
Citation: Jimoh, R.G.; Olusanya,

O.O.; Awotunde, J.B.; Imoize, A.L.;

Lee, C.-C. Identification of Risk

Factors Using ANFIS-Based Security

Risk Assessment Model for SDLC

Phases. Future Internet 2022, 14, 305.

https://doi.org/10.3390/fi14110305

Academic Editor: Wei Yu

Received: 19 September 2022

Accepted: 20 October 2022

Published: 26 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Identification of Risk Factors Using ANFIS-Based Security Risk
Assessment Model for SDLC Phases
Rasheed Gbenga Jimoh 1, Olayinka Olufunmilayo Olusanya 2, Joseph Bamidele Awotunde 1 ,
Agbotiname Lucky Imoize 3,4 and Cheng-Chi Lee 5,6,*

1 Department of Computer Science, Faculty of Information and Communication Sciences, University of Ilorin,
Ilorin 240003, Nigeria

2 Department of Computer Science, Tai Solarin University of Education, Ijagun 120101, Nigeria
3 Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos, Akoka,

Lagos 100213, Nigeria
4 Department of Electrical Engineering and Information Technology, Institute of Digital Communication,

Ruhr University, 44801 Bochum, Germany
5 Research and Development Center for Physical Education, Health, and Information Technology,

Department of Library and Information Science, Fu Jen Catholic University, New Taipei 24205, Taiwan
6 Department of Computer Science and Information Engineering, Asia University, Taichung 41354, Taiwan
* Correspondence: cclee@mail.fju.edu.tw

Abstract: In the field of software development, the efficient prioritizing of software risks was essential
and play significant roles. However, finding a viable solution to this issue is a difficult challenge. The
software developers have to adhere strictly to risk management practice because each phase of SDLC
is faced with its individual type of risk rather than considering it as a general risk. Therefore, this
study proposes an adaptive neuro-fuzzy inference system (ANFIS) for selection of appropriate risk
factors in each stages of software development process. Existing studies viewed the SDLC’s Security
risk assessment (SRA) as a single integrated process that did not offer a thorough SRA at each stage
of the SDLC process, which resulted in unsecure software development. Hence, this study identify
and validate the risk factors needed for assessing security risk at each phase of SDLC. For each
phase, an SRA model based on an ANFIS was suggested, using the identified risk factors as inputs.
For the logical representation of the fuzzification as an input and output variables of the SRA risk
factors for the ANFIS-based model employing the triangular membership functions. The proposed
model utilized two triangular membership functions to represent each risk factor’s label, while four
membership functions were used to represent the labels of the target SRA value. Software developers
chose the SRA risk factors that were pertinent in their situation from the proposed taxonomy for
each level of the SDLC process as revealed by the results. As revealed from the study’s findings,
knowledge of the identified risk factors may be valuable for evaluating the security risk throughout
the SDLC process.

Keywords: fuzzy logic; software product; software development life cycle; inference systems; security
risk assessment; adaptive neuro-fuzzy

1. Introduction

Software development is one of the biggest industries globally. Several software initia-
tives of different scope, expense, and complexity are being developed [1–3]. The Software
Development Life Cycle (SDLC) is a framework or method that a software organization
imposes on the process of producing a software product [4,5]. There are various stages in
SDLC for the development of software products such as issue attribution, viability of the
project investigation, requirement specification, design, development, testing, deployment,
and maintenance are the standardized life cycle for software development [6–9]. The three
main goals of an SDLC are to create high-quality software products, offer appropriate ad-
ministration throughout the production of software product, and increase the effectiveness

Future Internet 2022, 14, 305. https://doi.org/10.3390/fi14110305 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14110305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-1020-4432
https://orcid.org/0000-0001-8921-8353
https://orcid.org/0000-0002-8918-1703
https://doi.org/10.3390/fi14110305
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14110305?type=check_update&version=2

Future Internet 2022, 14, 305 2 of 21

of the software organization workforce [10,11]. How effective are the software security
risks can be managed throughout the SDLC process. How these risks can be linked to each
stages of SDLC for the production of a secure, error-free, and effective software product
within the predicted project evaluation and cost [12,13].

The steps involved in risk management are risk identification, analysis, mitigating
risk, and evaluation. However, a secure software development process depends on the
SDLC’s inclusion of risk management [14,15]. Risk management in SDLC process become
problematic because software development is not a straightforward process, according to
authors in [16]. Security risk, which is considered to be the net negative effect of exercising
susceptibility likelihood and incidence consequence. This is still in a developing stage in the
area of software development process. Organizations can balance the needs for securing and
producing a good software product using risk management process throughout software
design. This will reduce the resources and the cost associated with the security measures
and prevention applied throughout the SDLC [17,18]. As more people utilize and adopt
software applications, and devices powered by software products, security become a crucial
factor to take into account in the SDLC [19,20]. Additionally, being aware of related security
concerns will make it easier to spot a defect software product [21,22].

By recognizing security needs early in the development of software product and
implementing them all through the SDLC processes will surely help manufacturing com-
pany to produce a secure and cost-effective software product for their clients. This will
help to always put security considerations that will help in accomplishing a secure soft-
ware product for delivery within the software manufacturing company. No matter which
or where SDLC phase is being considered, the risk management technique is the same,
according to authors in [10]. The study explained that the SDLC is not intended to be
disturbed or given additional phases, but to add security practices to an already-in-use
SDLC approach. Developers must closely follow risk management procedures throughout
the whole SDLC cycle in order to deliver secure software product [23,24]. Software life
cycle that has security risk in mind will easily identified source code that contains some of
the vulnerabilities. However, this represents a relatively little fraction of the overall risk
that are necessary to take into account for both development process and human-related
risks. Each of these steps comes with a unique set of risks and dangers for both software
product and human being. Consequently, it is crucial to pay attention to the degree of
security risk defenselessness, rather than after the software product has been released and
deployed [25].

To help software developers, numerous tools, models, and techniques have been
developed in the past. These tools and models have been used by project manager within
various organizations during the SDLC processes to perform risk management tasks [26,27].
However, the majority of the tools models used have their challenges and flaws, ranging
from the inability to update the risk factors, to the failure to recognize the risk factors
connected to software product issues [28,29]. Hence, an intelligent system is required that
will combine risk management processes into all stages of the SDLC in the production
of software products [30]. Each phase of the SDLC has a unique set of risks attached
to it [31–33], but there no or little tools or models that can help developers to carry out
risk management tasks across the SDLC process’ phases [34,35]. Therefore, this study
proposes an adaptive neuro-fuzzy system (ANFIS) that will rely on risk factors chosen from
a catalogue of software risk factors checklists encountered by software developers in each
stage of the SDLC software development so has to effectively consider these security risks.

The followings are the major contributions of the proposed model:

• the risk factors in SDLC phases were identified and validated to establishes the security
in software development.

• the identified risk variables were used as inputs for each SDLC phase in an ANFIS
based SRA model.

• the logical representation of the fuzzification of the input and output variables of the
ANFIS SRA model was done using triangular membership functions.

Future Internet 2022, 14, 305 3 of 21

• the proposed system was evaluated using various performance metrics and compares
with existing methods.

2. Literature Review

Security is becoming a crucial factor to take into account in the SDLC due to the
rising use and adoption of software applications, ICT, and devices that are powered by
software applications. Additionally, knowledge of related security issues will help in
spotting secured applications. Software development risks have a significant impact on the
success of the final product. Developers must closely adhere to risk management practices
throughout the SDLC in order to provide secure software. Therefore, an intelligent and
efficient web-based expert system required for managing software risk will assist software
developers and project managers in carrying out risk management-related activities and in
making the decisions affecting SDLC. There are various technique used for security risk
analysis, a few of them are discuss in this subsection:

2.1. Types of Software Test Techniques to Improve Trustworthiness of Security Assessment

Intrusion Modes and Effects Criticality Analysis (IMECA): The US military made a
commitment in the late 1940s to switch from a strategy of “detect failure and fix it” to one
of “predict failure and prevent it [36].” The techniques created centered on identifying
qualitative and quantitative risks in order to avoid failure. A technique called Failure Mode,
Effects & Criticality Analysis (FMECA) includes quantitative failure analysis. The FMECA
entails establishing a number of connections between anticipated failures (Failure Modes),
their effects on the mission, and their causes (Causes and Mechanisms). The FMECA’s
methodologies and practices were made public in a number of Military Standards. The
most well-known of these standards, MIL-STD-1629A, is still in use today [37].

An IMECA is a variation to the FMECA-technique that considers potential system
invasions. The technique can be used to different kinds of vulnerabilities, but its primary
use is to evaluate technical vulnerabilities [38]. At each level of the SDLC, where risk factors
and security are evaluated, for safety-related sectors, IMECA can be utilized in addition
to standardized FMECA, because if such systems are breached, any vulnerability could
result in a failure. It is necessary to develop a security criticality matrix in order to analyze
the cyber security concerns [39]. Thus, depending on the breadth of the assessment, the
following situations are conceivable:

1. A selection of specific IMECA tables are used to evaluate the complicated product
or system as a whole (which are a collection of discrepancies that represent all the
identified gaps) should be added to the IMECA table’s one global representation of
the entire system. In this instance, a global criticality matrix is built using each row of
the global IMECA table as a foundation [40].

2. Evaluation of specific (sub-)systems inside the complex system/product: An adequate
set of local criticality matrices can be made to correspond to certain (sub-)systems,
based on a number of neighborhood IMECA tables [40].

Attack Tree Analysis: Attack tree analysis was introduced in 1999 as a method for
listing different attack pathways to accomplish an attack objective [41]. The assault goal
is stated at the top of the tree, and branches are a list of the sub-goals that are listed
below. Each branch has a number of leaf nodes, or actions, that must be taken in order to
accomplish the sub-goals and, eventually, the main objective [41]. An arc indicating “AND”
logic connects leaf nodes that must be executed simultaneously to accomplish a sub-goal.
In contrast, leaf nodes that indicate different ways to achieve a sub-goal are not coupled,
illustrating “OR” logic. Attack trees are derived from fault tree analysis, a technique used
in the aerospace industry to identify defects in intricate systems. In order to identify the
failure modes and dangers for intercontinental ballistic missiles (ICBMs), Bell Telephone
Laboratories created fault trees in 1962 [41,42]. Attack trees have come under fire for being
static and arbitrary, despite being very helpful for a quick risk assessment [42]. Researchers
have standardized attack tree components to lessen their subjectivity, which makes it easier

Future Internet 2022, 14, 305 4 of 21

to compare attack trees across many systems, scale them over numerous systems, and
automate attack trees using AI planning logic [41]. However, there are other structural
variants of attack trees that would be relevant and appropriate for security assessments.

Vulnerability/Fault Injection Testing: This is a software testing approach that involves
inserting errors into the code to increase coverage. It is sometimes combined with stress
testing to determine how robust the generated software is [43]. To test and strengthen a
system’s stability and dependability, mistakes and defects are purposefully introduced into
it. Over time, it is intended to strengthen the system’s design for resilience and performance
under intermittent failure scenarios. With the goal of “embracing failure” as a part of the
development lifecycle, fault injection methods are a way to improve coverage and verify
software resilience and error handling, either at build-time or at run-time. These techniques
help engineering teams account for known and unknowable failure conditions, architect
for redundancy, use retry and back-off mechanisms, etc. when developing and continually
validating for failure [44]. As a result of fault injection’s effectiveness, the Microsoft Security
Development Lifecycle mandates fuzzing at each untrusted interface of every product as
well as penetration testing [45]. This involves making errors in the system in order to find
potential vulnerabilities brought on by coding mistakes, system configuration issues, or
other operational deployment issues. Automated fault injection coverage in a CI pipeline
encourages a Shift-Left strategy of testing for probable problems earlier in the lifecycle [46].

2.2. Related Work on Security Risk Assessment Tools for Software Test Techniques

The authors in [5] used various security risk discovered as risk factors to evaluating
software development risk across every step of the SDLC procedure. The foremost aim
of the study was to identify the most security risks with relation to assessing security
risk at each level of the SDLC process, out of the 93 risk categories. The study did not
propose how security risk assessment can be performed based on data regarding the
recognized risk factors. In [12] the authors applied Artificial Neural Networks (ANN) to
develop risk management in SDLC process in the development of software product. The
study identified ten most relevant risk factors that can be encountered during various
stages of SDLC process in evaluating security risk by software developers. The study
collected relevant data associated with assessing the security risk associated with software
development based on the 10 risk factors. The study was limited to the identification
of 10 risk factors which could only be used to evaluate security risk when the SDLC
process is complete. The authors in [34] developed a fuzzy expert system that focused on
determining the overall risk of a software project. The study did not take into consideration
the identification of any risk factor. The study made no provision for facilities required
for adding, removing, update or prioritizing risk, and the model was simulated using
MATLAB software.

Software risk management is a proactive decision-making process that includes tech-
niques, strategies, and tools for controlling risks in software development projects. Many
existing strategies for software project risk management are non-reusable and non-shareable
with only textual documentation with varying perceptions. In [35], the authors proposed a
life-cycle approach to ontology-based risk management framework for software projects. It
is based on a dataset culled from the literature, domain experts, and practitioners. A total
of 19 software specialists refine the identified risks, which are then theorized, modeled, and
built using Protégé. A version method as well as a qualitative analysis and prioritization of
the risks was adopted using real-life software projects. The extraction tool’s performance is
validated using precision recall and F-measure metrics, while the extraction tool’s perfor-
mance is validated using the performance metrics. The performance appraisal form and
the technology acceptance model are used to assess performance and perceptions, respec-
tively. The assessment concept scale is used to compare mean scores from performance
and perception evaluations. The results revealed that costs were decreased, high-quality
projects were delivered on schedule, and software engineers regarded this framework to be
a useful tool for their day-to-day software development activities.

Future Internet 2022, 14, 305 5 of 21

Similarly, the authors in [47] conducted a systematic literature review (SLR) on soft-
ware risk in order to characterize and present the state of the art in this field, as well as
to identify gaps and possibilities for future study. The scientific community’s interest has
shifted away from the definition of research activity that addressed an integrated risk
management process in favor of work that focuses on distinct activities of this process,
according to the analysis of the results of this SLR. It was also obvious that there was a
distinct lack of scientific rigor work in the area of validation process in their investigations
as well as a lack of usage of standards or de facto models to describe them.

In [48], the authors conducted an SLR on risk management’s software process simu-
lation modeling (SPSM), the purpose of which was to: (i) determine where this issue has
been used the most in risk management efforts, (ii) view the most common forms of risk
for which SPSM has been used, (iii) determine which SPSM models are most commonly
utilized in risk management, (iv) determine which SPSM standards are most commonly
utilized in risk management, and (v) examine how SPSM approaches and models in risk
management that have been implemented in practice.

The authors in [19] developed a software risk estimation tool. The study identified
17 risk factors that are related to specialists’ assessments of the security risk. The study
collected associated data, after that, a security risk assessment model known as the ANFIS
was developed based on the 17 risk categories identified throughout the SDLC process.
The study was only focused on the creation of a security risk assessment tool using a
neuro-fuzzy (ANFIS) model; however, it was limited to the use of 17 risk factors adopted
at the end of the SDLC process. The authors in [49] worked on developing a qualitative
risk assessment tool for offshore projects. The study adopted the use of risk factors that
could only be identified systematically from the project document. The study didn’t take
into account ranking risks in order of importance or identifying risks specific to software
development. In [50], the authors developed a fuzzy-based expert system for the estimation
of risk of project failure. The study estimated various levels of risk categories and severity of
impacts as a basis of estimating project failure. The study did not consider the identification
of any risk factor in the estimation of project failure.

Internet-based, web-data servers, online services, and GUI-based applications are
increasingly being exploited as software threats. Each phase prior to the completion of the
software product requires a different form of threat modeling [51]. The most important role
in the SDLC is identifying software and hardware threats [52,53]. To reduce risks, the threat
modeling approach is incorporated into the SDLC early enough [54,55]. In [54], the authors
proposed a Secure (S-SDLC) through Agile Methods. The study shows that vulnerabilities
can be quickly identify if security is taken into consideration from the beginning with
no additional time or costs to the client, and can be fixed within the project’s allotted
period. Additionally, it increases the likelihood of success in terms of both consistency
and effectiveness.

Finding the risk factors is crucial in the initial phases of the SDLC process. Threat
classification of risk-based techniques is investigated by authors in [56] to review threat
attacks with regard to security issues. During the life cycle stages’ complexity is used to
categorize the most risk factor. The results of the suggested method are compared to those
of Microsoft Stride in order to identify component boundaries, rank attacks, and better
comprehend software development and operation threats in the software development
process. The authors of [57] proposed a novel technique for selecting the optimal reliability
prediction model. This approach combines the analytical hierarchy method (AHP), hesitant
fuzzy (HF) sets, and a methodology for ranking preferences according to how closely they
resemble the ideal answer. Procedural sensitivity testing was also done to validate the
results using the various rounds of the method. The developers will be able to estimate
reliability prediction depending on the software type with the aid of the results of the
software reliability prediction models prioritizing.

From the reviewed literature, the SRA challenges attracted the attention of researchers,
and ML-based techniques were used in this field to satisfy this requirement. More notably,

Future Internet 2022, 14, 305 6 of 21

in the area of SRA in SDLC process in the development of software product effort. In the
literature various approaches have been used like ANNs, optimization, and fuzzy methods.
Therefore, considering this situation, the study proposed an integrated framework for eval-
uating software project risks that is based on adaptive neuro-fuzzy inference system. This
study extends the work done in the literature by figuring out the dangers that each stage
of the SDLC process in developing countries. This study also proposes an ANFIS model
which adopts information about the identified risk factors for security risk assessment at
their respective SDLC phase.

3. Materials and Methods

This study focused on categorizing the various risk factors at each stage of software
development, security risk is evaluated based on information provided by software de-
velopers selected in Nigeria software development organization. These risk factors were
selected from an initial number of risk factors listed in the software risk taxonomy in the
literature. This study proposed an ANFIS model for evaluating software project risks in
each stage of software development stages based on data gathered on the risk variables
involved. A conceptual description of the various activities completed in this study is
shown in Figure 1.

Future Internet 2022, 14, 305 6 of 22

process. The authors of [57] proposed a novel technique for selecting the optimal reliabil-

ity prediction model. This approach combines the analytical hierarchy method (AHP),

hesitant fuzzy (HF) sets, and a methodology for ranking preferences according to how

closely they resemble the ideal answer. Procedural sensitivity testing was also done to

validate the results using the various rounds of the method. The developers will be able

to estimate reliability prediction depending on the software type with the aid of the results

of the software reliability prediction models prioritizing.

From the reviewed literature, the SRA challenges attracted the attention of research-

ers, and ML-based techniques were used in this field to satisfy this requirement. More

notably, in the area of SRA in SDLC process in the development of software product effort.

In the literature various approaches have been used like ANNs, optimization, and fuzzy

methods. Therefore, considering this situation, the study proposed an integrated frame-

work for evaluating software project risks that is based on adaptive neuro-fuzzy inference

system. This study extends the work done in the literature by figuring out the dangers

that each stage of the SDLC process in developing countries. This study also proposes an

ANFIS model which adopts information about the identified risk factors for security risk

assessment at their respective SDLC phase.

3. Materials and Methods

This study focused on categorizing the various risk factors at each stage of software

development, security risk is evaluated based on information provided by software de-

velopers selected in Nigeria software development organization. These risk factors were

selected from an initial number of risk factors listed in the software risk taxonomy in the

literature. This study proposed an ANFIS model for evaluating software project risks in

each stage of software development stages based on data gathered on the risk variables

involved. A conceptual description of the various activities completed in this study is

shown in Figure 1.

Figure 1. Conceptual view of research methodology process.
Figure 1. Conceptual view of research methodology process.

The study’s first step was to pinpoint the issue of security risk factor at each stage
of software development process, which was discovered through a search of relevant
literature. The prominent risk indicators connected to each stage of the SDLC procedure
that were discovered were validated by a number of software developers selected in Nigeria.
Relevant information about the adoption of each risk factor was collected from the software
developers. Finally, the adaptive neuro-fuzzy SRA model was formulated for each phase
of the SDLC alongside the number of the inference rules of each SRA model stated. In most
security assessment systems developed in the literature, the majority of efforts have been
concentrated on evaluating security risk after system implementation. Finding the stage
that is related to or directly accountable for increasing the estimated security risk is difficult.

Future Internet 2022, 14, 305 7 of 21

Identifying problems, doing feasibility studies, analyzing specifications, designing the
system, putting it into practice, testing it, deploying it, and maintaining it are all steps in
the consistent life cycle of system development. The effectiveness of any proposed system
depends greatly on each of these phases. Therefore, rather than waiting until the system is
fully deployed, risk factors should take into account how much it exposed to at each stage.

3.1. Security Issues and Measures for Each SDLC Phases

Even with the usage of external perimeters like firewalls, proxies, intrusion detection
systems, and antivirus software, most software cannot withstand security threats. The
cause is that software inherently lacks security and has flaws that can be used in security
assaults. These vulnerabilities are primarily brought about by specification, design, and
coding errors that software engineers unintentionally introduce [4]. Security was regarded
as a non-functional need in the SDLC because to the utilization of outsider perimeters up
until this point [6]. Secure software, however, is software that is inherently resistant to
attack [4]. These vulnerabilities which are mostly code and design flaws, go unreported by
software experts. Software security must be built into the software in order to create one
that is secure. Software can be made secure by maintaining the assets’ non-repudiation,
availability, confidentiality, and integrity, and assets, resources, and even the running
programs themselves that the software generates, stores, processes, or sends.

In the software development life cycle, security plays a very important role, and
software security testing is an important means to achieve goal of SSDLC.

The first phase of the SDLC involves identifying the need, purpose and scope of the
software following which requirements proposed. At this phase, the identified risks that
are used in developing the software requirements including the security requirements
so that is ensured that threats and potential functionality and integration constraints
considered in line with the requirements. The second phase of the SDLC involves designing
the system based on the requirements. Identified risk can be used to support security
analyses of the software. These risks may have impact on the architecture and design of
the software. Security requirements were analysed, the security architecture were designed
while functional and security tests completed.

The third phase of the SDLC involves configuring, testing and verifying modules
or software components for production. Risk management supports the assessment of
the software by comparing software implementation against requirements and within the
operational environment. Management of identified risks were decided before software
was moved for operation. The software was integrated into the software environment,
security controls were tested, and the accreditation was completed.

The fourth phase of the SDLC involves deploying the software in the environment
for modification via potential hardware and other (code) changes or additions as well as
by changes to organisational practices. At this phase, risk management activities were
performed in line with software being re-authorised and monitored for performance in
a periodic process. The software is re-assessed when the IT has faced major changes in
the operational environment such as new features were developed and tested, or new
hardware is added or replaced. The software’s operational readiness was reviewed, the
system configuration was managed, and the process and procedures for monitoring are
set up. The fifth phase of the SDLC involves moving the system for deployment in a
real environment. At this phase, risk management activities are performed for disposable
or replaceable software components so that disposal was performed properly, and that
residual data was handled appropriately and migration to new system happens securely.

3.2. Identification of Risk Factors of SDLC Phases

According to authors in [5], several risk factors were identified in the software risk
factor taxonomy for each of the phases in the process. In order to narrow down the essential
yet crucial risk factors, questionnaires were created for Nigerian software engineers to
validate the risk variables pertinent to the SDLC from the 93 risk variables that were

Future Internet 2022, 14, 305 8 of 21

originally identified. Every risk factor was assessed utilizing a relevance metric with the
options of Yes or No (if regarded) or No (if not regarded). The Google Forms® program was
used to create the questionnaires, an extra benefit offered by Google® for users of GMail®

for conducting the poll. The programmers were chosen among Nigerian programmers,
picking from various phases of software development processes.

The risk variables that were taken into account throughout the level of the SDLC for
requirement analysis and definition are described in Table 1. There were 21 risk factors
in all, and these were groups into 5 distinct activities each with related risk factors. The
system design phase is described in Table 2. A total of 19 risk factors were divided into
seven distinct activity categories, each of which included a number of related risk factors.
The risk variables that were taken into account during the SDLC’s implementation and
unit testing phases are described in Table 3. There are 23 risk factors in all, which were
divided into two main groups of activities made up of many related risk factors. The risk
factors that were taken into account during the SDLC’s integration and system testing
phase are described in Table 4. There are a total of 16 risk variables, which were divided
into 5 separate activity groups made up of a number of related risk factors. Table 5 shown
the risk factor in the operation and maintenance during software development processes.
There are a total of 14 risk variables, which were divided into four separate activity groups.

Table 1. The requirement definition and analysis stage risk factors.

Risk Factor Classification by Activity Number of Instances

Feasibility Study 5
Requirements Elicitation 7
Requirements Analysis 5

Requirements Validation 2
Requirements Documentation 2

TOTAL 21

Table 2. The system design stage risk factors.

Risk Factor Classification by Activity Number of Instances

Examining Requirement Documentation 1
Choosing Architectural Design Method 1

Choosing Programming Language 1
Constructing Physical Model 5

Verifying Design 3
Specifying Design 4

Documenting Design 4
TOTAL 19

Table 3. The implementation and unit testing stage risk factors.

Risk Factor Classification by Activity Number of Instances

Coding 13
Unit Testing 10

TOTAL 23

Table 4. The risk factors in integration and system testing stage.

Risk Factor Classification by Activity Number of Instances

Integration 3
Integration Testing 5

System Testing 8
TOTAL 16

Future Internet 2022, 14, 305 9 of 21

Table 5. Risk factors in Operation and maintenance phase.

Risk Factor Classification by Activity Number of Instances

Installation 3
Operation 2

Acceptance Testing 6
Maintenance 3

TOTAL 14

Following the software developers’ assessment of the pertinent risk factors connected
to SRA at each SDLC phase in the Nigerian setting, a follow-up questionnaire was created
to gather data regarding the risk variables that were taken into consideration (or not
considered) throughout the various SDLC process phases. This data was utilized to create
the historical dataset required to train the ANFIS model that was proposed in this work.

3.3. Validation of Risk Factors from Software Developers

The electronic questionnaire using Google Forms® was used to collect information re-
quired to validate risk factors relevant to SDLC from selected software developers. As seen
on the Google Forms®, the software engineers were given the electronic questionnaire by
having it sent to their mail, or by including a link in their message that directs respondents
to the survey using the link displayed.

3.4. Formulation of ANFIS SRA Model

To formulate the SRA model, the validated risk factors for each SDLC phase were used
as inputs for each SDLC phase. Hence, five ANFIS SRA models were formulated, one for
every SDLC process phase. Each step’s specific risk criteria related to the degree of security
risk are accepted as inputs by the SRA model that was developed for that stage. While the
vulnerability risk evaluation level at the point the SRA model was developed served as
the output. Supposing P is a stage in software development life cycle, Ri is the various
factor of risks connected to the SDLC phase’s security risk assessment. As a result, the risk
variables related to each phase SP affect the SRA at each of those phases. Consequently,
equation can be used to represent the SRA at each step, as shown in Equation (1). The
equation demonstrates that SRA can be used to assess any of the four recognized risk levels
as shown in Equation (1).

SRAP = f (Ri)

No Risk
Low Risk

Moderate Risk
High Risk

(1)

Following are the various assumptions that were made about the identified risk factors
adopted in this study. The risk indicators that have been verified during each SDLC phase
have the same degree of effect to SRA; hence they all carry equal weights. The risk factors
are assigned the value of 0 if considered (value is Yes) and one if not considered (value
is No). The classification for each level of security risk assessed (No, Low, Moderate and
High) was made from the number of risk factors identified. Therefore, an SDLC phase with
four risk factors will divide a score of 4 across the SRA levels. As a result of this assumption,
two triangular membership functions were used to formulate the two labels of each risk
factor. As proposed by Jimoh and Olusanya (2019), the interval defined for the Yes label is
[−0.5, 0.0, 0.5] with a crisp central value of 0, and for the No label is [0.5, 1.0, 1.5] with a
central crisp value of 1 as shown in Equations (2) and (3).

Yes(x;−0.5, 0.0, 0.5) =

0; x ≤ −0.5

x+0.5
0.5 ;−0.5 < x ≤ 0
0.5−x

0.5 ; 0 < x ≤ 0.5
0; x > 0.5

(2)

Future Internet 2022, 14, 305 10 of 21

No(x; 0.5, 1.0, 1.5) =

0; x ≤ 0.5

x−0.5
0.5 ; 0.5 < x ≤ 1

1.5−x
0.5 ; 1 < x ≤ 1.5

0; x > 1.5

(3)

Also, the four labels of the output variable for each SDLC phase of the security risk
assessment were created using four triangle membership functions. The interval defined
for the No risk label is [−0.5, 0.5] with a central crisp value of 0 (Equation (4)), for the
Low-risk label is [0.5, 1.5] with a central crisp value of 1 (Equation (5)), for the Moderate
risk label is [1.5, 2.5] with a central crisp value of 2 (Equation (6)) and for the High-risk
label is [2.5, 3.5] with a central crisp value of 3 (Equation (7)). The four triangle membership
functions that were utilized to create the formula are depicted in a schematic in Figure 2.
The names of each ANFIS-based SRA model that has been proposed for each SDLC phase’s
output target variables.

No Risk (0;−0.5, 0, 0.5) =

0; x ≤ −0.5

x+0.5
0.5 ;−0.5 ≤ x ≤ 0

0.5−x
0.5 ; 0 ≤ x ≤ 0.5

0; x ≥ 0.5

(4)

Low Risk (1; 0.5, 1, 1.5) =

0; x ≤ 0.5

x−0.5
0.5 ; 0.5 ≤ x ≤ 1

1−x
0.5 ; 0.1 ≤ x ≤ 1.5

0; x ≥ 1.5

(5)

Moderate Risk(2; 1.5, 2, 2.5) =

0; x ≤ 1.5

x−1.5
0.5 ; 1.5 ≤ x ≤ 2

2.5−x
0.5 ; 2 ≤ x ≤ 2.5

0; x ≥ 2.5

(6)

High Risk (3; 2.5, 3, 3.5) =

0; x ≤ 2.5

x−2.5
0.5 ; 2.5 ≤ x ≤ 3

3.5−x
0.5 ; 3 ≤ x ≤ 3.5

0; x ≥ 3.5

(7)

Future Internet 2022, 14, 305 11 of 22

���ℎ ���� (3; 2.5, 3, 3.5) =

⎩
⎪
⎨

⎪
⎧

0; � ≤ 2.5
� − 2.5

0.5
; 2.5 ≤ � ≤ 3

3.5 − �

0.5
; 3 ≤ � ≤ 3.5

0; � ≥ 3.5

 (7)

Figure 2. The triangular membership function for SRA labels.

4. The Experimental Results

This section presents the validated various risks relating to the process of evaluating

security risk based on information provided by the respondents in software development

industries. The respondents selected the risks factors from the 93 used as the baseline risk

categories using the questionnaires based on the background of software products designs

in Nigeria contents as case study on under developing countries. We identified the risk

indicators that were universally accepted by all developers using frequency distribution

tables. Non-parametric tests were used to examine substantial discrepancies in the devel-

opers’ answers for those that the developers did not generally agree upon. Information

about the follow-up questionnaire used to collect historical data required for the develop-

ment of the ANFIS-based SRA model was also demonstrated for evaluating security risk

at every stage of the SDLC.

4.1. The Results Regarding Software Development’s SRA Risk Factor Validation for Each Stage

Upon the distribution of the designed questionnaire to the respondents, the respond-

ents answered to the survey by providing details on the risk factors for software develop-

ment process, and provided the most suitable factors for evaluating the risks in Nigeria

context. Figure 3 displays a screenshot of the survey replies provided by Google Sheets®.

Figure 3. Responses to administered questionnaires via Google Forms.

Figure 2. The triangular membership function for SRA labels.

4. The Experimental Results

This section presents the validated various risks relating to the process of evaluating
security risk based on information provided by the respondents in software development
industries. The respondents selected the risks factors from the 93 used as the baseline risk
categories using the questionnaires based on the background of software products designs
in Nigeria contents as case study on under developing countries. We identified the risk
indicators that were universally accepted by all developers using frequency distribution

Future Internet 2022, 14, 305 11 of 21

tables. Non-parametric tests were used to examine substantial discrepancies in the develop-
ers’ answers for those that the developers did not generally agree upon. Information about
the follow-up questionnaire used to collect historical data required for the development of
the ANFIS-based SRA model was also demonstrated for evaluating security risk at every
stage of the SDLC.

4.1. The Results Regarding Software Development’s SRA Risk Factor Validation for Each Stage

Upon the distribution of the designed questionnaire to the respondents, the respon-
dents answered to the survey by providing details on the risk factors for software develop-
ment process, and provided the most suitable factors for evaluating the risks in Nigeria
context. Figure 3 displays a screenshot of the survey replies provided by Google Sheets®.

Future Internet 2022, 14, 305 11 of 22

���ℎ ���� (3; 2.5, 3, 3.5) =

⎩
⎪
⎨

⎪
⎧

0; � ≤ 2.5
� − 2.5

0.5
; 2.5 ≤ � ≤ 3

3.5 − �

0.5
; 3 ≤ � ≤ 3.5

0; � ≥ 3.5

 (7)

Figure 2. The triangular membership function for SRA labels.

4. The Experimental Results

This section presents the validated various risks relating to the process of evaluating

security risk based on information provided by the respondents in software development

industries. The respondents selected the risks factors from the 93 used as the baseline risk

categories using the questionnaires based on the background of software products designs

in Nigeria contents as case study on under developing countries. We identified the risk

indicators that were universally accepted by all developers using frequency distribution

tables. Non-parametric tests were used to examine substantial discrepancies in the devel-

opers’ answers for those that the developers did not generally agree upon. Information

about the follow-up questionnaire used to collect historical data required for the develop-

ment of the ANFIS-based SRA model was also demonstrated for evaluating security risk

at every stage of the SDLC.

4.1. The Results Regarding Software Development’s SRA Risk Factor Validation for Each Stage

Upon the distribution of the designed questionnaire to the respondents, the respond-

ents answered to the survey by providing details on the risk factors for software develop-

ment process, and provided the most suitable factors for evaluating the risks in Nigeria

context. Figure 3 displays a screenshot of the survey replies provided by Google Sheets®.

Figure 3. Responses to administered questionnaires via Google Forms.
Figure 3. Responses to administered questionnaires via Google Forms.

The risk factors that respondents did not select were not considered. Nevertheless, the
findings of the percentage of developers that concur with the choice of risk factors for each
stage was utilized to divide the risk factors into these three (3) groups:

i. The Risk Factors in High Priority: The risk elements that were deemed crucial for
assessing the security risk of the SDLC process by all developers (100%); considering
that there was no variation in the developers’ selection of the risk factors, these risk
factors were taken into account but were not statistically examined;

ii. The Risk Factors in Low Priority: The risk categories that were not unanimously
deemed necessary for each developer to evaluate the security risk of the SDLC process
(<100%), non-parametric tests were used to determine the variations in responses
of the developers depending on the types of organizations and specialty after these
variables were eliminated but still taken into consideration for statistical analysis; and

iii. The Risk Factors in No Priority: The risk indicators that the developers chosen
for this study did not concur with were eliminated and not taken into account for
statistical analysis.

Table 6 displays the findings for the high priority risk categories that each software
developer chosen using the designed questionnaire. From the initial 21 risk factors discov-
ered, the findings of the selection of the pertinent risk factors taken into account throughout
the requirements and definition stage revealed that 11 were deemed to be of high priority,
8 were deemed to be of low priority, 2 were regarded to be no-priority risk factors. The
findings also indicated that, with the exception of unrealistic schedules, there was no
statistical difference in replies depending on the kind of establishment when it came to the
selection of risk factors with low importance.

Future Internet 2022, 14, 305 12 of 21

Table 6. Distribution of high priority risk factors selected.

SDLC Process Stages Baseline Risks Selected Risks Ratio Selected (%)

Requirement Analysis and Definition Phase 21 11 52.38
Design Phase 19 8 42.11

Implementation and Unit Testing Phase 23 9 39.13
Integration and System Testing Phase 16 4 25.00

Operation and Maintenance Phase 14 6 42.86

The selection of pertinent risk factors taken into account throughout the SDLC design
phase demonstrated that 8 of the 19 risk variables that were previously selected as high
priorities, 6 were deemed to be of low priority, and 5 were labeled as risk factors with no
priority. The findings also revealed a statistically significant variation in the diverse array of
responses according to the type of establishment that they belong to. However, statistically
no significant difference in the interpretation based on area of expertise of the respondents
that fill the questionnaire.

The results of choosing the pertinent risk factors taken into account during the SDLC’s
for execution and unit testing stage revealed that 9 of the 23 risk variables that were
originally discovered were deemed to be of high priority, 3 risk factors were categorized as
having no priority, while 11 was given a poor priority rating. The findings also revealed a
significant discrepancy statistically based on the organization the respondents are working
for. However, there was no noteworthy change statistically in the developers’ varying
responses based on their area of expertise.

The outputs of choosing the pertinent risk factors taken into account during the SDLC’s
system testing and amalgamation stage demonstrated that 4 of the 16 risk factors that were
originally selected as high priorities, 1 risk factor was categorized as having no priority,
while 11 were low priority. The findings also revealed a statistically significant variation
in the diverse array of responses according to the type of establishment that they belong
to. However, statistically no significant difference in the interpretation based on area of
expertise of the respondents that fill the questionnaire.

The outputs of choosing the pertinent risk factors that were taken into account during
the set-up and maintenance stage of the SDLC demonstrated that out of the 14 baseline risk
factors, 6 were deemed to be of high priority, while 8 were deemed to be of low priority, and
none were designated as risk factors with no priority. The findings further demonstrated
that the response diversity did not statistically significantly, depending on the developers’
area of expertise. However, there was no noteworthy change statistically in the developers’
varying responses based on their area of expertise.

4.2. Identification of Risk Factors of SDLC Phases

The risk factor taxonomy put forward by authors in [5] helped identify a number of
risk factors at first. Software developers chosen from various firms recognized a number of
risk variables as being pertinent in the context of software development. The analysis of the
software engineers’ responses led to the following three classifications, thus, the three types
of risk factors are: high priority risk factors, which described the risks that all developers
agreed upon, low priority risk factors, which described the risks that some developers
agreed upon, and no priority risk factors, which defined the risks that no developers agreed
upon. Finally, the relevant risk factors for assessing security risk at each SDLC step were
determined to be the high-priority risk factors that all the software developers had agreed
upon. Figure 4 show the methodology processes.

Future Internet 2022, 14, 305 13 of 21
Future Internet 2022, 14, 305 14 of 22

Figure 4. Research Methodology Process.

4.3. The Results of the Proposed ANFIS Enabled with SRA Model

The results of the ANFIS model is presented in this section in accordance with the

chosen risk factors in the preceding section. For each SDLC step that was identified, an

SDLC security risk assessment model was created based on the proposed model. The pro-

posed model first fuzzify each risk factor before processing it. Figure 5 depicts the ANFIS

model’s framework utilized the established SRA based on the factors identified in each

SDLC process phase. The information flow from the point of input is depicted in the dia-

gram (at the bottom) when the SRA for each stage was established fed the ANFIS model

at the point of output (at the top).

Figure 4. Research Methodology Process.

4.3. The Results of the Proposed ANFIS Enabled with SRA Model

The results of the ANFIS model is presented in this section in accordance with the
chosen risk factors in the preceding section. For each SDLC step that was identified, an
SDLC security risk assessment model was created based on the proposed model. The
proposed model first fuzzify each risk factor before processing it. Figure 5 depicts the
ANFIS model’s framework utilized the established SRA based on the factors identified in
each SDLC process phase. The information flow from the point of input is depicted in the
diagram (at the bottom) when the SRA for each stage was established fed the ANFIS model
at the point of output (at the top).

The total amount of the user-provided information was calculated to established the
each SRA for the SDLC phase. The greater the summation value, the greater the security risk
as 1 was applied each time a user responded number that was equivalent to 1. The quantity
of risk factors taken into account led to the highest sum being computed, afterwards split
into three segments that serve as the threshold as indicated in Equation (1), however, the
no-risk class is assigned 0 value. As a percentage of the phase output’s overall values, an
interval was created using the various components.

Future Internet 2022, 14, 305 14 of 21
Future Internet 2022, 14, 305 15 of 22

Figure 5. The proposed framework for SRA in software development stages.

The total amount of the user-provided information was calculated to established the

each SRA for the SDLC phase. The greater the summation value, the greater the security

risk as 1 was applied each time a user responded number that was equivalent to 1. The

quantity of risk factors taken into account led to the highest sum being computed, after-

wards split into three segments that serve as the threshold as indicated in Equation (1),

however, the no-risk class is assigned 0 value. As a percentage of the phase output’s over-

all values, an interval was created using the various components.

For the risk assessment, four triangle membership functions with centers of 0, 1, 2,

and 3 were developed for No, Low, Moderate and High-risk classes, respectively. The

models were formulated such that a triangular membership function of the interval [−0.5,

0, 0.5] was assigned to the No risk class (Equation (4)), an interval of [0.5, 1, 1.5] were also

assigned to the Low risk (Equation (5)), an interval of [1.5, 2, 2.5] were assigned to the

Moderate risk (Equation (6)) while an interval of [2.5, 3, 3.5] was then assigned to the High-

risk class (Equation (7)). The set of values used to allocate the security risk assessment

variables was based on the amount of risk variables taken into account throughout each

SDLC phase and distributed as shown in Table 7.

Table 7. Description of Fuzzy and Crisp intervals of ANFIS security risk assessment labels.

SDLC Process Stages Risk Factors
No [−0.5, 0,

0.5]

Low [0.5, 1,

1.5]

Moderate

[1.5, 2, 2.5]

High [2.5, 3,

3.5]

Requirement Analysis and Definition Phase 11 0 [1.4] [5.8] [9.11]

Design Phase 8 0 [1.3] [4.6] [7.8]

Implementation and Unit Testing Phase 9 0 [1.3] [4.6] [7.9]

Integration and System Testing Phase 4 0 [1.2] 3 4

Operation and Maintenance Phase 6 0 [1.2] [3.4] [5.6]

The requirement analysis and definition phase’s SRA report revealed that 11 high-

priority risk factors had been chosen. By assigning a value of 0 to No risk, the total value

Figure 5. The proposed framework for SRA in software development stages.

For the risk assessment, four triangle membership functions with centers of 0, 1, 2, and
3 were developed for No, Low, Moderate and High-risk classes, respectively. The models
were formulated such that a triangular membership function of the interval [−0.5, 0, 0.5]
was assigned to the No risk class (Equation (4)), an interval of [0.5, 1, 1.5] were also assigned
to the Low risk (Equation (5)), an interval of [1.5, 2, 2.5] were assigned to the Moderate
risk (Equation (6)) while an interval of [2.5, 3, 3.5] was then assigned to the High-risk class
(Equation (7)). The set of values used to allocate the security risk assessment variables was
based on the amount of risk variables taken into account throughout each SDLC phase and
distributed as shown in Table 7.

Table 7. Description of Fuzzy and Crisp intervals of ANFIS security risk assessment labels.

SDLC Process Stages Risk Factors No [−0.5, 0, 0.5] Low [0.5, 1, 1.5] Moderate [1.5, 2, 2.5] High [2.5, 3, 3.5]

Requirement Analysis
and Definition Phase 11 0 [1.4] [5.8] [9.11]

Design Phase 8 0 [1.3] [4.6] [7.8]
Implementation and
Unit Testing Phase 9 0 [1.3] [4.6] [7.9]

Integration and
System Testing Phase 4 0 [1.2] 3 4

Operation and
Maintenance Phase 6 0 [1.2] [3.4] [5.6]

The requirement analysis and definition phase’s SRA report revealed that 11 high-
priority risk factors had been chosen. By assigning a value of 0 to No risk, the total value
of 11 was divided between the Low, Moderate, and High-Risk classes. Therefore, no risk
was assigned a linguistic value of 0, low risk was assigned a linguistic interval of [1.4],
the moderate risk was assigned a linguistic interval of [5.8], and high risk was assigned a

Future Internet 2022, 14, 305 15 of 21

linguistic interval of [9.11]. Therefore, the linguistic value of 0 was assigned a fuzzy interval
of [−0.5, 0, 0.5] for no risk, the linguistic interval of [1.4] was assigned a fuzzy interval
of [0.5, 1, 1.5] for low risk, the linguistic interval of [5.8] was assigned a fuzzy interval of
[1.5, 2, 2.5] for moderate risk while the linguistic interval of [9.11] was assigned a fuzzy
interval of [2.5, 3, 3.5] for high risk.

The design phase’s SRA result revealed that 8 high priority risk factors had been
chosen. By assigning a value of 0 to No risk, the total value of 8 was divided between
the Low, Moderate, and High Risk classes. Therefore, no risk was assigned a linguistic
value of 0, low risk was assigned a linguistic interval of [1.3], the moderate risk was
assigned a linguistic interval of [4.6], and high risk was assigned a linguistic interval of
[7.8]. Therefore, the linguistic value of 0 was assigned a fuzzy interval of [−0.5, 0, 0.5] for
no risk, the linguistic interval of [1.3] was given a fuzzy interval of [0.5, 1, 1.5] for low risk,
the linguistic interval of [4.6] was assigned a fuzzy interval of [1.5, 2, 2.5] for moderate
risk while the linguistic interval of [7.8] was assigned a fuzzy interval of [2.5, 3, 3.5] for
high risk.

The implementation and unit testing phase’s SRA result revealed that nine high-
priority risk factors had been chosen. By assigning a value of 0 to No risk, the total value
of 8 was divided between the Low, Moderate, and High-Risk classes. Therefore, no risk
was assigned a linguistic value of 0, low risk was assigned a linguistic interval of [1.3],
the moderate risk was assigned a linguistic interval of [4.6], and high risk was assigned a
linguistic interval of [7.9]. Therefore, the linguistic value of 0 was assigned a fuzzy interval
of [−0.5, 0, 0.5] for no risk, the linguistic interval of [1.3] was assigned a fuzzy interval
of [0.5, 1, 1.5] for low risk, the linguistic interval of [4.6] was assigned a fuzzy interval of
[1.5, 2, 2.5] for moderate risk. In contrast, the linguistic interval of [7.9] was assigned a
fuzzy interval of [2.5, 3, 3.5] for high risk.

The output from the SRA during the system integration and testing phase indicated
that 4 high-priority risk variables had been chosen. By assigning a value of 0 to No risk, the
total value of 4 was divided between the Low, Moderate, and High-Risk classes. Therefore,
no risk was assigned a linguistic value of 0, low risk was assigned a linguistic interval
of [1.2], moderate risk was assigned a linguistic value of 3 and high risk was assigned a
linguistic value of 4. Therefore, the linguistic value of 0 was assigned a fuzzy interval of
[−0.5, 0, 0.5] for no risk, the linguistic interval of [1.2] was assigned a fuzzy interval of
[0.5, 1, 1.5] for low risk, the linguistic value of 3 was assigned a fuzzy interval of [1.5, 2, 2.5]
for moderate risk while the linguistic value of 4 was assigned a fuzzy interval of [2.5, 3, 3.5]
for high risk.

The operation and maintenance stage results revealed 6 high-priority risk variables
had been chosen. By assigning a value of 0 to No risk, the total value of 6 was divided
between the Low, Moderate, and High-Risk classes. Therefore, no risk was assigned a
linguistic value of 0, low risk was assigned a linguistic interval of [1.2], the moderate risk
was assigned a linguistic interval [3.4], and high risk was assigned a linguistic interval of
[5.6]. Therefore, the linguistic value of 0 was assigned a fuzzy interval of [−0.5, 0, 0.5] for
no risk, the linguistic interval of [1.2] was assigned a fuzzy interval of [0.5, 1, 1.5] for low
risk, the linguistic interval of [3.4] was assigned a fuzzy interval of [1.5, 2, 2.5] for moderate
risk. In contrast, the linguistic interval of [5.6] was assigned a fuzzy interval of [2.5, 3, 3.5]
for high risk.

4.4. Results of the Inference Rules Generated for the ANFIS SRA Model

The findings of the output security risk assessment and the creation of the risk factors
in each process demonstrated that number of risk factors detected had the same input vari-
ables as the SRA model developed for each phase. To produce an output function required
for assessing the security risk from the formulated risk factors, a set of IF-THEN rules
which combined the risk factors for determining their respective output was formulated.

Future Internet 2022, 14, 305 16 of 21

The set of rules required for a set of binary-valued (Yes and No) variables is determined by
Equation (8) which is expressed in the form expressed in Equation (9).

I f (RiskFactor1 = value)AND(RiskFactor2) THEN(SRA = value) (8)

where: value = {Yes, No}

wr = min(µRF1, µRF2, µRF3, µRF4, µRF5,µRFi,) (9)

where: µRFi is the fuzzified value of the value provided for each risk factor i; and wr is the
weight of the rule r

Table 8 shows the distribution of the number of inferred rules for each of the 5 ANFIS
models used to formulate the model for the SRA of each phase of SDLC. The output of the
inferred rules established for the security risk assessment is estimated using Equation (10)
which is used to estimate the weighted value, wr for each of the r rules calculated using
Equation (8) based on the values of the r rules inferred. The source code for developing
the initial fuzzy logic model was formulated to formulate the SRA model for each phase of
the SDLC.

wr =
wr

∑r
j=1 wi

(10)

Table 8. Distribution of the number of inferred rules.

The Phase of SDLC Cycle Selected Risk Factors Number of Rules

Requirement Analysis and Definition Phase 11 2048
Design Phase 8 256

Implementation and Unit Testing Phase 9 512
Integration and System Testing Phase 4 16

Operation and Maintenance Phase 6 64

4.5. Results of Historical Data Collected Using Follow-Up Questionnaire

Following the evaluation of the risk variables’ validity, we observed that they are
required to assess the security risk assessment of the different phases of the system devel-
opment life cycle (SDLC). The follow-up questionnaires distributed across 309 software
developers selected from various IT establishments and with varying specialties and age
groups are presented. Table 9 shows the distribution of the follow-up questionnaires across
the respondents selected based on the establishments they belonged to.

Table 9. Distribution of respondents based on their IT establishments.

Establishments Frequency Percentage (%)

General 200 64.72
Nigerian Computer Society (NCS) 10 3.24

APTECH 15 4.85
Tai Solarin University of Education (TASUED) 14 4.53

CC-HUB 11 3.56
Obafemi Awolowo University (IFE) 3 0.97

PyCOM-NG 28 9.06
SIDMACH 28 9.06

Total 309 100.00

Following the collection of the questionnaire distributed for this study, it was observed
that the majority were distributed among respondents selected from a number of sources
who refused to be disclosed and were referred to as general, with a proportion of 64.7%.
This was followed by respondents selected from PyCOM-NG and SIDMACH with a
proportion of 9.1% each, APTECH with a proportion of 4.9%, TASUED with a proportion
of 4.5%, CC-HUB with a proportion of 3.6%, NCS with a proportion of 3.2% and IFE with a

Future Internet 2022, 14, 305 17 of 21

proportion of 0.97%. Following the respondents’ responses regarding each set of risk factors
that were used to assess the SRA of each phase of the SDLC process, some observations
were made about the responses of the respondents selected from each establishment. Also,
the responses made were used to assess the level of security risk based on the number of
responses for Yes and No provided by the respondents.

It was observed in the requirements phase results that the majority of the assessments
of the responses from APTECH, NCS, PyCOM-NG, and TASUED had no security risk
while the majority of the assessments of the responses from CCHUB, IFE, General, and
SIDMACH had low-security risk. However, some of the assessments of the responses from
CC-HUB, General, IFE, PyCOM-NG, and SIDMACH had a moderate security risk. The
results of the design phase showed that the majority of the assessment of the responses
from APTECH, NCS, PyCOM-NG, and TASUED had no security risk, while the majority
of the assessments of the responses from CC-HUB, General, IFE, and SIDMACH had
a low-security risk. However, some of the assessments of the responses from General,
PyCOM-NG, and SIDMACH had a moderate security risk. Also, high risk was assessed
from a respondent each among General, PyCOM-NG, and SIDMACH respondents.

The results of the implementation phase revealed that the majority of the assessment
of the responses from APTECH, NCS, PyCOM-NG, and TASUED had no security risk,
while the majority of the assessments of the responses from CCHUB, General, IFE, and
SIDMACH had a low-security risk. However, some of the assessments of CC-HUB, General,
IFE, PyCOM-NG, and SIDMACH had moderate security risk, while the high-security risk
was assessed from a respondent in PyCOM-NG. The results of the integration phase
revealed majority of the assessment of the responses from APTECH, CC-HUB, General,
NCS, PyCOM-NG, SIDMACH, and TASUED had no security risk. In contrast, the majority
of the assessments of the responses from IFE had a low-security risk. However, some of
the assessments of the responses from CCHUB, General, PyCOM-NG, and SIDMACH
had moderate security risk while the high-security risk was assessed from respondents in
PyCOM-NG and SIDMACH.

The results of the operation phase indicated that the majority of the assessment of
the responses from APTECH, IFE, NCS, PyCOM-NG, SIDMACH, and TASUED had no
security risk while the majority of the assessments of the responses from General low-
security risk and an equal majority of the assessments of responses from CCHUB had None
and Low-security risks. However, some of the assessments of the responses from CCHUB,
General, IFE, PyCOM-NG, SIDMACH, and TASUED had moderate security risk while the
high-security risk was assessed from respondents among General and PyCOM-NG.

5. Discussion

This study aimed to identify the risk factors connected with each system development
life cycle phase’s security evaluation (SDLC). On the basis of an analysis of comparable
works, the study first identified a number of risk variables. To determine the most signifi-
cant risk factors for determining the ASR at each stage in the process software development,
questionnaires were given to developers based on these risk factors. After the question-
naires were distributed, the developers identified certain risk indicators, and based on their
response, every risk factor was given a priority. Prioritization was given to the risk factors
as high, medium, and low. The 100% of respondents approved the use of the identified
risk factors, the high significance risk considerations were taken into consideration. The
statistical non-parametric test was used to investigate the mid-priority risk factors and look
at the variation in replies based on the setting that each respondent belonged to, and the
areas of expertise of the chosen respondents. Since the developers did not choose any of
the low-priority risk categories, they were all not taken into account.

The results of the study showed that about 93 initial risk factors were initially identified.
Among these, 11 risk factors were identified and validated for the requirement analysis and
problem identification phase, 8 risk factors were identified and validated for the system
design phase, 9 risk factors were identified for the implementation and unit testing phase,

Future Internet 2022, 14, 305 18 of 21

4 risk factors were identified and verified during the phase of system integration and testing,
while 6 risk factors were found been approved for the SDLC’s operation and maintenance
phase. The results showed that using a value of 0 for Yes and 1 for No, a scoring mechanism
was created for each phase of the SDLC and was used to determine the security risk classes
to be evaluated based on the total score of responses provided by the user. Using the total
score, a specific interval was created for Low Risk, Moderate Risk, and High Risk while
allocating a score of 0 for No risk cases.

The results showed that using a triangular membership function, and the SRA model
was formulated by the use of two triangle membership functions with centers of 0 and
1 for each risk factor’s corresponding Yes and No answers. while for the output of the
security risk assessment, four triangle membership functions with centers of 0, 1, 2, and
3 were used for No risk, Low risk, Moderate risk, and High risk respectively. The results
of the distribution of the security risk assessments made by the respondents showed
some observations. Among all the phases of SDLC assessed, it was observed that the
requirements phase was the only phase without high security risk assessed however it
was observed that the assessment of responses from General, SIDMACH and PyCOM-NG
revealed responses that had high security risk following the assessments.

This study shows how proposed model can be used to significantly identify the risk
factors in SDLC phases and optimize the prediction of quality attributes in software. To
be able to pinpoint the risks relevant to each stage of the SDLC, the risk factors that had
been gathered were put to the test in each phase. Findings revealed that identify the
risk factors connected to each SDLC phase’s security evaluation can increase the software
products quality, reliability, portability and usability. Identify the software development
risk factor will also increase the software products reliability, functionality, efficiency and
maintainability influences that will affect the overall software quality performance most.
Hence, users of software systems should place importance to risk factors identity in each
stage of SDLC of software products quality attributes based on how relevant the attributes
are for the success of the organization. Software developers ought to employ test driven
approaches during software development in order to minimize error. Using a developing
country to get suggestions on how to encourage more consideration of security throughout
the SDLC, has enabled the experts to give ideas that are mostly useful to identify related
risk factors. This is opposed to recommendations for specific software development models,
to accomplish the necessary increase in attention to the identified risk factors in each SDLC
stage for software products security. Security-related SDLC models are beneficial if the
software development team members apply them. Although some panelists addressed
techniques, no particular process models were put forth.

6. Conclusions

Risk assessments are performed for a variety of reasons. The risk of software-based
systems is reduced through the incorporation of risk assessment processes. In many
organizations, including security in every stage of the SDLC is a laborious task. Therefore,
this study suggests a new ANFIS-based method for carrying out risk analysis during the
software development process. The study was able to reduce the number of risk factors
that were recommended by related works to a set recommended risk factors suitable for
assessing security risk in the Nigerian context in the development of software product.
It was concluded from the study that among the initially identified risk factors for the
SDLC phases, 11, 8, 9, 4, and 6 risk factors were validated by system developers for the
assessment of each SDLC phase from the requirement to the operation and maintenance
phase respectively. The study also concluded that by allocating values of 0 and 1 to Yes and
No responses provided by the responses of stakeholders to questions about risk factors
considered at each stage, the total score was split into 4 parts which provided a means
of assessing risk as either of No, Low, Moderate and High Risk for each phase of SDLC.
It was concluded from the study that using this crude scoring system, the dataset that
was required for the formulation of the SRA model for the SDLC phases was developed

Future Internet 2022, 14, 305 19 of 21

by adopting 2 and 4 Fuzzy triangular membership functions for each input risk factors
and output SRA class respectively. An identification of the effect of each risk factor on the
security risk posed to each phase can be used to create a weighting scheme of ensuring the
development of an effective scoring system of security risk assessment in SDLC process,
and this will be explored in our future work.

Author Contributions: The manuscript was written through the contributions of all authors. Con-
ceptualization, R.G.J. and O.O.O.; methodology, R.G.J. and O.O.O.; software, O.O.O. and J.B.A.;
validation, A.L.I., C.-C.L. and O.O.O.; formal analysis, A.L.I.; investigation, J.B.A.; resources, R.G.J.;
data curation, O.O.O.; writing—original draft preparation, J.B.A.; writing—review and editing, R.G.J.,
O.O.O., C.-C.L. and A.L.I.; visualization, J.B.A. and C.-C.L.; supervision, J.B.A.; project administration,
R.G.J., O.O.O. and A.L.I.; funding acquisition, J.B.A. and A.L.I. All authors have read and agreed to
the published version of the manuscript.

Funding: The work of Agbotiname Lucky Imoize is supported in part by the Nigerian Petroleum
Technology Development Fund (PTDF) and in part by the German Academic Exchange Service
(DAAD) through the Nigerian-German Postgraduate Program under grant 57473408.

Data Availability Statement: The data that support the findings of this paper are available upon
reasonable request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sahu, K.; Alzahrani, F.A.; Srivastava, R.K.; Kumar, R. Hesitant fuzzy sets based symmetrical model of decision-making for

estimating the durability of Web application. Symmetry 2020, 12, 1770. [CrossRef]
2. Islam, G.; Storer, T. A case study of agile software development for safety-Critical systems projects. Reliab. Eng. Syst. Saf. 2020,

200, 106954. [CrossRef]
3. Imoize, A.L.; Idowu, D.; Bolaji, T. A brief overview of software reuse and metrics in software engineering. World Sci. News 2019,

122, 56–70.
4. Awotunde, J.B.; Ayo, F.E.; Ogundokun, R.O.; Matiluko, O.E.; Adeniyi, E.A. Investigating the roles of effective communica-

tion among stakeholders in collaborative software development projects. In Proceedings of the International Conference on
Computational Science and Its Applications, Cagliari, Italy, 1–4 July 2020; Volume 12254, pp. 311–319.

5. Hijazi, H.; Alqrainy, S.; Muaidi, H.; Khdour, T. Risk Factors in Software Development Phases. Eur. Sci. J. 2014, 10, 213–232.
6. Sahu, K.; Shree, R.; Kumar, R. Risk management perspective in SDLC. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2014, 4, 1247–1251.
7. Awotunde, J.B.; Misra, S.; Adeniyi, A.E.; Abiodun, M.K.; Kaushik, M.; Lawrence, M.O. A Feature Selection-Based K-NN Model for

Fast Software Defect Prediction. In Proceedings of the International Conference on Computational Science and Its Applications,
Malaga, Spain, 4–7 July 2022; Springer: Cham, Switzerland, 2022; pp. 49–61.

8. Behera, P.C.; Dash, C.; Pareek, P.K. A Novel Approach for Improving Security in Software Development in Small Software Firms:
A Literature Review. In Emerging Technologies in Data Mining and Information Security; Springer: Singapore, 2021; pp. 689–698.

9. Saputri, T.R.D.; Lee, S.-W. Integrated framework for incorporating sustainability design in software engineering life-cycle: An
empirical study. Inf. Softw. Technol. 2020, 129, 106407. [CrossRef]

10. Unuakhalu, M.F.; Sigdel, D.; Garikapati, M. Integrating Risk Management in System Development Cycle. Int. J. Softw. Web Sci.
2014, 8, 1–9.

11. Laaraib, E.; Maher, Z.A.; Solangi, Z.A.; Koondhar, M.Y.; Memon, M.; Depar, M.; Shah, A. A Methodology for Incorporating
Quality Assurance Practices during Software Development Life Cycle. Int. J. 2021, 10, 2296–2301.

12. Gandhi, A.; Naik, A.; Thakkar, K.; Gahirwal, M. Risk Management in Software Development using Artificial Neural Networks.
Int. J. Comput. Appl. 2014, 93, 22–27. [CrossRef]

13. Imoize, A.L.; Mekiliuwa, S.C.; Omiogbemi, I.M.B. Recent Trends on the Application of Cost-Effective Economics Principles to
Software Engineering Development. Int. J. Inf. Secur. Softw. Eng. 2020, 6, 39–49.

14. Khan, R.A.; Khan, S.U.; Khan, H.U.; Ilyas, M. Systematic mapping study on security approaches in secure software engineering.
IEEE Access 2021, 9, 19139–19160. [CrossRef]

15. Dodson, D.; Souppaya, M.; Scarfone, K. Mitigating the Risk of Software Vulnerabilities by Adopting a Secure Software Development
Framework (ssdf); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2020. [CrossRef]

16. Shameem, M.; Kumar, C.; Chandra, B.; Khan, A.A. Systematic review of success factors for scaling agile methods in global software
development environment: A client-vendor perspective. In Proceedings of the 2017 24th Asia-Pacific Software Engineering
Conference Workshops (APSECW), Nanjing, China, 4–8 December 2017; IEEE: New York, NY, USA, 2017; pp. 17–24.

17. Vochitoiu, H.; Vedinas, F.; Miclea, O.; Unguras, C.L. Risk Management as a Part of the Business Process in Corporate Firms.
In Proceedings of the International Conference “New Technologies, Development and Applications”, Sarajevo, Bosnia and
Herzegovina, 25–27 June 2020; Springer: Cham, Switzerland; pp. 964–972.

http://doi.org/10.3390/sym12111770
http://doi.org/10.1016/j.ress.2020.106954
http://doi.org/10.1016/j.infsof.2020.106407
http://doi.org/10.5120/16468-6155
http://doi.org/10.1109/ACCESS.2021.3052311
http://doi.org/10.6028/NIST.CSWP.4232020

Future Internet 2022, 14, 305 20 of 21

18. Imoize, A.L.; Mekiliuwa, S.C.; Omiogbemi, I.M.B.; Omofonma, D.O. Ethical Issues and Policies in Software Engineering. Int. J. Inf.
Secur. Softw. Eng. 2020, 6, 6–17.

19. Pooja, R.; Dalwinder, S.S. Neuro-Fuzzy based Software Risk Estimation Tool. Glob. J. Comput. Sci. Technol. Softw. Data Eng. 2013,
13, 23–34.

20. Casola, V.; De Benedictis, A.; Rak, M.; Villano, U. A novel Security-by-Design methodology: Modeling and assessing security by
SLAs with a quantitative approach. J. Syst. Softw. 2020, 163, 110537. [CrossRef]

21. Hart, S.; Margheri, A.; Paci, F.; Sassone, V. Riskio: A serious game for cyber security awareness and education. Comput. Secur.
2020, 95, 101827. [CrossRef]

22. Al-Matari, O.M.; Helal, I.M.; Mazen, S.A.; Elhennawy, S. Adopting security maturity model to the organizations’ capability model.
Egypt. Inform. J. 2021, 22, 193–199. [CrossRef]

23. Rindell, K.; Bernsmed, K.; Jaatun, M.G. Managing security in software: Or: How I learned to stop worrying and manage the
security technical debt. In Proceedings of the 14th International Conference on Availability, Reliability and Security, Canterbury,
UK, 26–29 August 2019; pp. 1–8.

24. Nguyen, J.; Dupuis, M. Closing the feedback loop between ux design, software development, security engineering, and operations.
In Proceedings of the 20th Annual SIG Conference on Information Technology Education, Tacoma, WA, USA, 3–5 September
2019; pp. 93–98.

25. Jouini, M.; Rabai, L.B.A.; Khedri, R. A quantitative assessment of security risks based on a multifaceted classification approach.
Int. J. Inf. Secur. 2021, 20, 493–510. [CrossRef]

26. Akbar, M.A.; Shameem, M.; Ahmad, J.; Maqbool, A.; Abbas, K. Investigation of Project Administration related challenging
factors of Requirements Change Management in global software development: A systematic literature review. In Proceed-
ings of the 2018 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), Quetta, Pakistan,
12–13 November 2018; IEEE: New York, NY, USA, 2018; pp. 1–7.

27. Podari, Z.; Arbain, A.F.; Ibrahim, N.; Sudarmilah, E. Risk Mitigation Framework for Agile Global Software Development. In
Proceedings of the International Conference of Reliable Information and Communication Technology, Langkawi, Malaysia,
21–22 December 2020; Springer: Cham, Switzerland, 2020; pp. 1233–1246.

28. Wong, W.E.; Li, X.; Laplante, P.A. Be more familiar with our enemies and pave the way forward: A review of the roles bugs
played in software failures. J. Syst. Softw. 2017, 133, 68–94. [CrossRef]

29. Akinsola, J.E.; Ogunbanwo, A.S.; Okesola, O.J.; Odun-Ayo, I.J.; Ayegbusi, F.D.; Adebiyi, A.A. Comparative analysis of software
development life cycle models (SDLC). In Proceedings of the Computer Science On-line Conference, Jeju, Korea, 14–16 July 2020;
Springer: Cham, Switzerland, 2020; pp. 310–322.

30. Magableh, A.A.; Alsobeh, A.M.R. Aspect-Oriented Software Security Development Life Cycle (AOSSDLC). In Proceedings of the
CS & IT Conference Proceedings, Dubai, United Arab Emirates, 25–26 August 2018.

31. Agarwal, P.; Singhal, A.; Garg, A. SDLC Model Selection Tool and Risk Incorporation. Int. J. Comput. Appl. 2017, 975, 8887.
[CrossRef]

32. Khan, M.N.A.; Mirza, A.M.; Saleem, I. Software Risk Analysis with the use of Classification Techniques: A Review. Eng. Technol.
Appl. Sci. Res. 2020, 10, 5678–5682. [CrossRef]

33. Mohammad, A.; Alqatawna, J.F.; Abushariah, M. Secure software engineering: Evaluation of emerging trends. In Proceedings of
the 2017 8th International Conference on Information Technology (ICIT), Amman, Jordan, 17–18 May 2017; IEEE: New York, NY,
USA, 2017; pp. 814–818.

34. Sharif, A.M.; Basri, S.; Ali, H.O. Strength and Weakness of Software Risk Assessment Tools. Int. J. Softw. Eng. Its Appl. 2014, 8,
389–398.

35. Abioye, T.E.; Arogundade, O.T.; Misra, S.; Akinwale, A.T.; Adeniran, O.J. Toward ontology-based risk management framework
for software projects: An empirical study. J. Softw. Evol. Process 2020, 32, e2269. [CrossRef]

36. Jackson, A.B.; Jackson, T.; Jackson, K.B. Chronology of continuous improvement of the world’s best FMECA standard. In
Proceedings of the 2020 Annual Reliability and Maintainability Symposium (RAMS), Palm Springs, CA, USA, 17–30 January
2020; IEEE: New York, NY, USA, 2020; pp. 1–6.

37. Scheu, M.N.; Tremps, L.; Smolka, U.; Kolios, A.; Brennan, F. A systematic Failure Mode Effects and Criticality Analysis for offshore
wind turbine systems towards integrated condition based maintenance strategies. Ocean. Eng. 2019, 176, 118–133. [CrossRef]

38. Androulidakis, I.; Kharchenko, V.; Kovalenko, A. Imeca-based technique for security assessment of private communications:
Technology and training. Inf. Secur. 2016, 35, 99. [CrossRef]

39. Babeshko, I.; Illiashenko, O.; Kharchenko, V.; Leontiev, K. Towards Trustworthy Safety Assessment by Providing Expert and
Tool-Based XMECA Techniques. Mathematics 2022, 10, 2297. [CrossRef]

40. Oleg, I.; Vyacheslav, K.; Andriy, K. Cyber security lifecycle and assessment technique for FPGA-based I & C systems. In
Proceedings of the East-West Design & Test Symposium (EWDTS 2013), Rostov on Don, Russia, 27–30 September 2013; IEEE:
New York, NY, USA, 2013; pp. 1–5.

41. Kumar, R.; Schivo, S.; Ruijters, E.; Yildiz, B.M.; Huistra, D.; Brandt, J.; Stoelinga, M. Effective analysis of attack trees: A
model-driven approach. In Proceedings of the International Conference on Fundamental Approaches to Software Engineering,
Thessaloniki, Greece, 14–21 April 2018; Springer: Cham, Switzerland, 2018; pp. 56–73.

http://doi.org/10.1016/j.jss.2020.110537
http://doi.org/10.1016/j.cose.2020.101827
http://doi.org/10.1016/j.eij.2020.08.001
http://doi.org/10.1007/s10207-020-00515-6
http://doi.org/10.1016/j.jss.2017.06.069
http://doi.org/10.5120/ijca2017915143
http://doi.org/10.48084/etasr.3440
http://doi.org/10.1002/smr.2269
http://doi.org/10.1016/j.oceaneng.2019.02.048
http://doi.org/10.11610/isij.3505
http://doi.org/10.3390/math10132297

Future Internet 2022, 14, 305 21 of 21

42. Lallie, H.S.; Debattista, K.; Bal, J. A review of attack graph and attack tree visual syntax in cyber security. Comput. Sci. Rev. 2020,
35, 100219. [CrossRef]

43. Mutlu, B.O.; Kestor, G.; Manzano, J.; Unsal, O.; Chatterjee, S.; Krishnamoorthy, S. Characterization of the impact of soft errors
on iterative methods. In Proceedings of the 2018 IEEE 25th International Conference on High Performance Computing (HiPC),
Bengaluru, India, 17–20 December 2018; IEEE: New York, NY, USA, 2018; pp. 203–214.

44. Chen, J.; Li, Q.; Mao, C.; Towey, D.; Zhan, Y.; Wang, H. A web services vulnerability testing approach based on combinatorial
mutation and soap message mutation. Serv. Oriented Comput. Appl. 2014, 8, 1–13. [CrossRef]

45. Schoenfield, B.; Ransome, J.; Misra, A. Applying the SDL Framework to the Real World. In Core Software Security: Security at the
Source; CRC Press: Boca Raton, FL, USA, 2014; pp. 255–324.

46. Gonzalez, D. The State of Practice for Security Unit Testing: Towards Data Driven Strategies to Shift Security into Developer’s
Automated Testing Workflows. Ph.D. Thesis, Rochester Institute of Technology, Rochester, NY, USA, 2021.

47. Masso, J.; Pino, F.J.; Pardo, C.; García, F.; Piattini, M. Risk management in the software life cycle: A systematic literature review.
Comput. Stand. Interfaces 2020, 71, 103431. [CrossRef]

48. Liu, D.; Wang, Q.; Xiao, J. The role of software process simulation modeling in software risk management: A systematic review.
In Proceedings of the 2009 3rd International Symposium on Empirical Software Engineering and Measurement, Washington, DC,
USA, 15–16 October 2009; IEEE: New York, NY, USA, 2009; pp. 302–311.

49. Choetkiertikul, M.; Sunetnanta, T. A risk assessment tool using a CMMI Quantitative Approach. IACSIT Int. J. Eng. Technol. 2012,
4, 352–353. [CrossRef]

50. Iranmanesh, S.H.; Khodadadi, S.B.; Taheri, S. Risk Assessment of Software Projects Using Fuzzy Interface System. In Proceedings
of the International Conference on Computing and Industrial Engineering (CIE), Troyes, France, 6–9 July 2009; pp. 1149–1154.

51. Ansari, M.T.J.; Pandey, D.; Alenezi, M. STORE: Security threat oriented requirements engineering methodology. J. King Saud
Univ.—Comput. Inf. Sciences 2018, 34, 191–203. [CrossRef]

52. Alenezi, M.; Almuairfi, S. Security risks in the software development lifecycle. Int. J. Recent Technol. Eng. 2019, 8, 7048–7055.
[CrossRef]

53. Barabanov, A.V.; Markov, A.S.; Grishin, M.I.; Tsirlov, V.L. Current taxonomy of information security threats in software develop-
ment life cycle. In Proceedings of the 2018 IEEE 12th International Conference on Application of Information and Communication
Technologies (AICT), Almaty, Kazakhstan, 17–19 October 2018; IEEE: New York, NY, USA, 2018; pp. 1–6.

54. Mohino, J.D.V.; Higuera, B.; Montalvo, J.A.S. The application of a new secure software development life cycle (S-SDLC) with agile
methodologies. Electronics 2019, 8, 1218. [CrossRef]

55. Akbar, M.A.; Sang, J.; Khan, A.A.; Amin, F.E.; Nasrullah; Shafiq, M.; Hussain, S.; Hu, H.; Elahi, M.; Xiang, H. Improving
the quality of software development process by introducing a new methodology–AZ-model. IEEE Access 2017, 6, 4811–4823.
[CrossRef]

56. Karim, N.S.A.; Albuolayan, A.; Saba, T.; Rehman, A. The practice of secure software development in SDLC: An investigation
through existing model and a case study. Secur. Commun. Netw. 2016, 9, 5333–5345.

57. Sahu, K.; Alzahrani, F.A.; Srivastava, R.K.; Kumar, R. Evaluating the impact of prediction techniques: Software reliability
perspective. Comput. Mater. Contin. 2021, 67, 1471–1488. [CrossRef]

http://doi.org/10.1016/j.cosrev.2019.100219
http://doi.org/10.1007/s11761-013-0139-1
http://doi.org/10.1016/j.csi.2020.103431
http://doi.org/10.7763/IJET.2012.V4.381
http://doi.org/10.1016/j.jksuci.2018.12.005
http://doi.org/10.35940/ijrte.C5374.098319
http://doi.org/10.3390/electronics8111218
http://doi.org/10.1109/ACCESS.2017.2787981
http://doi.org/10.32604/cmc.2021.014868

	Introduction
	Literature Review
	Types of Software Test Techniques to Improve Trustworthiness of Security Assessment
	Related Work on Security Risk Assessment Tools for Software Test Techniques

	Materials and Methods
	Security Issues and Measures for Each SDLC Phases
	Identification of Risk Factors of SDLC Phases
	Validation of Risk Factors from Software Developers
	Formulation of ANFIS SRA Model

	The Experimental Results
	The Results Regarding Software Development’s SRA Risk Factor Validation for Each Stage
	Identification of Risk Factors of SDLC Phases
	The Results of the Proposed ANFIS Enabled with SRA Model
	Results of the Inference Rules Generated for the ANFIS SRA Model
	Results of Historical Data Collected Using Follow-Up Questionnaire

	Discussion
	Conclusions
	References

