strategy adopted is straightforward: together with weights, the model
was stored in object-based storage. This method permits the download of the model for
inference using a URL accessible via the Internet, a mandatory requirement for a distributed
data pipeline. In addition, it enables a fast and easy replacement with newer versions
because the model and business logic are decoupled. Finally, these steps can easily be
automatized within a Continuous Deployment flow, e.g., by initiating automatic uploads
following a code committed into a code repository. At the user’s request to calculate the
imperviousness map on a new area, a request is sent for a new execution of the inference
flow. The agent, therefore, upon receiving the request, starts the flow. The flow is executed
within a Kubernetes cluster in the form of a Kubernetes job. A Kubernetes job is a workload
controller that performs one or more finite tasks in the cluster. At startup, the flow pulls
the Docker image from the Docker registry for machine instantiation and then deploys an
ephemeral Dask cluster. After the Dask cluster is up, flow tasks can execute appropriately
on the cluster. A Dask cluster is composed of one scheduler node and N worker nodes.
By increasing the number of workers, we can scale up the number of maximum tasks
executable in parallel, giving our solution great flexibility and scalability. Although not
mandatory, such a solution fits well with the serverless infrastructure made available by
most cloud providers today. Serverless computing is an execution model in which the cloud
provider allocates machine resources on demand, allowing customers to pay only when
computational power is needed. Creating a Dask cluster when required and deploying it
on a serverless infrastructure dramatically reduces operational costs while maintaining a
virtually infinite ability to scale. It is worth remarking that the type of machine used to
instantiate Dask workers can be defined during configuration. For example, machines with
GPU enabled can be selected to reduce inference time further.
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Figure 9. Flow execution process for the imperviousness map generation. A Docker image stores
library dependencies. The model, weights and flow code are stored in object-based storage. During
flow execution, the orchestrator pulls the image from the Docker registry and using it starts a Dask
cluster. Finally, the prediction flow is executed on the Dask cluster.

4. Experimental Setup

We implemented the network in PyTorch, and the training execution was on ad hoc
AWS EC2 instances. We trained all our models using the Adam optimizer [37] with β1 = 0.9,
β2 = 0.99, ε = 1−5, a weight decay of 1−2 and a batch size of 8. The considered loss function
is a combination of dice and pixel-wise cross-entropy loss:

Ltotal = Ldice + Lce

with

Lce = −(ylog(p) + (1− y)log(1− p))

Ldice = 1− 2|A ∩ B|
|A|+ |B|

where A is the predicted segmentation mask and B is the ground truth, y is the ground
truth, and p is the probability for that class. The choice of also including the dice loss is to
help to regularise results in the case of unbalanced data chips (e.g., 95% bare soil and 5%
impervious surface in a single chip).

One of the most critical hyperparameters is the learning rate (LR): a big LR causes
the model to diverge, while a small LR causes the model to converge slowly or stack
in an unfavourable solution. We used two methods, the learning rate range test [38] and
the one-cycle policy [39], to determine the ideal LR value and train the model for accurate
fine-tuning. The LR range test is a method for determining what are considered to be the
acceptable minimum and maximum boundary values for LR. It entails running the model
over several epochs while letting the LR rise linearly between low and high LR values
after each mini-batch until the loss value increases enormously. Plotting accuracy trend
variating LR values, we can choose the LR one order lower than the point where loss is
minimum. Figure 10a shows the output for ReFuse model learning range test: we chose
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a maximum LR of 1−3. On the other hand, one-cycle policy is a technique similar to the
simulated annealing algorithm [40] designed for varying the LR during the training. The
method needs an initial interval of values: we choose the maximum value using the LR
range test and the lower one as 1/10th of the maximum LR. The algorithm moves from
the lower to the higher value during the first half of the cycle and from the higher back to
the lower during the latter half of the cycle. Finally, in the last few iterations, this method
anneals the learning rate way below the lower learning rate value for a final fine-tuning.
Conventionally, the learning rate decreases as the learning start converges, but the idea
behind this approach is that a higher learning rate may help overcome saddle points. In [39]
the author shows that when the learning rate is higher, during the middle of learning, the
learning rate works as a regularisation method and keeps the network from overfitting
because it avoids steep areas of loss and finds a better flatter minimum. Figure 10b shows
LR values used during training across the considered iterations. As soon as the model
performance on the validation dataset ceased improving, we employed an early-stopping
criterion to stop the training.

(a) (b)

Figure 10. Learning Rate (LR) tuning analysis for the ReFuse model. (a) The output of the LR range
test. The figure highlights the maximum learning rate before loss increases. (b) Learning rate values
during training with the one-cycle policy [39]. The one-cycle strategy increases the learning rate from
an initial value to a maximum learning rate. It then decreases the learning rate from the maximum
value to some minimum, which is substantially lower than the starting learning rate.

The GIS web application and the inference pipeline were executed on cloud infras-
tructure, using a Kubernetes cluster. In particular, the inference pipeline was released on a
serverless infrastructure to reduce the solution’s running costs.

5. Results

We compared our solution against some state-of-the-art CNNs and variants to measure
the effectiveness of the proposed approach. In particular, we compared against some
variants of three main architectures:

• We trained an FCN-8s, a variant of an FCN model introduced in Section 2. The classical
FCN architecture consists of a series of convolutional and pooling layers, with FCN-8s
also implementing a fusing strategy between predictions of the shallower layer Pool3
with twice-up-sampled sum of the two predictions derived from Pool4 and the last
layer. The stride 8 predictions are subsequently up-sampled back to the image;

• We investigated the use of a standard U-Net using different pre-trained CNNs as
encoders. In particular, we explored the use of VGG16 [41], ResNet [8] and Efficient-
Net [42] architectures pre-trained on ImageNet. The reasons behind this choice are
the high generalization ability demonstrated over the years by VGG, the ability to
deal with gradient vanishing of ResNet and the high efficiency/performance trade-off
of EfficientNet;
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• We used also DeepLabv3+ [43], an architecture introducing changes to the encoder–decoder
structure, such as the use of dilated convolutions [44], to preserve most of the spatial
input information.

We tested these architectures with different bands as input (i.e., RGB, RGB + NIR, all
13 bands resized to have the same spatial resolution). In all the experiments, as evaluation
metrics, we used the pixel-wise segmentation accuracy and the Intersection over Union
(IoU), defined as:

IoU = |Predicted ∩ GT|/|Predicted ∪ GT|

where GT is the ground-truth imperviousness mask. Table 2 reports the results for the
considered analysis, reporting for each configuration the base architecture, the used encoder
(if any), the used input bands and the obtained performance. The table clearly shows that
the proposed approach outperforms all the considered competitors by a large margin.
Moreover, analysing the table, there are a few points worth highlighting:

• Models trained on RGB bands and using transfer learning (with weights pre-trained
on ImageNet) tend to perform better than those using a different combination for
the bands;

• Results obtained using all bands at 10 m spatial resolution, i.e., RGB and NIR, are
slightly comparable with results obtained with RGB bands only;

• ResNet-50 tends to be the most effective encoder;
• Using all 13 bands causes the worst results both in terms of accuracy and IoU. This confirms

our claim that using more bands does not necessarily result in better performance.

Table 2. Results obtained by the proposed approach (last row) and the considered competitors for the
imperviousness map extraction. For the proposed approach (ReFuse), the use of brackets under the
“bands” column highlights the ability of the proposed approach to use different bands type, without
the need for resizing.

Network Encoder Bands Accuracy IoU

FCN-8s - R, G, B 89.54% 69.76%
FCN-8s - R, G, B, NIR 88.25% 69.55%
FCN-8s - All 13 bands 84.80% 60.35%
U-Net VGG16 R, G, B 87.45% 70.03%
U-Net ResNet-34 R, G, B 90.13% 70.54%
U-Net ResNet-50 R, G, B 92.39% 73.50%
U-Net ResNet-50 R, G, B, NIR 92.07% 71.37%
U-Net ResNet-50 All 13 bands 89.37% 70.32%
U-Net ResNet-101 R, G, B 90.39% 70.57%
U-Net EfficientNetB7 R, G, B 94.48% 74.61%
DeepLabv3+ ResNet-50 R, G, B 92.19% 71.35%
DeepLabv3+ ResNet-50 R, G, B, NIR 91.32% 71.29%
DeepLabv3+ ResNet-50 All 13 bands 88.25% 68.50%

ReFuse ResNet-50 (R, G, B) + (B7, B8, B11) 95.72% 75.85%

To better understand the effectiveness of the proposed approach, in Figure 11 we report
an inference example on a single patch, highlighting false positives (FP) and false negatives
(FN). Interestingly, ReFuse produces a segmentation mask very close to the ground truth,
with errors almost all located along the borders of the urban areas or in shadow zones
(misclassified as impervious areas). Similarly, Figure 12 reports the extraction results from
the test set of two representative regions in the city of Turin in Italy, including small dense
residential buildings and large high buildings in urban commercial areas. For both areas,
the model produces excellent segmentation masks. Both images in Figure 12d,h reveal
some difficulty in segmenting small buildings and noise along the edges of streets. This
result can be explained in the first instance by the spatial resolution of the Sentinel-2 data. A
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spatial resolution of 10 m is too low to capture such levels of detail. Indeed, even observing
Sentinel-2 images (Figure 12b–f) by the naked eye, we can exhibit the same difficulty in
discriminating between impervious and non-impervious pixels.

(a) (b)

(c) (d)
Figure 11. Example of an imperviousness mask obtained using ReFuse. Top left is the considered
path (only RGB bands have been reported for visualization reasons). Top right is the corresponding
ISPRA Ground Truth. Bottom left is the imperviousness mask obtained by the proposed ReFuse
architecture. Bottom right is the ReFuse segmentation errors. (a) RGB patch. (b) Ground truth.
(c) ReFuse. (d) Error mask: FP (blue), FN (red).

It is worth noting, finally, the presence of mislabelled data shown in Figure 12c.
Despite the presence of trees and gardens, everything is labelled as impervious. Even more
interesting here is the result obtained. Despite errors in the ground truth, the network
correctly detects the green infrastructure within the area, i.e., trees, grass and parks, showing
an ability to generalize the result that is sometimes superior to that of the training data.
This result is of fundamental interest in this work because, as stated in Section 1, one of the
objectives was to address the difficulties of current solutions in extracting imperviousness
maps with a high level of detail within the urban context.
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 12. Semantic mapping with ReFuse model for two areas in the city of Turin. (a,e) Optical
images extracted from Google Earth. (b,f) Sentinel-2 RGB images. (c,g) Ground truth extracted from
ISPRA Soil consumption map. In red, imperviousness surfaces. (d,h) Predicted maps with the ReFuse
model. Despite errors in the ground-truth labels (see image (c)), the network correctly detects the
green infrastructure within the area, i.e., trees, grass and parks (see image (d)).

6. Conclusions

In this study, we introduced a deep-learning-based method for extracting impervious-
ness maps from multi-spectral Sentinel-2 pictures leveraging bands with different spatial
resolutions without the need for rescaling or other adaptations. Additionally, the proposed
approach has also been made available through a portable and scalable inference pipeline,
easily pluggable within a web-based GIS application. The aim is to support the generation
of imperviousness maps as soon as new satellite images are available for a fast, effective
and reliable analysis of human environmental impact. To achieve this, one of the biggest
challenges was the lack of a labelled dataset, with a temporal and spatial granularity, as
well as precision, suited for the task. To address this problem, we gathered a new dataset
using the ISPRA imperviousness map as the ground-truth raster. In particular, as we used
the soil consumption map covering Italy provided by ISPRA for 2017, we generated the
used dataset by selecting Sentinel-2 tiles covering different parts of the Italian peninsula
and for different periods of 2017 to include several soil characteristics.

The proposed approach is a deep-learning architecture designed for impervious sur-
face extraction based on a U-Net backbone and leveraging residual blocks and the FuseNet
principles (here the name) to effectively take advantage of Sentinel-2 multi-spectral bands
despite their different spatial resolutions. To evaluate the effectiveness of the proposed
approach, we compared the performance of the ReFuse architecture against some state-of-
the-art CNNs. For the sake of completeness, we analysed the effectiveness of some variants
obtained by changing the used encoder and\or considered bands, showing how the use of
residual connections and the selected bands ensures the best performance. Nonetheless, all
the considered competitors are outperformed by ReFuse.

Additionally, as the work aims to realise a simple and effective tool, we integrated
the proposed approach into a GIS web application. Figure 2 shows how requesting data
for a specific area of interest can be simple, even for non-experts. In Figure 13, we share
a web page we realised where the impervious data are presented to the end user using a
map with a hexagonal grid. The grid was computed with a zonal statistics process applied
to the imperviousness map computed through the proposed approach. The whiter areas
represent the areas with the most impervious surfaces; vice versa, greener hexagons are the
zones with the highest presence of trees, parks, and gardens. The image shows the map of
impervious surfaces for the city of Turin in Italy. In particular, it shows how the areas with
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the highest content of impervious surfaces in the city centre can be easily identified, i.e.,
white hexagons.

Figure 13. Example of the imperviousness map visualization into a GIS web application.

In conclusion, the proposed approach shows how deep-learning, MLOPS and web-
based application can effectively be used for a social-good application, such as impervi-
ousness classification, in a simple and intuitive manner. The applicability of the proposed
approach to different land-cover classification tasks will be tested to analyse the generaliza-
tion capability of the approach across different applications. Finally, other experiments will
be conducted, considering the time variable and extending the proposed dataset with new
data sources, such as Sentinel-1 SAR satellite imagery.
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