
Citation: Kurtukova, A.; Romanov,

A.; Shelupanov, A.; Fedotova, A.

Complex Cases of Source Code

Authorship Identification Using a

Hybrid Deep Neural Network.

Future Internet 2022, 14, 287.

https://doi.org/10.3390/fi14100287

Academic Editor: Filipe Portela

Received: 16 September 2022

Accepted: 28 September 2022

Published: 30 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Complex Cases of Source Code Authorship Identification Using
a Hybrid Deep Neural Network
Anna Kurtukova *, Aleksandr Romanov , Alexander Shelupanov and Anastasia Fedotova

Department of Security, Tomsk State University of Control Systems and Radioelectronics, 634050 Tomsk, Russia
* Correspondence: av.kurtukova@gmail.com

Abstract: This paper is a continuation of our previous work on solving source code authorship
identification problems. The analysis of heterogeneous source code is a relevant issue for copyright
protection in commercial software development. This is related to the specificity of development pro-
cesses and the usage of collaborative development tools (version control systems). As a result, there
are source codes written according to different programming standards by a team of programmers
with different skill levels. Another application field is information security—in particular, identifying
the author of computer viruses. We apply our technique based on a hybrid of Inception-v1 and Bidi-
rectional Gated Recurrent Units architectures on heterogeneous source codes and consider the most
common commercial development complex cases that negatively affect the authorship identification
process. The paper is devoted to the possibilities and limitations of the author’s technique in various
complex cases. For situations where a programmer was proficient in two programming languages,
the average accuracy was 87%; for proficiency in three or more—76%. For the artificially generated
source code case, the average accuracy was 81.5%. Finally, the average accuracy for source codes
generated from commits was 84%. The comparison with state-of-the-art approaches showed that the
proposed method has no full-functionality analogs covering actual practical cases.

Keywords: authorship; source code; commits; generation; neural network; deep neural network

1. Introduction

The problem of identifying the author of a source code in case of considered code
as artificial language text is relevant. Solutions to this problem are based on defining an
individual author’s code style (specific development methods). Such solutions can be
especially useful in information security, educational and copyrighting fields. Researchers
are interested in improving existing approaches to source code authorship identification
as well as developing new ones based on them. Any of these approaches are suitable
and highly accurate only for simple authorship attribution cases. Simple case refers to
pure source codes without any manual or automatic transformations of the integrated
development environment (linters, code formatting based on programming language
paradigms) or external tools (obfuscators), as well as cases where data are exactly authentic
and homogeneous. The solution to the applied problems of identifying the source code
author involves the analysis of program texts, which are complicated by certain factors.
These factors could be divided into two groups:

1. Factors that arise during or as a result of writing source code. This group includes
various transformations of source codes. For example, an earlier mentioned case:
obfuscation of the source code—modification to an unclear and misunderstood form
that makes it difficult to analyze but retains functionality; writing source code follow-
ing coding standards—and the development of the source code, taking into account
the conventions and general rules adopted by a group of programmers.

2. Factors that result from the specificity of the development process. This group includes
other cases that complicate the process of determining the author of the source code:

Future Internet 2022, 14, 287. https://doi.org/10.3390/fi14100287 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14100287
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-2587-2222
https://orcid.org/0000-0001-7844-4363
https://doi.org/10.3390/fi14100287
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14100287?type=check_update&version=2

Future Internet 2022, 14, 287 2 of 20

for example, identification of the author whose code samples are written in different
programming languages (on the basis of mixed data), as well as finding a distinction of
the source code authorship between a human and generative model. Another complex
case is the determination of authorship based on source code samples written as part
of group development.

The scientific novelty of the work lies in the technique proposed by the authors, which
for the first time takes into account both simple and all complex cases of identifying the
source code author. Difficult cases include identifying the author:

1. Source code formed on separate code fragments (commits);
2. The artificially generated source code of the program;
3. Source code, the author of which is writing in two or more programming languages;
4. Obfuscated source codes;
5. The source code is written according to coding standards.

The rest of the paper is divided into seven sections. Section 2 is devoted to our
previous works aimed at solving the problem of source code authorship attribution, as well
as the achieved results. Section 3 contains the analysis of modern related studies in the
subject area and describes the methods proposed by other researchers, and the limitations
and drawbacks of the existing techniques. A formal statement is presented in Section 4.
The author’s technique for source code authorship identification is described in Section 5.
Section 6 includes the description of the first investigations of the complex cases of source
code attribution, as well as the information about the obtained datasets regarding these
cases. Section 7 describes the experiments, results, and their comparison with analogs.
Section 8 contains a summary of the results and a discussion of the author’s technique
limitations and future possibilities.

2. Our Earlier Research

Simple cases of source code author attribution were considered in previous work [1].
Approaches based on a deep neural network (NN) and support vector machine (SVM)
combined with a fast correlation filter were considered in the mentioned study. Both
of them demonstrated high classification accuracy—97% on average depending on the
programming language for NN, and SVM was only 1% less efficient at 96%, respectively. An
important point is the fact that the NN result was obtained from the analysis of the raw data,
and informative features for deciding the authorship were identified by NN independently
on the deep layers. SVM, in turn, was expertly trained on the manually performed feature
set and filtered by a correlation algorithm. Thus, this research hypothesized the ability
of deep NN to identify new, implicit patterns in the original data, which may also be
uncontrolled by programmers at the conscious level. The classical SVM method did not
demonstrate such an ability as NN, which makes it unstable to deliberate source code
transformations and confuse authorship identification. The conducted experiments led us
to conclusions about the independence of both methods of identifying the program source
code author from the programming language in which the development of the analyzed
software is carried out. The qualification of programmers also did not negatively impact
the method’s effectiveness when solving real-life tasks.

Further work [2] includes the first group of factors that complicated source code
author identification. The authors decided to use a technique based on a deep NN as an
author’s hybrid NN (HNN) based on previous experience. The result of this decision can
approve or decline hypotheses about NN’s ability to select informative implicit features.
First, the experiments considered source codes in five programming languages transformed
by different kinds of obfuscators. The obtained results demonstrate the resistance of the
chosen approach to lexical obfuscation—the model’s accuracy loss did not exceed 10% on
average. Second, some experiments were conducted to evaluate the accuracy of authorship
determination under conditions when programmers follow a unified coding standard.
Linux kernel source codes written following a set of rules presented to contributing users
were used as training data. In contrast to obfuscation, coding standards harmed accuracy.

Future Internet 2022, 14, 287 3 of 20

However, in the series of additional experiments, it was revealed that an increase in
the number of training data enables a 40% increase in accuracy, and the effectiveness of
the model suffices for solving real-life tasks. Thus, the hypothesis proposed in the first
study was proven—the developed methodology based on HNN allowed classification
in accordance with the authorship both obfuscated and written, according to the coding
standards source codes of programs. The second group of factors requires the same careful
research and consideration

3. Related Works

Simple statistical methods are not sufficient to achieve the required effectiveness of
solving authorship in complex cases. Thus, models that can extract new patterns and
dependencies in the data, which are implicit to the researcher, are necessary. These will
have been written at the unconscious level and contain intellectual content and features of
program code implementation. Such models include deep NN architectures—in particular,
their modifications developed in the last five years.

Deep Learning-based Code Authorship Identification System (DL-CAIS) was first pre-
sented in [3]. The system, which is based on a random forest (RF) classifier, is appropriate
for four different programming languages—C++, Java, Python, and pure C, with the aver-
age classification accuracy of 95%. This result is achieved by scaling the classifier through
deep vector representations. The representations themselves are formed by computing
word frequencies and inverse document frequencies (TF-IDF) and multilevel recurrent
NN (RNN).

The authors of [4] propose their deep learning approach named Robust coding style
Patterns Generation (RoPGen). This approach uses templates of a unique author’s code
style. Such types of templates are complicated to imitate by attackers. The main point is to
simultaneously augment data and the gradient. It leads to an increase in the diversity of
training samples, creates meaningful perturbations of deep NN’s gradients, and learns a
variety of code style representations. The effectiveness of the proposed method is evaluated
on four datasets of source codes in C, C++, and Java. Experimental results show that
RoPGen can significantly improve the reliability of deep learning-based code authorship
attribution, reducing the success rate of targeted and untargeted attacks to 22.8% and 41%.

Graph NNs are used for determining the source code author in [5]. The proposed
approach appears because of the limitations of the dependency expression and semantic
relations in source codes in convolutional NNs (CNN). In the author’s approach, the
program presents in the form of graphs demonstrating complex relations of the author’s
features. An evaluation of the method was provided on the Google Code Jam (GCJ) [6]
dataset. The obtained accuracy reaches 60%.

The authors of [7,8] submit a solution to the problem of the impossibility of adding
new authors with no retraining and no interpretability. The decision includes explainable
artificial intelligence (XAI) methods. The results of experiments for different programming
languages confirm that the model is able to extract distinctive features of the source code
authors. The average accuracy of the proposed approaches is 75%.

The work [9] is devoted to a programming language-independent approach to a
source code authorship. The authors pay attention to the limitations of existing synthetic
attribution datasets and propose a new data collection technique that better reflects aspects
that are important for potential commercial use. The authors also argue that the accuracy
of modern decision models for author identification drops sharply when their effectiveness
is evaluated on more realistic data. They propose two models: path-based NN (PbNN)
and modified RF (PbRF). Both models are language-independent and operate on path-
based representations of code that can be built for any syntactically correct code fragment.
The model accuracy for Java programming language is 97.9% for PbNN and 98.5% for
PbRF, respectively.

The authors of [10] proposed the Program Dependence Graph with Deep Learning
(PDGDL) methodology, which aimed to identify the authors of source codes written in

Future Internet 2022, 14, 287 4 of 20

C++, Java, and C#. The dataset includes codes of 1000 programmers’ from GCJ. The
Dependence Graph module is needed to extract features that are later converted into small
dimension vectors. Each feature was passed into the Term Frequency Inverse Document
Frequency (TF-IDF) method to evaluate its importance and select valuable features. The
Deep Learning module is the final step of the methodology. The author’s model is RNN
with five hidden layers and 25,949 parameters. The average obtained accuracy is 99%
for three classes, but the authors did not declare all the results for each of the considered
programming languages.

The paper [11] focuses on identifying the unique programmer’s writing style to classify
a program’s source codes. In this way, code features are combined with programmers’
demographic—in particular, gender and region. Code features are n-grams and statistical
values (code length, lines, and function count). All data for the experiments include only
C++ source codes. The maximal classification accuracy obtained with RF is 75% in the case
of 20 programmers.

In [12], source codes are considered as texts in natural language. Several semantic
features such as variable names, indentation style, and length of code are used for training
the LSTM-based end-to-end model. The reason to extract these features lies in the fact
that such parameters present the coding style of a programmer. Only C++ source codes
were extracted from two open-source datasets, GCJ and Codeforces [13]. In total, the data
include 2,200 authors and 29,600 code samples. The best accuracies for 25 authors are 75%
and 71% for the GCJ and Codeforces datasets, respectively.

The method employed by R. Mateless et al. [14] is appropriate for real-world and
team development cases. The main idea is the author’s approach called Pkg2Vec, which
is based on a hierarchical deep NN. The authors mention several obfuscation methods
(e.g., code-naming, encryption, and dead-code-insertion) and claim that their method is
robust, since Pkg2Vec is based on the code structure and uses resilient features. The data
consist of Android application packages and contains 3297 APKs by 43 teams. The resulting
accuracy is 79.8% for a set of 20 programmers.

A recent study by Gorshkov et al. [15] demonstrated their system called StyleIndex,
which is based on tokenization, semantic, and unique tokens in code. Only three pro-
gramming languages—C++, Java, and JavaScript are used as data collected from GitHub,
and each language includes 40 authors with 1-300 code files per author. The number of
repositories per author for experiments is 1. All noise data that could not be created by
the author are removed. Based on these, data are used in the ideal for learning, but not in
real-life development. In this form, data have several disadvantages, e.g., authors do not
take into account different projects and programming languages per author, their commits,
and possible changes in the programmer’s writing style in time. The authors use non-
standard dataset splitting—60% of data for training and 40% for tests. The most identified
programmers write in Java (95.18% for 40 authors), then C++ (94.2% for 40 authors), and
finally, Java with 94.16% for 40 programmers.

The following study [16] is conducted on the balanced AI-SOCO dataset for the FIRE-
2020 competition aimed at identifying a source code’s authorship. AI-SOCO provides
100,000 C++ source codes per 1000 programmers and is divided into training, test, and
validation sets for 50,000, 25,000, and 25,000 source codes, respectively. As a model,
the stacking of three different classifiers (extra tree classifier, RF, and XG-Boost) is used.
Additional research focuses on feature selection and separated experiments provided on
different feature sets, such as word and character n-grams and splitting code into tokens.
The best result of 82.95% was achieved using word bigrams.

García-Díaz J. A. and Valencia-García R. [17] also took part in the FIRE-2020 compe-
tition. Their method is based on statistical features (character n-grams, letter case, using
keywords), TF-IDF, and classical machine learning models (RF, Multi-Layer Perceptron,
k-neighbors, SVM, and Naive Bayes). The authors present each source code in two versions:
with comments and pure codes. The best accuracy of 91.16% was achieved with the RF
classifier on code with comments.

Future Internet 2022, 14, 287 5 of 20

Despite high results, only a small section of the studies considered programs as a
complex text structure with integral elements such as comments, the proportions of each
programmer’s contribution, and, in particular, the heterogeneity of the data. In addition,
the mentioned open datasets (GCJ and AI-SOCO ‘2020) have critical drawbacks and are
not suitable for complex experiments due to a lack of programming languages and data
for experiments in complex cases. A comparison of the obtained results that are possible
for the commercial software development methodology is incorrect due to the following
critical factors that still need to be taken into account:

1. Creative element. Each programmer has their own preference for using different
patterns and structures. It is impossible to declare all rules, so code writing has a
creative part.

2. Number of languages. In most cases, well-known datasets include no more than three
languages and do not provide data to evaluate the same programmer’s codes written
in two or more programming languages, but in practice, it is quite normal to use two
and more programming languages in solving everyday routine tasks. However, the
author’s habits and favorite practices can flexibly move from one language to another,
and an optimal approach should take it into account.

3. Experience. With professional growth, a person improves their skills and step-by-step
changes to write better code. This fact is important, and training data should include
several samples from different time intervals for the same programmer.

4. Team development. Code review and discussion are generally used for a project’s
practices and act as strong recommendations. Both procedures also have an impact
on human factors and are based on the personal experience of the reviewer, so some
code specifics change from one team to another, but features that are implicit and
uncontrolled by the programmer do not. These features could be helpful in the
identification of the source code author.

5. Advanced cases. At present, commits, mixed data, and generated source codes are
inseparable from development and methods and should be resistant to complicated
tasks. Careful preprocessing and removing noise elements transforms data into the
perfect condition but does not provide a realistic view. A novel and accurate approach
should keep up to date with modern development techniques and tools.

4. Formal Task Statement

Due to the complicating factors, the previously proposed formal task statement [1]
summarized the following: identification of the source code author based on heteroge-
neous data consists in finding the objective function y∗ : S→ P , where S is the set of
source codes, and P is the set of authors–programmers. Models that are obfuscated or
aggregated from many fragments of codes can act as s ∈ S. Generative language models
can act as p ∈ P. True authors of source codes are known only on a finite training set
Sm = {(s1, p1), . . . , (sm, pm)}, where m is the number of source codes with a known author.
In this case, the task is to build a classifier α : S→ P capable of determining whether an
arbitrary source code s ∈ S belongs to the true author p ∈ P.

To find the objective function y*, the classifier α must be trained on the feature space.
Each individual feature of this space can be described as f : S→ D f , where f is the set of
allowed values, and D is the set of text features. Then, the set of features of an arbitrary
source code s ∈ S is the vector s = {(f1, s1), . . . , (fn, sn)}, where n is the dimension of the
feature space.

5. Technique for Determining the Author of a Source Code

The great experience of previous scientific works [1,2] confirms the usefulness of the
author’s HNN-based technique (Figure 1) in identifying the author of a heterogeneous
source code in complex cases. The author’s HNN demonstrates high efficiency in simple
and complex cases determining the authorship of a program and resistance to complicating
factors: obfuscation and coding standards. The presented model is a fully independent tool.

Future Internet 2022, 14, 287 6 of 20

It does not require preprocessing and extracting informative features from source codes but
works with samples at the symbol level and identifies informative features independently.

Future Internet 2022, 14, 287 6 of 20

source code s S is the vector 1 1{(,),..., (,)}n ns f s f s , where n is the dimension of the
feature space.

5. Technique for Determining the Author of a Source Code
The great experience of previous scientific works [1,2] confirms the usefulness of the

author’s HNN-based technique (Figure 1) in identifying the author of a heterogeneous
source code in complex cases. The author’s HNN demonstrates high efficiency in simple
and complex cases determining the authorship of a program and resistance to complicat-
ing factors: obfuscation and coding standards. The presented model is a fully independent
tool. It does not require preprocessing and extracting informative features from source
codes but works with samples at the symbol level and identifies informative features in-
dependently.

HNN performs analysis on vectorized texts. This conversion is performed using one-
hot encoding. The method was chosen since the categorical features of the source codes
are nominal and require transformation into a binary form. During vectorization, each
character of the text sequence is converted into a vector. The vectorized source codes are
passed to the input of HNN. The architecture of the proposed HNN is presented in Figure 1:

Figure 1. HNN architecture.

1. An input layer with dimension corresponds to the vector length. In this case, the
length is 256, which corresponds to a vector of 255 zeros and 1 one at the position
equal to the character code, according to the ASCII encoding.

2. Inception-v1 layer group. This group includes convolutional layers with kernel di-
mensions of 1, 3, and 5. Convolutions form a filter that passes only informative fea-
tures. Convolutions work in parallel. In order to avoid overfitting after each convo-
lution, a Dropout layer with a rate of 0.2 is added, which resets 20% of incoming
neurons. The results of the convolutions concatenate into a single vector.

3. Bidirectional Gated Recurrent Units (GRU)—a layer consisting of two independent
GRUs. The result of Inception-v1 layers is fed in a direct order to the input of the first

Figure 1. HNN architecture.

HNN performs analysis on vectorized texts. This conversion is performed using
one-hot encoding. The method was chosen since the categorical features of the source
codes are nominal and require transformation into a binary form. During vectorization,
each character of the text sequence is converted into a vector. The vectorized source codes
are passed to the input of HNN. The architecture of the proposed HNN is presented
in Figure 1:

1. An input layer with dimension corresponds to the vector length. In this case, the
length is 256, which corresponds to a vector of 255 zeros and 1 one at the position
equal to the character code, according to the ASCII encoding.

2. Inception-v1 layer group. This group includes convolutional layers with kernel
dimensions of 1, 3, and 5. Convolutions form a filter that passes only informative
features. Convolutions work in parallel. In order to avoid overfitting after each
convolution, a Dropout layer with a rate of 0.2 is added, which resets 20% of incoming
neurons. The results of the convolutions concatenate into a single vector.

3. Bidirectional Gated Recurrent Units (GRU)—a layer consisting of two independent
GRUs. The result of Inception-v1 layers is fed in a direct order to the input of the first
network and in reverse order to the input of the second. The outputs of both networks
are combined into one vector.

4. Layers with a feedforward connection. The result of the Bidirectional GRU is trans-
mitted to the input of two sequential layers with a feedforward connection. Both
layers have dimensions of 512 neurons in order to map outputs to a higher dimen-
sional space that make it easier to classify. Similar to Inception-v1, Dropout layers are
applied to feedforward layers.

5. Output layer. Softmax is used as the output layer. This layer can obtain the probability
distribution about the belonging of the input sample to each of the classes. The

Future Internet 2022, 14, 287 7 of 20

dimension depends on the number of prediction classes for a particular case. In the
figure, the dimension of the layer is 10, which corresponds to 10 potential authors.

The Rectified Linear Unit (ReLU) function is used as an activation function for indi-
vidual Convolutional and Dense layers. Since the author’s architecture includes a large
number of neurons, the activation of all of them can lead to high costs of RAM. The ReLU
function is non-linear, and thus, provides the possibility of activating only a part of the
neurons (sparse activation). This allows a higher learning rate and better convergence to
be achieved.

To optimize the HNN, the adaptive learning step method (Adadelta) was chosen. The
choice was due to the optimizer’s ability to automatically select the learning rate, as well as
a stable weights update. The Softmax activation function is a generalized logistic function
to define output values as probabilities of belonging to target classes. This function was
chosen because of its resistance to the vanishing gradient problem. The loss function was
categorical cross-entropy, which is the default for Softmax.

6. Experimental Data

The process of source code author identification should be based on a representative
and voluminous dataset. To obtain such data, it is necessary to choose a free access platform.
Searching for such a platform was provided among the most popular hosting IT project
sites. Given the relevance of languages and source codes written in them, as well as the
importance of the possibility of using the application programming interface (API) when
collecting data, it was decided to consider the hosts GitHub [18] and GitLab [19]. These are
the most popular platforms with regular updates even for the rarest or latest programming
languages. Since GitLab is more common among commercial software developers, it is
dominated by closed repositories (virtual project repositories), while the collection requires
a large number of open ones, which is more typical for the GitHub platform. Thus, GitHub
hosting was chosen as a source for collecting and forming a dataset.

Then, a set of programming languages was defined. The main criteria were the popu-
larity of the language and a sufficient number of open repositories on GitHub. According
to the rating based on the opinion of commercial software developers, JavaScript, Java, C#,
Python, PHP, Kotlin, Swift, C++, Go, Ruby, C, Groovy, and Perl languages were selected
because of a sufficient number of repositories on GitHub hosting. Information about the
received set of source codes is presented in Table 1.

Table 1. Information about the source code dataset.

Dataset Characteristic Value of the Characteristic

Number of code lines 20,967,040
Number of projects 569

Number of projects with one author 71
Average commit length in lines 13

Maximum commit length in lines 119,892
Average number of source codes in project 231

Average source code length in lines 169
General number of symbols in code 212,336,637

General number of codes 102,908
General number of authors in all projects 383

6.1. Mixed Data

An important problem of modern studies aimed at source code authorship attribution
is the lack of experiments aimed at evaluating developed approaches on mixed datasets.

That there is a need to obtain such an assessment is due to the specificity of modern
software development. In most cases, the product is implemented in several programming
languages. The set of programming languages used in the development of a particular

Future Internet 2022, 14, 287 8 of 20

product can vary and is called its stack. Moreover, each developer has their own stack
consisting of languages they use in teamwork.

In most cases, the main part of a program is developed in one language, and the need
for another appears only for creating additional modules and tools. However, there are
situations when development is carried out equally in two or even three programming
languages. Thus, the amount of data collected for training classification models aimed at
the source code author attribution may be insufficient for the developed tool to obtain a
reliable result. Finally, there is a need to assess the ability of the proposed methodology to
demonstrate a comparable result to homogeneous data concerning heterogeneous data—in
this case, the source codes of programs implemented in different programming languages.

In order to obtain mixed datasets, it was decided to search for authors–programmers
who are contributors to projects in different programming languages. Obtained source
codes written by a specific author and located in the repository corresponding to the
language were extracted. When forming the dataset, samples of source code were
not separated.

6.2. Artificially Generated Source Codes

One of the promising trends in deep learning is text generation in different languages.
Modern models designed to generate texts from scratch or based on context show high
efficiency [4,20–26]. Machine-written text is often close to human text. This is due to the
ability of language models to preserve the author’s characteristics—the distinctive features
of the author’s writing style.

Natural language text generation has proven itself in various areas of human activity
and suggested a new direction—the generation of artificial language texts, including source
codes. Models allowing the creation of source code by themselves or the completion
of the program text for a developer reduce a programmer’s time spent writing routine
code which does not require any research or creative activity. Using generative models
to implement source code for commercial software development is very promising and
useful. Nevertheless, the appearance of the described tools only increases the importance
of identifying the source code author issue.

The technique for identifying the author of an artificially generated source code should
not only effectively identify the informative features of the author’s writing style, but also
be able to, at minimum, distinguish authorship between different generative models and
hence, identify distinctive features of creating code artificially.

The developers of solutions that are designed to generate source codes also consider
the positive experience of GPT models. The most famous tools (Open AI Codex, GitHub
Copilot, AlphaCode, JARVIS Sber AI, and PolyCoder [27–31]) appeared based on them.
All mentioned tools are retrained on the voluminous source code datasets. Samples that
were freely available on GitHub IT hosting or on major competitive platforms were used
for training some tools; for others, their source code base. An excess of benchmark data
suitable for training generative models leads to the achievement of sufficient accuracy for
them to create a compiled and workable code.

Although most of the existing source code generation solutions show impressive
results, their use in this study is impossible since they are close to the development com-
munity. AlphaCode, the only open-source solution, is unsuitable since it is designed only
for developing a competition code, and, therefore, the use of ready-made solutions is not
possible. According to the analysis, all considered tools are based on models of the GPT
family. Thus, we decided to use our own GPT-3 model, which was retrained on the code
base collected from GitHub hosting.

6.3. Source Code Commits

The most common among the complex cases of heterogeneous data analysis is the
identification of the source code author using commits (the last changes of the source code
in the repository). Since the tools of program authorship identification are considered the

Future Internet 2022, 14, 287 9 of 20

most demanded in the commercial environment, the specifics of work in this field should
be taken into account. Modern IT companies use different technologies for the flexible
collaborative development of software products and use different version control systems
in their daily activities.

According to the principles of teamwork development, most programs and software
packages are created by several developers together. Development is carried out by the
whole team, not a lone programmer. Contributions of team members can have different
weights—for example, one developer wrote 90% of all code, while the other only fixed the
bugs found during testing and wrote a couple of lines in total. To identify the source code
author, it is important to be able to correctly extract the programmer’s code samples and
distinguish commits according to the names of the users who push this code.

By generating mixed datasets, GitHub API was used to extract information about
individual developers’ commits in the repository. In this case, the obtained information
was used to generate a training dataset. Lines of source code uploaded by a particular
programmer are written to a separate file, thus, creating a program text that may not always
compile or work, but which still stores the author’s style.

7. Experiment Setup and Results

A generalized experimental methodology is demonstrated as a framework diagram in
Figure 2. A detailed description of each phase can be found below in this section.

A dataset that was appropriate to each complex case was generated to train and
evaluate the author’s HNN model. The code samples meet the following criteria:

1. The length of the source code must be at least 30 symbols and no more than
3000 symbols.

2. No more than 30 samples of source code per author are selected.
3. Sample selection is random.

According to dataset criteria, the minimum number of code lines for training per
author is 90, and the maximum is 90,000. These limits were chosen based on the statistics
of the collected dataset. The number of epochs for training HNN is five iterations of 10
epochs, for a total of 50 epochs. A callback procedure named Early Stopping, which
automatically interrupts the training, was applied in this study. Practice shows that
50 epochs are sufficient to obtain a minimum error rate and high accuracy. A larger
number of epochs leads to an increase in the value loss and overfitting. A smaller number
of epochs does not enable high accuracy to be achieved.

A 10-block cross-validation method was used to evaluate the model’s accuracy. The
principle of this algorithm comprises 10 iterations, each of which includes sequential
training of the model on nine blocks of data and evaluating it on the one remaining block.

In this study, the following experimental cases were considered:

• Mixed data, including two programming languages (language pairs);
• Mixed data, including three or more languages;
• Distinction of authorship between man and generative models;
• Determining the unity of the generative model for pairs of samples;
• Distinction of authorship between generative models;
• Data obtained from contributors’ commits.

According to the results, the average classification accuracy for authors who use two
programming languages is 87% (Figure 3). At the same time, it should be noted that the
accuracy of identifying the author based on language pairs with similarities in syntax
exceeds the accuracy of language pairs with no similarities. This finding is especially
correct for JavaScript–C++, Swift–Java, and JavaScript–Python language pairs.

Future Internet 2022, 14, 287 10 of 20

Future Internet 2022, 14, 287 10 of 20

 Determining the unity of the generative model for pairs of samples;
 Distinction of authorship between generative models;
 Data obtained from contributors’ commits.

Figure 2. A generalized experimental methodology.

According to the results, the average classification accuracy for authors who use two
programming languages is 87% (Figure 3). At the same time, it should be noted that the
accuracy of identifying the author based on language pairs with similarities in syntax ex-
ceeds the accuracy of language pairs with no similarities. This finding is especially correct
for JavaScript–C++, Swift–Java, and JavaScript–Python language pairs.

The average accuracy for authors developing in three or more programming lan-
guages is 76% (Figure 4). Since datasets are totally mixed and can include more than ten
programming languages per author, it is impossible to evaluate the importance level of
each language. It should be noted that this case is particularly of research interest since it
is extremely rare in practice.

Figure 2. A generalized experimental methodology.

The average accuracy for authors developing in three or more programming lan-
guages is 76% (Figure 4). Since datasets are totally mixed and can include more than ten
programming languages per author, it is impossible to evaluate the importance level of
each language. It should be noted that this case is particularly of research interest since it is
extremely rare in practice.

Future Internet 2022, 14, 287 11 of 20

Future Internet 2022, 14, 287 11 of 20

The results achieved on the mixed datasets prove the high efficiency of the author’s
technique. The obtained accuracy of 76% for datasets containing three or more program-
ming languages, and 87% for datasets consisting of language pairs, exceed the accuracy
of some technique analogs [32,33] that were obtained for simple identification cases.

Figure 3. Classification accuracy for language pairs.

Figure 4. Classification accuracy for different language combinations.

Three complex cases were addressed using artificially generated source code. The
first and the simplest case was finding a difference between human and generative models
(Figure 5). In this case, the evaluation was performed as follows: for each experiment (5,
10, and 20 authors), one of the authors was a generative model. One part of the experi-
mental samples was written by humans, and another was generated by models of the GPT
family: GPT-2, GPT-3, RuGPT-3 (from Sber AI). All samples were written in the most pop-
ular programming language—Java. The average accuracy for GPT-2 was 97%, and 94%

Figure 3. Classification accuracy for language pairs.

Future Internet 2022, 14, 287 11 of 20

The results achieved on the mixed datasets prove the high efficiency of the author’s
technique. The obtained accuracy of 76% for datasets containing three or more program-
ming languages, and 87% for datasets consisting of language pairs, exceed the accuracy
of some technique analogs [32,33] that were obtained for simple identification cases.

Figure 3. Classification accuracy for language pairs.

Figure 4. Classification accuracy for different language combinations.

Three complex cases were addressed using artificially generated source code. The
first and the simplest case was finding a difference between human and generative models
(Figure 5). In this case, the evaluation was performed as follows: for each experiment (5,
10, and 20 authors), one of the authors was a generative model. One part of the experi-
mental samples was written by humans, and another was generated by models of the GPT
family: GPT-2, GPT-3, RuGPT-3 (from Sber AI). All samples were written in the most pop-
ular programming language—Java. The average accuracy for GPT-2 was 97%, and 94%

Figure 4. Classification accuracy for different language combinations.

The results achieved on the mixed datasets prove the high efficiency of the author’s
technique. The obtained accuracy of 76% for datasets containing three or more program-
ming languages, and 87% for datasets consisting of language pairs, exceed the accuracy of
some technique analogs [32,33] that were obtained for simple identification cases.

Three complex cases were addressed using artificially generated source code. The
first and the simplest case was finding a difference between human and generative models
(Figure 5). In this case, the evaluation was performed as follows: for each experiment (5, 10,
and 20 authors), one of the authors was a generative model. One part of the experimental
samples was written by humans, and another was generated by models of the GPT family:
GPT-2, GPT-3, RuGPT-3 (from Sber AI). All samples were written in the most popular
programming language—Java. The average accuracy for GPT-2 was 97%, and 94% for
GPT-3 and RuGPT-3. The difference in accuracy can be explained by the fact that the third
generation models show better generative ability than the second generation. Consequently,
the separability of the author’s model also decreases.

Future Internet 2022, 14, 287 12 of 20

Future Internet 2022, 14, 287 12 of 20

for GPT-3 and RuGPT-3. The difference in accuracy can be explained by the fact that the
third generation models show better generative ability than the second generation. Con-
sequently, the separability of the author’s model also decreases.

Figure 5. Difference between human and generative models.

The second experiment was devoted to assessing the accuracy of determining the
unity of the generative model using two samples of source code (Figure 6). Two source
code samples generated by the same language model were used in this experiment. The
study involved 50 Java source code samples split into pairs for each generative model,
respectively. These pairs were alternately fed into the input of the model trained for 5, 10,
and 20 authors, one of which was the target generative model. The average accuracy was
94% for GPT-2, 92% for GPT-3, and 91% for RuGPT-3.

Figure 5. Difference between human and generative models.

The second experiment was devoted to assessing the accuracy of determining the
unity of the generative model using two samples of source code (Figure 6). Two source
code samples generated by the same language model were used in this experiment. The
study involved 50 Java source code samples split into pairs for each generative model,
respectively. These pairs were alternately fed into the input of the model trained for 5, 10,
and 20 authors, one of which was the target generative model. The average accuracy was
94% for GPT-2, 92% for GPT-3, and 91% for RuGPT-3.

Future Internet 2022, 14, 287 12 of 20

for GPT-3 and RuGPT-3. The difference in accuracy can be explained by the fact that the
third generation models show better generative ability than the second generation. Con-
sequently, the separability of the author’s model also decreases.

Figure 5. Difference between human and generative models.

The second experiment was devoted to assessing the accuracy of determining the
unity of the generative model using two samples of source code (Figure 6). Two source
code samples generated by the same language model were used in this experiment. The
study involved 50 Java source code samples split into pairs for each generative model,
respectively. These pairs were alternately fed into the input of the model trained for 5, 10,
and 20 authors, one of which was the target generative model. The average accuracy was
94% for GPT-2, 92% for GPT-3, and 91% for RuGPT-3.

Figure 6. The unity of the generative model for pairs of source code samples.

Future Internet 2022, 14, 287 13 of 20

The third and final experiment on artificially generated source codes was aimed at
evaluating model accuracy in distinguishing authorship between three different generative
models (Figure 7). In this case, the experiment was set up on three generative models that
participated in the training: GPT-2, GPT-3, and RuGPT-3. The purpose of HNN was to
determine whether the anonymous source code, which was artificially generated, belonged
to one of the language models. The experiment was conducted in five programming
languages: Java, C++, Python, JavaScript, and Go. The average accuracy of determining
the authorship of a source code generated by a language model was 94%.

Future Internet 2022, 14, 287 13 of 20

Figure 6. The unity of the generative model for pairs of source code samples.

The third and final experiment on artificially generated source codes was aimed at
evaluating model accuracy in distinguishing authorship between three different genera-
tive models (Figure 7). In this case, the experiment was set up on three generative models
that participated in the training: GPT-2, GPT-3, and RuGPT-3. The purpose of HNN was
to determine whether the anonymous source code, which was artificially generated, be-
longed to one of the language models. The experiment was conducted in five program-
ming languages: Java, C++, Python, JavaScript, and Go. The average accuracy of deter-
mining the authorship of a source code generated by a language model was 94%.

Figure 7. Difference between generative models.

The last experiment focused on repository contributors’ commits (Figure 8). The da-
taset was generated from the commit samples (fragments modified in a common source
code file by a particular user) of individual users. To identify methodological recommen-
dations for identifying the authors, which develop commercial software and use version
control systems, we decided to experiment with a different number of files—5, 10, and 20,
respectively. According to the results, at least 10 source code files per programmer should
be used to obtain a highly accurate tool for making decisions about authorship. If this
condition is not met, the accuracy may be insufficient for efficient problem solving.

The most important case is the commit base data, due to the prevalence of commer-
cial software development. Based on this fact, we decided to apply for comparison two
other generally well-known models—fastText [34] and BERT [35]. Our decision is driven
by their high efficiency in solving problems in related fields [36,37].

Bert-base-multilingual-cased was used as a pre-trained version of BERT. Model tun-
ing was performed according to the recommendations of the model’s creators: learning
rate = 3e-5, warmup proportion = 0.1, train batch size = 16 and 5 epochs. For fastText train-
ing, we used experimentally selected parameters: learning rate = 0.1, rate of updates for
the learning rate = 100, size of the context window = 5, number of negative samples = 5,
loss function—SoftMax, and 50 epochs.

Figure 9 shows a graph of BERT accuracies depending on the number of authors and
samples for training, and a similar graph for fastText is shown in Figure 10.

Figure 7. Difference between generative models.

The last experiment focused on repository contributors’ commits (Figure 8). The
dataset was generated from the commit samples (fragments modified in a common source
code file by a particular user) of individual users. To identify methodological recommen-
dations for identifying the authors, which develop commercial software and use version
control systems, we decided to experiment with a different number of files—5, 10, and 20,
respectively. According to the results, at least 10 source code files per programmer should
be used to obtain a highly accurate tool for making decisions about authorship. If this
condition is not met, the accuracy may be insufficient for efficient problem solving.

The most important case is the commit base data, due to the prevalence of commercial
software development. Based on this fact, we decided to apply for comparison two other
generally well-known models—fastText [34] and BERT [35]. Our decision is driven by their
high efficiency in solving problems in related fields [36,37].

Bert-base-multilingual-cased was used as a pre-trained version of BERT. Model tuning was
performed according to the recommendations of the model’s creators: learning rate = 3 × 10−5,
warmup proportion = 0.1, train batch size = 16 and 5 epochs. For fastText training, we
used experimentally selected parameters: learning rate = 0.1, rate of updates for the
learning rate = 100, size of the context window = 5, number of negative samples = 5, loss
function—SoftMax, and 50 epochs.

Figure 9 shows a graph of BERT accuracies depending on the number of authors and
samples for training, and a similar graph for fastText is shown in Figure 10.

Future Internet 2022, 14, 287 14 of 20Future Internet 2022, 14, 287 14 of 20

Figure 8. Authorship identification accuracy based on commits.

Figure 9. Authorship identification accuracy based on commits (BERT).

Figure 8. Authorship identification accuracy based on commits.

Future Internet 2022, 14, 287 14 of 20

Figure 8. Authorship identification accuracy based on commits.

Figure 9. Authorship identification accuracy based on commits (BERT). Figure 9. Authorship identification accuracy based on commits (BERT).

Future Internet 2022, 14, 287 15 of 20
Future Internet 2022, 14, 287 15 of 20

Figure 10. Authorship identification accuracy based on commits (fastText).

Non-parametric Friedman and Némenyi post hoc tests were used to check if there is
a statistically significant difference between HNN, BERT, and fastText. The tests were ap-
plied to the results of the models’ cross-validation for 5, 10, and 20 authors. The number
of training samples per author is 20. A null hypothesis is that a difference between the
results of the models is random. An alternative hypothesis is that a difference is statisti-
cally significant. According to the results of the calculations, the p-value was 0.000079 for
five authors, 0.000056 for 10, and 0.000093 for 20. The null hypothesis was rejected since
the p-value did not exceed 0.05 in any case. Friedman’s statistical test confirmed the sig-
nificance of the difference between the results. Therefore, it is considered that the effi-
ciency of the models differs significantly if the average ranks of the models differ by a
critical difference or more. The Némenyi post hoc test was used to estimate the difference
after rejecting the null hypothesis. To set a graphical interpretation of the test results, a
Demšar significance diagram was plotted. These diagrams show differences in accuracy
between model pairs. If the difference between the average ranks of a pair of models is
less than the calculated critical difference value (marked as CD in Figure 11), then the
difference in their efficiency is also insignificant. This difference between the average
ranks is represented by a horizontal line on the diagram.

(a) (b) (c)

Figure 11. Demšar significance diagram: (a) 5 authors, (b) 10 authors, (c) 20 authors.

Figure 10. Authorship identification accuracy based on commits (fastText).

Non-parametric Friedman and Némenyi post hoc tests were used to check if there
is a statistically significant difference between HNN, BERT, and fastText. The tests were
applied to the results of the models’ cross-validation for 5, 10, and 20 authors. The number
of training samples per author is 20. A null hypothesis is that a difference between the
results of the models is random. An alternative hypothesis is that a difference is statistically
significant. According to the results of the calculations, the p-value was 0.000079 for five
authors, 0.000056 for 10, and 0.000093 for 20. The null hypothesis was rejected since the
p-value did not exceed 0.05 in any case. Friedman’s statistical test confirmed the significance
of the difference between the results. Therefore, it is considered that the efficiency of the
models differs significantly if the average ranks of the models differ by a critical difference
or more. The Némenyi post hoc test was used to estimate the difference after rejecting the
null hypothesis. To set a graphical interpretation of the test results, a Demšar significance
diagram was plotted. These diagrams show differences in accuracy between model pairs.
If the difference between the average ranks of a pair of models is less than the calculated
critical difference value (marked as CD in Figure 11), then the difference in their efficiency is
also insignificant. This difference between the average ranks is represented by a horizontal
line on the diagram.

Future Internet 2022, 14, 287 15 of 20

Figure 10. Authorship identification accuracy based on commits (fastText).

Non-parametric Friedman and Némenyi post hoc tests were used to check if there is
a statistically significant difference between HNN, BERT, and fastText. The tests were ap-
plied to the results of the models’ cross-validation for 5, 10, and 20 authors. The number
of training samples per author is 20. A null hypothesis is that a difference between the
results of the models is random. An alternative hypothesis is that a difference is statisti-
cally significant. According to the results of the calculations, the p-value was 0.000079 for
five authors, 0.000056 for 10, and 0.000093 for 20. The null hypothesis was rejected since
the p-value did not exceed 0.05 in any case. Friedman’s statistical test confirmed the sig-
nificance of the difference between the results. Therefore, it is considered that the effi-
ciency of the models differs significantly if the average ranks of the models differ by a
critical difference or more. The Némenyi post hoc test was used to estimate the difference
after rejecting the null hypothesis. To set a graphical interpretation of the test results, a
Demšar significance diagram was plotted. These diagrams show differences in accuracy
between model pairs. If the difference between the average ranks of a pair of models is
less than the calculated critical difference value (marked as CD in Figure 11), then the
difference in their efficiency is also insignificant. This difference between the average
ranks is represented by a horizontal line on the diagram.

(a) (b) (c)

Figure 11. Demšar significance diagram: (a) 5 authors, (b) 10 authors, (c) 20 authors. Figure 11. Demšar significance diagram: (a) 5 authors, (b) 10 authors, (c) 20 authors.

Future Internet 2022, 14, 287 16 of 20

We make the following conclusions from the diagrams that are presented in Figure 11:

1. For the case of five authors, the difference in efficiency between HNN and BERT is
insignificant. However, HNN has a higher rank, which means that it is able to achieve
more accurate results in solving the problem.

2. For the case of 10 authors, HNN is the most accurate model. BERT shows a little
difference in comparison with HNN and fastText. However, fastText has the lowest
rank, so BERT is considered as a less efficient model.

3. For the case of 20 authors, the difference in the classification results of HNN and BERT
is not significant, and fastText shows significantly lower efficiency.

Based on the analysis of the test results, we can conclude that the HNN results are
statistically significant. In some cases, the difference in accuracy between HNN and BERT
may not be significant. However, it is important to note that BERT is a much more resource-
intensive architecture because it has numerous internal parameters. For this reason, the
BERT training time exceeds HNN by a factor of 3.

Table 2 compares the results of studies on source code author identification performed
over the past seven years with the results obtained in this paper.

Table 2. Comparison of source code authorship identification approaches.

Author Method Complex Cases Dataset Programming
Language

Average
Accuracy

Ours HNN

Obfuscation,
Encoding
standards,

Mixed data,
Artificially

generated data,
Commit-based

data

GitHub
(ours)

C++ 92%
Java 97%

JS 92%
Python 95%

C 96%
C# 96%

Ruby 95%
PHP 92%
Swift 98%

Go 93%
Groovy 99%
Kotlin 91%
Perl 96%

GCJ
C++ 98%
Java 99%

Python 98%

Abuhamad M.,
AbuHmed T., Mohaisen

A. Nyang D [3]
DL-CAIS Obfuscation GCJ

C++ 97%
Java 100%

Python 100%

Zhen L., Chen G., Chen
C., Zou Y., Xu S. [4] RoPGen -

GCJ C++ 92%
Java 98%

GitHub C 84%
Java 90%

Holland C., Khoshavi N.,
Jaimes L.G. [5] GNN - GCJ

C# 60%
(avg.)C++

Java

Bogdanova A.,
Romanov V. [7,8] XAI - GCJ

C++ 74%
Java 77%

Python 72%

Bogomolov E., Kovalenko
V., Rebryk Y., Bacchelli A.,

Bryksin T. [9]
PbRF - GCJ Java 98%

Caliskan-Islam A.,
Harang R. [38]

FuzzyAST,
RF Obfuscation GCJ

C 93%
C++ 98%

Python 88%

Ullah F., Wang J., Jabbar
S., Al-Turjman F. [10] PDGDL - GCJ

C# 99%
(avg.)C++

Java

Bayrami P., Rice J.E. [11] RF,
n-grams - GitHub C++ 75%

Caldeira R.S. [12] LSTM - GCJ C++ 75%
Codeforces 71%

Future Internet 2022, 14, 287 17 of 20

Table 2. Cont.

Author Method Complex Cases Dataset Programming
Language

Average
Accuracy

Mateless R. et al. [14] Pkg2Vec - APKs Java 79%

Gorshkov et al. [15] StyleIndex - GitHub
C++ 94%
Java 95%

JavaScript 94%

Suman C., Raj A.,
Saha S. [16]

Stacked
models - AI-SOCO C++ 82%

García-Díaz J. A.,
Valencia-García R. [17] RF - AI-SOCO C++ 91%

The experimental results were obtained for the dataset collected from GitHub and
for the open GCJ dataset. The first dataset contains codes of developers programming
in several languages. The provided samples can be noisy without the author’s obvious
writing style features (this is due to following coding standards) and transformed by
third-party software. The source codes of the same programmer may contain solutions of
completely different problems, which can also confuse the classifying models. The second
dataset contains cleaned samples. The conduction of the author’s features analysis is not
complicated by external factors. Samples contain solutions of the same type of problems, so
the model can focus only on the search for informative features and avoid noise. Therefore,
the results for these datasets significantly differ. The difference can reach 10% for the same
programming language.

The high accuracy obtained by [15] for the dataset from GitHub is due to careful
preliminary cleaning and data preparation. Authors use one repository per author, that
is, they do not take into account style changes over time. In addition, their dataset only
presents projects written by the same author in the same programming language, which
guarantees data homogeneity. The accuracy obtained by the authors is only valid under
ideal conditions, which are impossible in real-life development processes. In the approaches
of other authors where GitHub data are used without careful processing [4,10], the achieved
results are inferior in accuracy to our HNN for all programming languages.

Since most modern approaches do not consider complex cases besides obfuscation,
we decided to compare the three methods with the example of identifying the author of the
source code that was obfuscated with the Tigress tool. The results are presented in Table 3.

The identification of an obfuscated source code of a C program was considered in [3]
and [38]. The author’s HNN has superior accuracy to competitors on datasets that are
obfuscated with Tigress. The author’s technique is effective and exceeds analogs in both
simple and complex cases. Neither the complicating factors of the first group (obfusca-
tion, coding standards) nor the second (heterogeneous data) have a significant negative
impact on the results. The author’s technique is highly accurate for 13 different program-
ming languages, and, in comparison, competitors’ methods are well-adapted for 2–3 of
the most popular programming languages. The proposed technique takes into account
changes in the programmer’s style as a result of improving the skills and experience
of teamwork.

The comparative analysis demonstrates that the proposed technique takes into ac-
count all possible applied problems of the source code author identification. The author’s
technique is effective in both simple and complex cases. Neither the complicating factors of
the first group (obfuscation, coding standards) nor the second group (heterogeneous data)
have a significant negative impact on the accuracy.

Future Internet 2022, 14, 287 18 of 20

Table 3. Comparison of approaches for obfuscated data.

Author Method Programming
Language Obfuscator Dataset Accuracy

Ours HNN

JS

JS Obfuscator
Tool

GitHub 86%
GCJ 91%

JS-obfuscator
GitHub 86%

GCJ 90%

Python
Opy GitHub 87%

GCJ 91%

Pyarmor GitHub 70%
GCJ 77%

PHP
Yankpro-po GitHub 89%

GCJ 92%
PHP

Obfuscator
GitHub 82%

GCJ 89%

C++ C++
Obfuscator

GitHub 71%
GCJ 79%

C Tigress GitHub 90%
GCJ 95%

Abuhamad M.,
AbuHmed T., Mohaisen

A., Nyang D. [3]
DL-CAIS C Tigress GCJ 93%

Caliskan-Islam A.,
Harang R. [38]

FuzzyAST,
RF C Tigress GitHub 67.2%

8. Conclusions

This paper is devoted to identifying the author of a heterogeneous source code using
HNN. The author’s technique has proven itself when solving the problems of authorship
determination in simple and complex cases.

As part of the study, several experiments aimed at assessing the effectiveness of
the author’s technique for the cases of mixed datasets, artificially generated data, and
heterogeneous data presented in the form of commits were conducted.

The results of the experiments confirm the high efficiency of the developed technique
based on HNN in both complex and simple cases of identifying a source code author.

For authorship classification cases where an author–programmer knows two pro-
gramming languages, technique accuracy is 87%; for three or more languages, this is 76%.
Another case is the training of the model on commits that are aggregated from source codes.
For this case, the average accuracy ranges from 87% to 96% and depends on the sufficiency
of the training data.

Finally, the most relevant case is associated with artificially generated code due to the
active development of artificial text generation technologies. The study addresses three
different issues: the first is the distinction of authorship between the generative model
and a human; the second is related to the question of whether two code samples belong to
the same language model; the third is the definition of the language model that generated
the source code. For data that are generated pre-trained on the source code from GitHub-
hosting models of the GPT family, the average accuracy is 94%. The proposed technique
allows not only the analysis of both human and machine-written source codes, but also
separating the authorship between them, as well as identifying the distinctive features of
each language model.

The proposed technique has the following advantages:

1. Identifying the author of a source code with high accuracy.
2. Independence from the programming language and author–programmer qualification.

Future Internet 2022, 14, 287 19 of 20

3. The stability to deliberate source code conversions through the use of obfuscators or
coding standards.

4. The ability to train the model on source codes created by the development team.
5. The ability to identify informative features indicated to source code created by the

particular generative model.

This technique formed the basis of an intelligent system for identifying the author of a
source code, which can be used to solve real-life problems.

Author Contributions: Supervision, A.R., A.S.; writing—original draft, A.K., A.R.; writing—review
and editing, A.R., A.F.; conceptualization, A.K., A.R., A.F.; methodology, A.R., A.K.; software, A.K.;
validation, A.F., A.K.; formal analysis, A.R., A.F.; resources, A.S.; data curation, A.S., A.R.; project
administration, A.R.; funding acquisition, A.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education of Russia,
Government Order for 2020–2022, project no. FEWM-2020-0037 (TUSUR).

Data Availability Statement: Not applicable.

Acknowledgments: The authors express their gratitude to the editor and reviewers for their work
and valuable comments on the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kurtukova, A.V.; Romanov, A.S. Identification author of source code by machine learning methods. Tr. SPIIRAN 2019, 18, 741–765.

[CrossRef]
2. Kurtukova, A.; Romanov, A.; Shelupanov, A. Source Code Authorship Identification Using Deep Neural Networks. Symmetry

2020, 12, 2044. [CrossRef]
3. Abuhamad, M.; AbuHmed, T.; Mohaisen, A.; Nyang, D. Large-Scale and Language-Oblivious Code Authorship Identification. In

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19
October 2018; pp. 101–114.

4. Zhen, L.; Chen, G.; Chen, C.; Zou, Y.; Xu, S. RoPGen: Towards Robust Code Authorship Attribution via Automatic Coding Style
Transformation. In Proceedings of the 2022 IEEE 44th International Conference on Software Engineering (ICSE), Pittsburgh, PA,
USA, 25–27 May 2022; pp. 1906–1918.

5. Holland, C.; Khoshavi, N.; Jaimes, L.G. Code authorship identification via deep graph CNNs. In Proceedings of the 2022 ACM
Southeast Conference (ACM SE ‘22), Virtual, 18–20 April 2022; pp. 144–150.

6. Google Code Jam. Available online: https://codingcompetitions.withgoogle.com/codejam (accessed on 18 August 2022).
7. Bogdanova, A.; Romanov, V. Explainable source code authorship attribution algorithm. J. Phys. 2021, 2134, 012011. [CrossRef]
8. Bogdanova, A. Source code authorship attribution using file embeddings. In Proceedings of the 2021 ACM SIGPLAN International

Conference on Systems, Programming, Languages, and Applications: Software for Humanity, Zurich, Switzerland, 17–22 October
2021; pp. 31–33.

9. Bogomolov, E.; Kovalenko, V.; Rebryk, Y.; Bacchelli, A.; Bryksin, T. Authorship attribution of source code: A language-agnostic
approach and applicability in software engineering. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, Athens, Greece, 23–28 August 2021;
pp. 932–944.

10. Ullah, F.; Wang, J.; Jabbar, S.; Al-Turjman, F.; Alazab, M. Source code authorship attribution using hybrid approach of program
dependence graph and deep learning model. IEEE Access 2019, 7, 141987–141999. [CrossRef]

11. Bayrami, P.; Rice, J.E. Code authorship attribution using content-based and non-content-based features. In Proceedings of the
2021 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Ottawa, ON, Canada, 12–17 September 2021;
pp. 1–6.

12. Caldeira, R.S. A Deep Learning Approach to Recognize Source Code Authorship. Available online: https://maups.GitHub.io/
papers/tcc_008.pdf (accessed on 18 August 2022).

13. Codeforces. Available online: https://codeforces.com/ (accessed on 18 August 2022).
14. Mateless, R.; Tsur, O.; Moskovitch, R. Pkg2Vec: Hierarchical package embedding for code authorship attribution. Future Gener.

Comput. Syst. 2021, 116, 49–60. [CrossRef]
15. Gorshkov, S.; Nered, M.; Ilyushin, E.; Namiot, D.; Sukhomlin, V. Source code authorship identification using tokenization and

boosting algorithms. In Proceedings of the International Conference on Modern Information Technology and IT Education,
Moscow, Russia, 29 November–2 December 2018; Springer: Cham, Switzerland, 2018; pp. 295–308.

http://doi.org/10.15622/sp.2019.18.3.741-765
http://doi.org/10.3390/sym12122044
https://codingcompetitions.withgoogle.com/codejam
http://doi.org/10.1088/1742-6596/2134/1/012011
http://doi.org/10.1109/ACCESS.2019.2943639
https://maups.GitHub.io/papers/tcc_008.pdf
https://maups.GitHub.io/papers/tcc_008.pdf
https://codeforces.com/
http://doi.org/10.1016/j.future.2020.10.020

Future Internet 2022, 14, 287 20 of 20

16. Suman, C.; Raj, A.; Saha, S.; Bhattacharyya, P. Source Code Authorship Attribution using Stacked classifier. In Proceedings of the
Forum for Information Retrieval Evaluation, FIRE (Working Notes), Hyderabad, India, 16–20 December 2020; pp. 732–737.

17. García-Díaz, J.A.; Valencia-García, R. UMUTeam at AI-SOCO ‘2020: Source Code Authorship Identification based on Character N-
Grams and Author’s Traits. In Proceedings of the Forum for Information Retrieval Evaluation, FIRE (Working Notes), Hyderabad,
India, 16–20 December 2020; pp. 717–726.

18. GitHub. Available online: https://GitHub.com/ (accessed on 18 August 2022).
19. Gitlab. Available online: https://gitlab.com/ (accessed on 18 August 2022).
20. Rothe, S.; Narayan, S.; Severyn, A. Leveraging pre-trained checkpoints for sequence generation tasks. Trans. Assoc. Comput.

Linguist. 2020, 8, 264–280. [CrossRef]
21. Du, Z. All nlp tasks are generation tasks: A general pretraining framework. arXiv 2021, arXiv:2103.10360.
22. Floridi, L.; Chiriatti, M. GPT-3: Its nature, scope, limits, and consequences. Minds Mach. 2020, 30, 681–694. [CrossRef]
23. Lee, J.S.; Hsiang, J. Patent claim generation by fine-tuning OpenAI GPT-2. World Pat. Inf. 2020, 62, 101983. [CrossRef]
24. Dusheiko, A. Lead Generation of News Texts using the ruGPT-3 Neural Network. Master’s Thesis, 2022.
25. Pisarevskaya, D.; Shavrina, T. WikiOmnia: Generative QA corpus on the whole Russian Wikipedia. arXiv 2022, arXiv:2204.08009.
26. Cruz-Benito, J. Automated source code generation and auto-completion using deep learning: Comparing and discussing current

language model-related approaches. AI 2021, 2, 1–16. [CrossRef]
27. Open AI. Available online: https://openai.com/blog/openai-codex (accessed on 18 August 2022).
28. GitHub Copilot. Available online: https://copilot.GitHub.com (accessed on 18 August 2022).
29. AlphaCode. Available online: https://deepmind.com/blog/article/Competitive-programming-with-AlphaCode (accessed on

18 August 2022).
30. Sber AI ruGPT-3. Available online: https://developers.sber.ru/portal/tools/rugpt-3 (accessed on 18 August 2022).
31. Polycoder. Available online: https://venturebeat.com/2022/03/04/researchers-open-source-code-generating-ai-they-claim-

can-beat-openais-codex/ (accessed on 18 August 2022).
32. Frantzeskou, G.; Stamatatos, E.; Gritzalis, S. Identifying authorship by bytelevel n-grams: The source code author profile (SCAP)

method. Int. J. Digital. Evid. 2007, 1, 1–18.
33. Wisse, W.; Veenman, C.J. Scripting DNA: Identifying the JavaScript Programmer. Digit. Investig. 2015, 15, 61–71. [CrossRef]
34. FastText. Available online: https://fasttext.cc/ (accessed on 18 August 2022).
35. BERT. Available online: https://huggingface.co/docs/transformers/model_doc/bert (accessed on 18 August 2022).
36. VGCN-BERT. Available online: https://arxiv.org/abs/2004.05707 (accessed on 18 August 2022).
37. Bag of Tricks for Efficient Text Classification. Available online: https://aclanthology.org/E17-2068/ (accessed on 18 August 2022).
38. Caliskan-Islam, A. Deanonymizing programmers via code stylometry. In Proceedings of the 24th USENIX Security Symposium,

Washington, DC, USA, 12–14 August 2015; pp. 255–270.

https://GitHub.com/
https://gitlab.com/
http://doi.org/10.1162/tacl_a_00313
http://doi.org/10.1007/s11023-020-09548-1
http://doi.org/10.1016/j.wpi.2020.101983
http://doi.org/10.3390/ai2010001
https://openai.com/blog/openai-codex
https://copilot.GitHub.com
https://deepmind.com/blog/article/Competitive-programming-with-AlphaCode
https://developers.sber.ru/portal/tools/rugpt-3
https://venturebeat.com/2022/03/04/researchers-open-source-code-generating-ai-they-claim-can-beat-openais-codex/
https://venturebeat.com/2022/03/04/researchers-open-source-code-generating-ai-they-claim-can-beat-openais-codex/
http://doi.org/10.1016/j.diin.2015.09.001
https://fasttext.cc/
https://huggingface.co/docs/transformers/model_doc/bert
https://arxiv.org/abs/2004.05707
https://aclanthology.org/E17-2068/

	Introduction
	Our Earlier Research
	Related Works
	Formal Task Statement
	Technique for Determining the Author of a Source Code
	Experimental Data
	Mixed Data
	Artificially Generated Source Codes
	Source Code Commits

	Experiment Setup and Results
	Conclusions
	References

