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Abstract: Natural disasters such as severe flooding can cause catastrophic losses to properties and
human lives. Constant real-time water level monitoring prior to a flooding event can minimise dam-
ages and casualties. Many of the currently deployed water level monitoring systems typically use a
combination of float-type or ultrasonic sensing, image processing and computer vision techniques.
However, these systems incur high computing and hardware requirements, which hinder the deploy-
ment of such systems in resource-constrained and low-cost environments. The recent development of
technologies empowered by the Internet of things (IoT) and edge computing have enabled real-time
systems to be deployed at a significantly lower cost and a far more distributed manner. In this paper,
we propose an architecture for flood monitoring using RGB-D cameras with stereoscopic capabilities
to measure the water level in an open environment. Our system uses image preprocessing techniques
to account for chromatic aberration due to overexposure, followed by postprocessing before the
depth readings are extracted. Data processing and water level information extraction are entirely
performed on an edge computing device, therefore greatly reducing the amount of data transmitted
to the cloud server. We practically implemented and experimentally validated this system in the
real world, under a wide range of weather and lighting conditions. Our results showed promising
outcomes and demonstrated the applicability of our proposed system in a wider context.

Keywords: flood monitoring; computer vision; image processing; edge computing; Internet of things

1. Introduction

Floods are known to cause catastrophic damages and disruptions to our daily life due
to the magnitude and unpredictable nature of their occurrence. Besides causing physical
damage, flood events often disrupt daily activities of the community such as causing
traffic congestion, transport disruptions and power outages [1,2]. To minimise the negative
impacts caused by natural disasters, a method to assess the conditions that may lead to
the phenomenon is required. In the case of a flood, the level of water and its flow are
crucial variables, hence it is necessary to monitor these variables to avert any danger. By
having access to real-time information on flood risk and conditions, authorities will be able
to perform timely preventive and corrective actions to minimise the disruptions caused
by floods.

Water level monitoring devices are often built with ultrasonic sensors, float-type
sensors, capacitive sensors and pressure sensors. These sensors are categorised as contact
sensors apart from ultrasonic sensors. Camera systems and ultrasonic sensors are both
categorised as noncontact sensors, which perform measurements from a distance. While
dedicated water level measurement sensors are straightforward and easy to implement,
camera-based water level sensing has been gaining attention in recent years [3]. This is
mainly because a camera-based setup can also serve as surveillance systems and similarly,
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existing surveillance cameras infrastructure can also be used to perform flood monitoring,
which is beneficial in a smart city.

In this paper, we propose and present a camera-based real-time flood monitoring
system using computer vision techniques underlined by edge computing and IoT system
approaches. We explore, design and deploy the proposed system in a real-world water
level monitoring facility in a rural location. Our system leverages the advantages of camera-
based system over the typical specialised noncamera systems. However, in a camera-based
system, the raw information of images needs to be processed to extract essential information
(e.g., water level). The image processing of these digital images is often performed on
a computing device. Depending on the system setup, different computing paradigms
are classified based on the location where the computational process is performed. In a
cloud-computing setup, the raw image data are sent across the network to be processed
on the computer located at a distant facility commonly known as a server. The process of
transmitting raw data to the server becomes a challenge especially when the sensor node is
located in a remote location where network connectivity is limited [4]. In contrast, in an
edge-computing setup, the image data are processed in situ using the computing device
located close to the sensor node which then extracts and transmits the important parameters
to the server. With the advancement in computing technology, the edge computing device
is becoming increasingly compact, powerful and power-efficient [5,6]. These features
increase the viability of implementing edge-based processing tasks in areas where network
bandwidth and power resources are scarce. The edge computing setup in the context of the
Internet of things (IoT) enhances the capabilities of a real-time monitoring system in rural
areas when extracting and processing important data are concerned [7–9]

This paper aims to investigate the viability of utilising red, green, blue and depth
(RGB-D) image sensor technology coupled with edge-based processing for the application
of flood monitoring. The system setup is deployed and tested in a real-life scenario to
further reinforce the feasibility of the implementation.

In this paper, we make the following key contributions:

• Propose and design a novel RGB-D sensing- based technology for real-time water
level monitoring under diverse weather and lighting conditions.

• Integrate edge-computing-based techniques and IoT-based system architecture for
rapid image processing.

• Deploy the proposed architecture as a real-world system in an actual water level monitoring
facility at a rural site where flooding is a common threat to the local community.

The remaining sections of this paper are organised as follows. Section 2 covers the
background and work related to vision-based water level detection and edge computing
in IoT applications. Section 3 presents the architecture of the proposed system as well
as the details of the system implementation. Section 4 discusses the implementation and
experimental setup of the proposed system. Section 5 presents the experimental results and
analysis followed by conclusions and future work in Section 6.

2. Background and Related Work

In this section, we present the background information and related work in the field
of vision-based water level measurements and edge computing in IoT applications.

2.1. Vision-based Water Level Measurements

There is a plethora of work on flood monitoring based on camera systems. These
range from combining various image processing techniques to determine the water level, to
implementing deep neural networks for a higher classification accuracy. Measuring hydro-
logical data under complex illumination conditions such as low lighting, water surface glare
and artificial lighting obstructs the accuracy of measurement systems significantly. Image
processing tasks can be interfered with when working in the aforementioned conditions,
hence requiring more sophisticated/efficient image processing [10], data streaming [11–14]
and network resource management techniques [15–18].
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Some of the related works are summarised as follows. Zhang et al. [19] proposed to use
near-infrared (NIR) imaging to tackle poor visibility while measuring the water level from
a gauge by creating a digital template of the gauge for accurate readings. The conversion
from the digital template to coordinates was done by orthorectifying the region of interest
(ROI) image of the staff gauge, followed by a horizontal projection to locate the water line
and finally converting to the water level with the physical resolution of the digital template.
It achieves an accuracy of up to 1 cm. Similarly, Bruinink et al. [20] proposed a texture and
numerical recognition technique to process the staff gauge features. It extracted numerical
features from the staff gauge and trained a random forest classifier to determine the level
of water, resulting in an overall accuracy of 97%. A cloud-based measurement system
was proposed by Kim et al. [21], which also relied on a character recognition algorithm
since it depended on a staff gauge to measure the readings. The subsequent technique
used a correlation analysis of images and by determining the difference in the correlation
coefficient, it identified the level of the water surface. The drawback for these techniques is
the dependence on staff gauges to measure the water level, as without it, a digital template
cannot be formed, and neither can a character recognition algorithm work.

Lin et al. [22] proposed a robust solution that negated camera shivers and jitters. The
water level detection was based on an ROI that was selected from the calibration points
whereas the line was detected from a set of lines after applying a Hough transform [23]. Based
on photogrammetry principles, the water line was calculated with the transformation from
the pixel space to the real-world space. The water detection algorithm allowed the system
to achieve an accuracy of 1 cm. The significance of this system was that it could detect and
convert the water level accurately without a staff gauge due to its robust calibration.

Studies without using a water gauge were presented by Ortigossa et al. and Li et al. [24,25].
Both studies relied on similar traditional image processing techniques by performing
greyscale conversion, contrast adjustment and a binarisation of images. The lines were
detected through the Hough transform algorithm performed on thresholded images before
transforming the pixel coordinates to metric units. The work presented by Ortigossa et al.
yielded poor results in the open environment due to the complex conditions and a low-
resolution camera.

In another study, Zhang et al. [26] proposed a methodology comprised of a web
camera integrated with a NIR light and an optical bandpass filter to detect near-infrared
light. It also consisted in utilising a staff gauge and the water level was obtained through
monocular imaging by observing any abrupt changes in the horizontal projection curve.
The novel implementation of a maximum mean difference (MMD) method detected the
water level in the pixel space. The MMD was tested against Otsu’s thresholding [27] and
order statistic filtering (OSF), outperforming the latter two techniques under complex
illumination conditions. The implementation yielded an accuracy of up to 1 cm.

Depth perception from single monocular images was regarded as an ill-posed prob-
lem [28]. To tackle the shortcomings, deep convolutional networks (ConvNets) [29] have
been used in recent years and have yielded great success. A CNN-based method [30]
was presented to determine the water level via boundary segmentation. Three different
techniques were compared against each other: Otsu’s thresholding, dictionary learning
and a CNN. The CNN outperformed the other two methods in determining the water
level as it had a strong generalization ability and was capable of detecting and learning
complex features. Furthermore, Jafari et al. [31] proposed a method to estimate water
levels using time-lapse images and object-based image analysis (OBIA). The output images
were semantically segmented based on a fully convolutional network (FCN) architecture
whereby the water region was labelled, followed by an estimation of the water contours and
a conversion of the pixel ratios to metric units. The method also incorporated a Laplacian
detector to observe sudden changes in water level.

Vision-based sensing technology has advanced over the years, especially when dis-
cussing RGB-D sensors, as it has become more accessible and even more affordable.
Bung et al. [32] used a RealSense D435 depth camera to investigate complex free sur-
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face flows by measuring a hydraulic jump event and compared the results against multiple
other sensors. The hydraulic jump surface profile and surface fluctuation amplitudes
were measured in an experimental rectangular flume where the water jump height was
altered. The RealSense camera measured the aerated flow and the air–water mixture with
similar results to the characteristic upper-water-level limit of the air–water mixture. The
study found that clear water surfaces remained undetected until water colouring was
added, which significantly improved the detection of calm surfaces. Other areas where
RealSense depth cameras have been used for is simultaneous localisation and mapping
(SLAM), object tracking and object pose estimation. Bi et al. [33] discussed the deployment
of a SLAM system on a micro aerial vehicle (MAV) using an R200 camera due to it being
lightweight and capable of functioning indoors and outdoors at long range. Chen et al. [34]
proposed an analysis procedure to solve object tracking and pose estimation using a single
RealSense D400 depth camera. Using image segmentation and an iterative closest point
(ICP) algorithm, the model created an ROI and performed pose estimation, respectively. It
performed well under robust lighting and background conditions and comparatively better
than a single-shot detector (SSD) model.

2.2. Edge Computing in IoT Applications

In the modern world and modern wireless telecommunication, the Internet of things
(IoT) has gained significant traction with billions of devices connected to the internet. The
number of IoT devices is estimated to reach 14.5 billion by the end of 2022, with the market
size forecasted to grow to USD 525 billion from 2022 to 2027 [35]. One of the biggest
strengths of the IoT is the massive impact it has on the everyday life of users. It does
not come as a surprise that the IoT has been included in the list of six “Disruptive Civil
Technologies” with a potential influence on US national power. Some of the potential
application domains of the IoT are transportation and logistics, healthcare and smart
environments [36].

Within the IoT, there are several technologies involved such as radiofrequency iden-
tification (RFID), near-field communication (NFC), intelligent sensing, wireless sensor
networks (WSNs) and cloud computing. The IoT essentially defines the upcoming gener-
ation of the Internet where physical objects will be accessed via the Internet. As current
research stands, the use of RFID-based verification and identification in the logistics and
retail industries has been rampant. Furthermore, the success of the IoT is dependent on
standardisation, which will ultimately provide reliability, compatibility, interoperability
and effectiveness at a global level. IoT devices can be implemented on a much larger scale
in numerous industries and areas, where billions of things can be integrated seamlessly,
and for that, objects in the IoT need to exchange information and be able to communicate
autonomously [37]. The number of layers in an IoT architecture is defined differently
depending on the underlying technologies. However, from the recent literature, the basic
model of the IoT is a five-layer architecture consisting of an object layer, object abstraction
layer, service management layer, application layer and a business layer. The five-layer
architecture is an ideal model since it encapsulates scalability and interoperability, both of
which are important in IoT applications [38].

Prior to edge computing, data produced by IoT sensors were processed on the cloud.
Cloud computing has been extremely cost-efficient and flexible in terms of computing
power and storage capabilities. However, with the advancement in the IoT and the rapid
development in mobile internet, cloud computing has been unable to meet the sophisticated
demands of extremely low latency due to the additional load on the backhaul networks.
The network bandwidth requirement to send all the data to the cloud generated by IoT
applications is prohibitively high. To tackle the shortcomings, an edge computing paradigm
has been thoroughly investigated, which processes the generated data at the network edge
instead of transmitting them to centralised cloud servers. Edge computing is a much more
suitable solution to be integrated with the IoT for a large user base and can be considered
for future IoT infrastructure [39]. The edge computing architecture relies on the servers
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being closer to the end user or node and even though they possess less computational
power than cloud servers, the latency and quality of service (QoS) provided are better. The
edge-computing-based IoT satisfies the QoS requirements of time-sensitive applications
and solves the bottleneck issues of network resources faced in the IoT [7].

Pan and McElhannon [40] discussed an open edge cloud model infrastructure which is
necessary moving forward in an IoT world. An open edge cloud addresses local computing,
networking resources and storage to aid resource-constrained IoT devices. Data generated
by edge devices can be stored and preprocessed locally by the edge cloud. For loads or
data that are beyond the capabilities of the IoT devices, the devices can offload tasks to the
edge servers. This will enable latency control since the edge cloud is nearer to the nodes.
Premsankar et al. [41] focused on edge computing for the IoT in the context of mobile
gaming as it tests the edge computing paradigm. Their research performed an evaluation
on an open-source 3D arcade game whereby the mobile phone sent the game input to the
server, which rendered the content of the game and returned it to the end-device. Their
research concluded that hosting computational resources extremely close to the end-user
was the only suitable route to achieve an acceptable quality of experience and to enable
fast-paced real-time interaction.

The work we present in this paper is different as we do not rely on extra external
equipment such as staff gauges or light systems. It focuses on implementing a stereoscopic
depth camera for hydrological data extraction purposes, while running on a compact edge
computing device.

3. Proposed Architecture for Real-Time Flood Monitoring

In this section, we present our proposed architecture for the real-time vision-based
flood monitoring system. The architecture utilised the combination of a Y16 stream, which
is a 16-bit greyscale format, and a depth stream from the RealSense D455 RGB-D camera [42].
The process began with the acquisition of images from the Y16 pipeline to determine the
region of interest (ROI) of the target water surface. The ROI information was subsequently
used for extracting the depth information from the depth stream. The RealSense depth
camera is capable of activating multiple pipelines concurrently. Leveraging this feature,
greyscale and depth pipelines were activated followed by different procedures to extract
the depth readings. In this study, the stereoscopic capability of the RealSense D455 camera
played an important role in measuring the water level without requiring external references
such as a staff gauge or mapping pixel coordinates to physical dimensions.

The RealSense D455 is the latest addition to the RS400 line of stereo vision cameras
manufactured by Intel. The camera package combines image sensors with hardware-
accelerated on-board chips for calculating and perceiving depth information with metrical
accuracy. The two infrared (IR) imagers are placed at a known fixed distance apart to
measure the disparity between the depth of pixels in order to calculate and provide the
distance of the said pixel from the camera. The matching algorithms of the RealSense
400 series are aggregated based on the values of the neighbouring pixels, which are then
used to estimate the total depth measurement [43]. Since the pixel depth value is provided
with a confidence score, if the confidence score does not meet the minimum expected value,
the value is discarded, and the pixel depth is rendered invalid.

The on-board processing capabilities of the camera, such as filtering and averaging,
can be externally configured through the camera utility software or the RealSense Software
Development Kit (SDK). The RealSense SDK is a cross-platform software development
kit which allows the camera to be interfaced and configured through different popular
programming languages such as C, C++, MATLAB and Python. In this study, the software
system was developed using Python 3.6.9 running on an Ubuntu 18.04 operating system.
Apart from the depth processing which happened on the camera’s ASIC chip itself, the rest
of the algorithm was executed on an edge device. Figure 1 shows the system block diagram
of the implementation. The detailed operation of each phase is further explained in the
subsequent subsections.
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Frame

Y16 Stream (Grayscale)

ROIPre-processing

Frameset

Z16 Stream (Depth)

Processed Frame

Post-processing Filters

Extracted DepthCrosshair Averaging Water Level

Phase 1

Phase 3

Phase 2

Figure 1. Block diagram of the proposed real-time flood monitoring system.

3.1. Phase 1: RGB Preprocessing

RGB preprocessing was performed to adequately expose the water surface which
remained underexposed. Through Otsu’s thresholding and clean-up operations, the under-
exposed regions were highlighted, after which the exposure levels were adjusted based on
the underexposed coordinates, thus forming the ROI.

The RGB stream shown in Figure 2a experienced chromatic aberration due to overex-
posure in the bottom right corner, while in contrast, the water streams were not exposed
properly. To properly process the frame, the image was captured through the colour sensor
in 16-bit greyscale format before being processed for thresholding. The 16-bit greyscale
format captured 65,000 different shades of grey, allowing for greater information in a frame
when converted into a black and white image. After thresholding, regions which were
not of interest were inverted to a black background colour by their coordinate area size, as
shown in Figure 2b. Regions outside the ROI were cleaned up using a kernel that passed
over the image, leaving a giant patch to determine the source of the ROI. The kernel size
was set to be big enough to clean up noise outside the ROI. The ROI was selected based on
the median values from the pool of coordinates in the giant white patch. The size of the
ROI was insignificant as long as the streams were properly exposed for the depth extraction
process. The selected ROI coordinates were fed into the depth pipeline to correctly expose
the water streams before capturing the depth frames. The preprocessing stage was carried
out during the day, since it was not needed at night due to the lack of light causing any
interference with the depth pipeline or the autoexposure.

(a) (b)

Figure 2. (a) Captured frame from camera experiencing chromatic aberration in bottom right of the
scene. (b) Thresholded region which forms the basis for the ROI coordinates.
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3.2. Phase 2: Postprocessing Filters

The depth pipeline captured frames which were logged into a frameset required
for postprocessing. The postprocessing flow implemented in this study followed the rec-
ommended sequence provided by Intel in the RealSense documentation [44]. The filters
applied in this context were to clean up the image, smoothen the depth readings and to
recover missing depth pixels as much as possible. The general flow of applying the filters
is shown in Figure 3.

Input Depth Frame Decimation FIlter Depth2Disparity Spatial Filter

Temporal FIlter Disparity2Depth Hole Filling Filter Output Frameset

Figure 3. Postprocessing flow.

3.2.1. Decimation Filter

Since all the depth-generation processing was done on the chip on-board the camera,
the rest of the postprocessing was configured on the platform used for the application. The
decimation filter took in the raw depth frame of the scene and decimated it by a factor of n.
Decimation in the context of image processing produces an approximation of the image as
it compresses the desired frame. It typically involves lowpass filtering and subsampling
of the data, which also aids in reducing the computational load as the computer does not
need to process as many data [45,46]. In this case, the depth data were subsampled, thus
yielding an image with a reduced size and resolution as denoted by Equation (1). A kernel
size of n by n was applied and the depth frame was scaled down by the given factor. The
kernel size selected in this case was [2 × 2], which was applied to the input resolution of
the depth stream, i.e., 848 by 480 pixels. The resolution after the filter was applied was:

[848, 480]/2 = [424, 240] (1)

3.2.2. Spatial Filter

Multiple parameters were tuneable under the spatial filter settings. The spatial filter
performed several one-dimensional passes horizontally and vertically over the frame for
enhancement. This was selected by the filter magnitude, which was set to a maximum value
of 5, in this scenario—it was the number of filter iterations. The alpha and delta factors were
selected as 0.5 and 1, respectively. The alpha factor was the exponential moving average
whereas the delta factor was the threshold depth value for which any neighbouring pixel
exceeding this threshold caused the smoothening effect to temporarily turn off. The primary
purpose of the spatial filter was to preserve the edges. The spatial filter in the pyrealsense2
library is an implementation of a domain transform, which efficiently performs the edge-
preserving filtering of 2D images. The recursive equation for calculating the exponential
moving average (EMA) is given below.

St =


Y1, t = 1

αYt + (1− α)St−1, t > 1 and ∆ = |St − St−1| < δthresh

Yt, t > 1 and ∆ = |St − St−1| > δthresh

(2)

3.2.3. Temporal Filter

The temporal filter averaged the frames and depth values depending on the number
and history of previous frames. The alpha and delta factors also exist in this filter, serving
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the same purpose as in the spatial filters. The number of averaged frames in the frameset
was 15, the alpha value was set to 0.4 and the delta factor was set to a maximum value
of 100. The threshold value in the spatial filter was set to the lowest value so the edges
remained sharp. The threshold value in the temporal filter was set to its maximum value in
order to achieve stable depth readings. This combination allowed for sharp edges as well
as stability in the frames by reducing high-frequency components in the scene.

3.2.4. Hole-Filling Filter

In some areas of the scene, the camera was not confident about the depth of the pixel
based on the confidence score, hence an invalid point was created which resulted in a
depth reading of 0. To recover the depth from patches of invalid pixels, the hole-filling
filter obtained depth pixels from neighbouring pixels and rectified it. The route chosen in
this scenario was to take the depth data of the pixels closest to the sensor, instead of the
farthest. The invalid patches shifted in position depending on the combination of water
level and daylight; hence it helped to keep the depth readings valid for the water level
extraction pipeline.

3.3. Phase 3: Crosshair Averaging

The frame passed onto the depth extraction process in this module was the average of
15 processed frames over a period of 15 min. The 15 min averaging period was to match
the on-site sensor measurement update rate which was used as the water level reading
benchmark. As the sensor updated the data every 15 min, the values were averaged over
that period to smoothen out any possible noise. To mimic the sensor averaging period, the
pipeline for the RealSense depth extraction followed a similar principle. Each frame was
captured and pushed into the frameset every 60 s. Once 15 frames had been queued up,
the entire postprocessing filters pipeline was activated, and the resulting frame was the
processed frame.

The downstream reference point was determined by the depth distance reading from
the camera, which was used as the offset to add or subtract the excess values to determine
the actual water level from. From the processed frame, an average depth reading of several
pixels was taken in the formation of a crosshair to minimise the slight fluctuations across
the measurement area. The crosshair was 10 pixels down and 9 pixels across, with the
centre pixel covered by the vertical down pass, as shown in Figure 4. The figure is the
processed frame after being passed through the postprocessing pipeline as it has been
smoothed out. The colour map going from dark blue to dark red displays the transition
from the extremely close pixels to the furthest-away pixels, respectively.

Figure 4. The crosshair which is averaged from the processed depth frame to obtain the final
depth reading.
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4. Experimental Setup and Performance Evaluation

In this section, we describe our experimental setup and the environment in which
we deployed our proposed system. After conducting laboratory experimental testing in a
controlled environment, the system was installed on-site to validate the functionality of the
proposed system. This section presents the on-site implementation of our proposed system.

4.1. Environment of System Testing Site

The measurement site was a water gate in a rural setting located in Petrajaya, Sarawak,
Malaysia. The gate itself acted as a barrier and as a controlled wall, functioning to regulate
safe water levels between the sea water and the river stream. Figure 5 displays the water
gate whereby the shaded platform houses the control system for the ultrasonic sensors, the
RealSense camera and the gates themselves.

Figure 5. Satellite view of the physical measurement site.

4.2. Hardware Implementation

To effectively utilise edge computing, a processing powerhouse was required, ideally
in a small form factor. The prototype was developed with the intention to be deployed
in remote and rural areas. Therefore, the hardware setup was designed to achieve the
utmost unsupervised automated operation in order to minimise physical site visits to
perform maintenance or modification. As for the powerhouse for processing, a compact yet
powerful NVIDIA Jetson Nano was used as the computing platform. For the RGB-D sensor,
the Intel RealSense D455 was chosen as it could reliably provide both RGB and depth
information through its on-board processing capabilities. The entire setup was connected
to the Internet through a Teltonika industrial router, which provided a connection fail-over
redundancy through a Long-Term Evolution (LTE) mobile network in case of disconnection
from the main wired broadband network. Figure 6 displays the hardware topology.
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Figure 6. System setup of our proposed computer vision and edge-computing-based IoT real-time
flood monitoring architecture.

The Intel RealSense D455 contains an in-body IR projector that allows depth perception
in low-light situations, thus allowing the extraction of depth at night or in low-light
conditions without additional hardware required. The camera was placed vertically below
the platform and the electronics devices were housed in a weatherproof enclosure mounted
on the platform. The physical setup of the computing platform, communication device
and the RGB-D sensor are shown in Figure 7. The surface of the camera was parallel with
the water surface as it provided the best viewing option of the water from the platform.
Furthermore, whether the water level increased steadily or at a steep gradient towards
the camera, the measurement accuracy increased, as it effectively shortened the distance
between the camera sensors and the measuring object. The water gate itself housed a
monitoring system which comprised ultrasonic sensors and a logging device. The data
collected from this pre-existing system were used to verify the accuracy and reliability of
the depth readings from the proposed system.

4.3. Bandwidth Measurements

Another important aspect of this study focused on the comparison of bandwidth
consumption requirements of an edge computing device and a cloud computing device.
To perform the same processing steps on the cloud as was performed on the edge device,
raw and uncompressed data were required to be sent to the cloud. For this study, the
uncompressed and unfiltered data, which were Robot Operating System (ROS) bag format
files, were uploaded to Google Drive via its application programming interface (API)
accessed through Python. On the other hand, the final processed depth readings were
uploaded onto the ThingSpeak Analytics dashboard via the representational state transfer
(REST) API. The consumption of bandwidth was measured accordingly as shown in the
block diagram in Figure 8. The ROS file contained data required for the cloud server to
process the depth readings, without which the depth extraction pipeline would not work
on the cloud.

To measure the time taken and bytes uploaded, respectively, the program initialised
a performance counter and recorded it, immediately followed by measuring the network
input/output data prior to uploading the ROS file. As the data were successfully uploaded,
the network input/output counter was recorded, and the second performance counter
was recorded. The time taken to upload the data was the difference between the two
performance counters and the total bytes uploaded were the difference between the two
network input/output counters. The same methodology was applied to the data uploaded
to the IoT analytics dashboard, which was processed on the Jetson Nano edge device.
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(a) (b)

(c)

Figure 7. (a) The Jetson Nano enclosure which houses all the electrical components. (b) RealSense
camera installation location. (c) Platform view of the installation site.

Measure second
network input/output

counter

Measure first
performance counter

Measure second
performance counter

Upload data

Output time difference of first and
second performance counters

Output total bytes sent from
difference of first and second

network counters

Measure first network
input/output counter

Figure 8. Total bytes uploaded are recorded to determine the bandwidth consumed over the same
testing period.

5. Results and Analysis

The measurements were continuously taken over a 24 h period and divided into
daylight hours (06:30–18:40) and night hours (18:40–6:30). The conditions during the
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measurements included clear skies, overcast and heavy precipitation. The measurement
period was scattered over a few weeks to allow the system to be tested under diverse
weather conditions.

During the initial stage of data collection, it was found that some of the images
captured by the sensor were affected by sun glare. The issue was tackled by applying
polarising filters on the stereo imagers to eliminate the reflection from the water surface.
The results presented were collected from the setup with the polarising filter applied.

The testing results were compiled and analysed from two different angles. Firstly, the
overall results (Figures 9–12) were collectively analysed to understand the measurement
performance during the daylight and night hours. The results in the graphs are segmented
into day and night periods separated by the dashed line. Secondly, a separate analysis
was performed on different scenarios to understand the effect of weather conditions on
the measurement performance. Four sets of results in the form of graphs are presented in
Figures 9–12 where different weather conditions are depicted in different colour shades
accordingly. The variation in weather provided a natural and automatic diversification of
the testing dataset which tested the performance of the depth perception.
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Figure 9. Water level with reference to MSL; scenario 1 displays consistent weather during each period.
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Figure 11. Water level with reference to MSL; scenario 3 displays normal fluctuations in weather
conditions.
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Figure 12. Water level with reference to MSL; scenario 4 displays readings under abrupt weather
changes.

5.1. Daylight Readings

The daylight (morning) readings collected consisted of 101 data points and the water
level ranged from below −2 m to above 2 m. The water level measurement was offset
to match the pre-existing system which was calibrated against the mean sea level (MSL)
during the construction of the water gate facility. The measurement data plots generated
by the system against the ultrasonic sensor are shown in the figures below. The root-mean-
square error (RMSE) during the daylight was 0.41 m averaged over the entire testing period.
The breakdown of the RMSE for each weather condition for both day and night periods is
tabulated in Table 1. Although the installation of the polariser significantly improved the
stability and consistency of the results, the reflections appearing from different angles had
the tendency to cause the camera to miscalculate the depth, resulting in a greater RMSE
error during the day.

5.2. Night Readings

For the night readings, 172 data points were collected in total. The readings under the
complete absence of visible light and external sources resulted in a root-mean-square error
(RMSE) of 0.2 m, significantly lower than that of daylight measurements. The absence of
reflections and wayward lights and the activation of infrared light during the night provided
a much more stable and accurate reading. The breakdown of the weather conditions for
the collected results throughout the testing phase is presented in Table 1.



Future Internet 2022, 14, 308 14 of 19

Table 1. Collective RMSE error under all weather conditions.

Cloudy Fair Rain

RMSE (day) 0.39 m 0.66 m 0.23 m
RMSE (night) 0.16 m 0.23 m 0.2 m

Data points (day) 57.84% 14.71% 27.45%
Data points (night) 38.6% 28.65% 32.75%

The weather conditions varied constantly as the testing period progressed. During
the dark hours, cloudy and fair weather conditions were indistinguishable, whereas fair
during the daytime referred to clear skies with more sunlight exposure. To distinguish the
different weather conditions, Weather Underground [47] was used to obtain historical data
for each hour of the testing period. Since not all areas of a city experience the exact same
weather, an error from mismatching the weather condition to its testing hour is possible.
The results were segmented into different scenarios to better differentiate the conditions the
system experienced in each period. Each testing period, the system experienced different
weather conditions during different times of the day and night, and on multiple occasions
throughout, the weather abruptly changed on-site.

We observed that the readings were smoother during the night, with tiny fluctuations
around the ground-truth ultrasonic sensor data. As the day started, the deviations and
fluctuations grew larger. Across the three weather conditions, as can be seen from the
graphs and the tables, a fair weather provided the most erroneous readings, both during
the day and night. The RMSE, however, was only marginally greater than in rainy weather
during the night, while it was significantly greater during the day. Cloudy conditions also
covered the occurrence of partial clouds over the water region, hence the possibility of
partial illumination and partial shading of the water region, which contributed to the high
RMSE during the day. The biggest factor contributing to the high RMSE during the day
was occlusion and glare, resulting from the reflections of the sunlight hitting the camera
sensor off the water surface.

Night readings showed a promising output which closely reflected the movement of
the water level captured by the benchmarked ultrasonic sensor. On the contrary, clear skies
during the day resulted in the largest RMSE, thus being responsible for a big percentage
of the day’s large RMSE values. As the conditions became rainy and stormy, the readings
became more accurate and resulted in the lowest RMSE during the day while being slightly
more erroneous than the night readings. Nonetheless, when the rain poured down, the sys-
tem captured depth accurately and consistently. The spatial filter continuously smoothened
out the higher-frequency raindrops disturbing the water surface.

The case for complex illumination conditions can be made for daytime readings rather
than night readings, as the presence of reflections and glare under cloudy and fair weather
conditions proved to be challenging for the camera to tackle. It is also important to note
that the measurement spots of the ultrasonic sensor and camera sensors were located some
distance apart. This situation was also one of the potential sources of error due to the
dynamic movement of the water flow throughout the stream, which might have led to
differences in water level readings. Moreover, due to the limitation of the on-site camera
placement, shadows formed on the water surface due to the reflection of the sky, rendering
the readings erroneous. The limitations due to the structural formation of the platform and
water gate placed the system’s depth readings at a slight disadvantage, especially during
the daylight testing period.

5.3. Scenario 1: Consistent Weather

Scenario 1 showcases the performance of the system under consistent weather con-
ditions during each testing period, i.e., rainy during the night and cloudy during the day.
The weather remaining consistent allowed the system readings to be stable as there was
relatively little fluctuation in the readings across both periods. In this scenario, the day
RMSE was 0.23 m while the night RMSE was slightly lower at 0.2 m.
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5.4. Scenario 2: Slight Fluctuations in Weather

The system experienced some weather fluctuations in scenario 2, although all the
fluctuations occurred during the night and none during the day period. Even with the
fluctuation in weather condition, the system RMSE during the night was the lowest under
this scenario, while during the day readings it was the highest. Even with the fluctuations
in weather conditions, the system RMSE was 0.18 m, the lowest night-reading RMSE across
all scenarios. On the contrary, the system RMSE during the day was 0.51 m, the highest
during the day periods across the testing period.

5.5. Scenario 3: Normal Fluctuations in Weather

The system experienced a moderate amount of weather fluctuations, slightly more
than in scenario 2. Scenario 3’s monitoring period also extended longer than each of the
previous two scenarios. Similar to scenario 2, the weather fluctuated multiple times during
the night while during the day, it changed once from cloudy to rainy halfway during the
day. The readings were most erroneous during the day when it was cloudy and much more
stable when raining. Under this scenario, the system RMSE during the day was 0.33 m
while during the night, the system RMSE was 0.2 m, one of the lowest across the entire
testing period.

5.6. Scenario 4: Frequent Fluctuations in Weather

In scenario 4, the system experienced weather fluctuations more frequently and
abruptly than the previous three scenarios. The weather fluctuated between all the three
main categories during both testing periods. Most of the night period was fair, meaning
clear skies, and that was also the most erroneous the readings were amongst all four sce-
narios as the system RMSE was 0.21 m. During the day, it fell within the category of one of
the highest RMSEs at 0.48 m.

5.7. Bandwidth Consumption

During the experimental period, an evaluation of the bandwidth usage was also
conducted in order to compare the bandwidth requirements between cloud-based and
edge-based processing technique. The total bandwidth consumed over the course of a single
testing day for both computing models are presented in Figures 13 and 14. The bandwidth
capacity required for uploading the data to the cloud was approximately 50,000 kilobits
per second (Kbps) whereas uploading processed edge information to the dashboard maxed
out at just over 12 Kbps.
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Figure 13. Bandwidth consumed uploading ROS bag files to a cloud storage (in the order of tens
of Mbps).
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Figure 14. Bandwidth consumed uploading processed edge readings to an IoT dashboard (in the
order of Kbps).

The results demonstrated the difference in bandwidth consumed for each of the com-
puting strategies; the edge computing strategy proved to be more bandwidth efficient. The
total data usage to upload edge data to the dashboard over a 24 h period was approximately
0.92 Mb whereas it took 11,106 Mb to upload raw data to cloud storage. The experiment
showed that uploading uncompressed information to the cloud required approximately
12,072 times more data usage than uploading the processed data to the cloud dashboard.
There was a massive data and bandwidth reduction in the edge pipeline, especially when
the application involved real-time monitoring using image and video data. By utilising
edge computing, the bandwidth consumption was greatly reduced thus alleviating stress
off the network [48]. This is beneficial for installing real-time monitoring applications in
rural areas where network bandwidth is a major concern for IoT devices.

6. Conclusions and Future Work

In this paper, we proposed, designed, implemented and deployed a novel real-time
flood monitoring system driven by computer vision, edge computing and an IoT system
architecture. We used RealSense D455’s stereo vision capabilities to extract depth from a
complex medium such as water, which provided great insights into the application of RGB-
D cameras in flood monitoring. The RGB-D camera was integrated with an edge computing
device (Jetson Nano), to continuously process and log all critical incoming RGB-D image
sensor data. The performance of the deployed system was analysed and compared with
calibrated specialised ultrasonic sensor data. The system was deployed and tested under a
variety of weather and lighting conditions in an actual flood mitigation facility.

The experimental results demonstrated the promising potential of using the proposed
solution to perform water level measurement using a computer-vision-based sensor. Results
obtained during the night highlighted the stereoscopic capabilities of the RealSense D455,
where it performed well under no visible lighting. Furthermore, running the prototype
throughout the experimental period of more than 24 weeks demonstrated the reliability
and capability of the proposed system. The implementation of a real-time flood moni-
toring system at the edge demonstrated the potential and benefits of installing similar
systems in resource-constrained environments and without external measurement guide or
additional hardware.

Future work will investigate combining and superimposing RGB images, artefacts
and cues onto depth maps to improve the overall accuracy and reliability of the system. To
enable the system to be more dynamic and applicable at any water site, the incorporation of
the internal inertial measurement unit (IMU) readings of the camera and frame subtraction
techniques will be investigated. Our work can serve as a reference and further be expanded
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into different application domains, such as those in smart cities and smart manufacturing.
For instance, the images captured by the image sensor could be used to detect illegal
intrusion or vandalism attempt around the facility. Images and footage from multiple
stereoscopic cameras at the same location could be utilised for sensor fusion. Additional
stereoscopic depth cameras may be useful in providing information over a larger area and
assist in differentiating among errors during various operational conditions, which may
potentially be advantageous. Image information could also be used to detect river pollution
or illegal dumping activities along the river streams which would be advantageous to
the relevant authorities insofar as taking pre-emptive action for containing the effect of
the pollution.
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