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Abstract: With the advances in brain imaging, magnetic resonance imaging (MRI) is evolving as a
popular radiological tool in clinical diagnosis. Deep learning (DL) methods can detect abnormalities
in brain images without an extensive manual feature extraction process. Generative adversarial
network (GAN)-synthesized images have many applications in this field besides augmentation,
such as image translation, registration, super-resolution, denoising, motion correction, segmentation,
reconstruction, and contrast enhancement. The existing literature was reviewed systematically to
understand the role of GAN-synthesized dummy images in brain disease diagnosis. Web of Science
and Scopus databases were extensively searched to find relevant studies from the last 6 years to
write this systematic literature review (SLR). Predefined inclusion and exclusion criteria helped in
filtering the search results. Data extraction is based on related research questions (RQ). This SLR
identifies various loss functions used in the above applications and software to process brain MRIs.
A comparative study of existing evaluation metrics for GAN-synthesized images helps choose the
proper metric for an application. GAN-synthesized images will have a crucial role in the clinical
sector in the coming years, and this paper gives a baseline for other researchers in the field.

Keywords: brain MRI; deep learning; generative adversarial network; conditional GAN; GAN
loss function

1. Introduction

Computer-aided diagnosis is a big supportive help to clinicians, provided the biomed-
ical images are high-quality, such as magnetic resonance imaging (MRI) scans. MRI is a
preferred imaging technique compared to computerized tomography (CT) and positron
emission tomography (PET) as it gives better soft tissue contrast and is free of any ionizing
radiation [1]. In MRI, hydrogen ions in water molecules are reoriented by applying a high
magnetic field. As a result, images with details of anatomical structures are available for
analysis. The quality of MRI is affected by three factors during the scanning process: the
density of protons, and the T1 and T2 relaxation times, where the timespan of T1 and
T2 vary according to the hardness of the body tissue [2]. MRI scans are vital for brain
navigation, detailed characteristics, and other cranial structures [3].

The deep learning (DL) framework allows for the automated analysis of inputs against
the handcrafted feature analysis [4]. DL methods help address common medical imaging
problems, such as increasing accuracy and precision, and enhancing the speed of image
analysis and image contrast [5]. However, DL models need large datasets to train the
model effectively, which are generally not adequately available in the biomedical field [6].

Future Internet 2022, 14, 351. https://doi.org/10.3390/fi14120351 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14120351
https://doi.org/10.3390/fi14120351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-9956-0993
https://orcid.org/0000-0003-3752-7220
https://orcid.org/0000-0002-6647-9347
https://orcid.org/0000-0003-2653-3780
https://doi.org/10.3390/fi14120351
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14120351?type=check_update&version=2


Future Internet 2022, 14, 351 2 of 33

A generative adversarial network (GAN) is a prospective solution to this problem as it can
generate training samples duplicating the distribution of the real dataset. In medical imag-
ing, these GAN-synthesized image samples have the forefront use of dataset enhancement;
the images can be further used for applications such as image translation, registration,
super-resolution, denoising, motion correction, segmentation, reconstruction, and contrast
enhancement. GAN was proposed by Ian Goodfellow et al. [7] in 2014 to generate synthetic
images duplicating the ground truth images. A GAN is a combination of two networks,
the generator and the discriminator, which are trained at the same time with images. The
generator produces fake images duplicating the original images, which are then sent to the
discriminator network to be compared and evaluated against the authentic images. The
discriminator is trained on both types of inputs and learns the features of the original input.
The difference between the two inputs is called discriminator loss, which is conveyed to
the generator network to modify the parameters for improvement. The situation is similar
to a min-max game where a strategy minimizes the network’s maximum possible loss (see
Figure 1). This work presents the latest GAN trend for MRI brain image analysis.

Figure 1. Block diagram for GAN-synthesized brain MRI.

Section 1 of the SLR paper consists of an introduction to the topic. Section 2 presents
the methodology, including the review of prior research in the related field, the motivation
behind this SLR, research questions, search strategy, and inclusion-exclusion criterion. The
results of the SLR guided by research questions are reported in Section 3. The discussion
and conclusion are presented in Sections 4 and 5, respectively.

2. Materials and Methods

The authors have adopted an unbiased review process and targeted approach while
writing this SLR. They have followed a systematic sequence of steps for the review: defining
the research question (RQ) based on predefined goals, identifying the targeted journals and
conferences, finding the already available reviews, forming the relevant search strategy,
identifying papers based on the selection criteria, comprehending the content, extracting
the data, summarizing the results and constructing the final document.
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2.1. Prior Research

The closest review paper found on this topic is by Hazrat Ali et al. [8], where they
presented a scoping review of GAN’s applications in brain MRI, publicly available brain
MRI datasets, evaluation procedures, and focal brain diseases. However, this paper does
not give the details of methods used in GAN’s applications, and evaluation metrics are
superficially mentioned. There is no description of loss functions and preprocessing
software. Creswell et al. [9] described the training part and the mode collapse issue related
to the stability of GAN, and it is not limited to MRI and brain images. Table 1 gives the
summary of previous research work.

Table 1. Prior research in MRI brain imaging.

Ref. No. Year Objective Imaging Modality DL Methods Type

[8] 2022 It summarizes GAN’s role in brain MRI. MRI GAN Scoping
Review

[9] 2018 The paper gives GAN training, architecture,
and a few application details. All type GAN Overview

[10] 2020 It summarizes machine learning and DL
classification methods. MRI CNN 1, RNN 2,

GAN, DBM 3 Review

[11] 2020
It discusses GAN’s application in radiology.

They have quantitatively compared the
performance metrics for synthetic images.

CT, MRI, PET, and
X-ray GAN, CNN SLR

1 CNN: Convolution neural network; RNN: 2 Recurrent neural network; 3 DBM: Deep Boltzmann machine.

2.2. Motivation

Since its invention in 2014, GAN has been a preferred choice in research. The advent
of deep learning has highlighted its dependency on large training datasets, which are
usually rare in the biomedical field. The number of peer-reviewed papers on GAN with
MRI-only workflow for brain imaging has increased considerably. For example, the number
of research papers in this field published in Web of Science (WoS) and Scopus databases
show an increasing trend (Figure 2). The study of related work in the literature highlights
the following two limitations:

• There is no existing SLR paper that describes the applications of GAN-synthesized
brain MRI.

• There is no existing SLR paper that mentions the types of GAN loss functions.

Figure 2. The number of research papers published in a particular year on GAN-based brain MRI.

This SLR is going to contribute to the literature in the following manner:

• The paper presents a clear categorical division of brain MRI applications of GAN-
synthesized images as well as the details of the technique.
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• The paper presents a concise account of distinct loss functions used in GAN training.
• The paper identifies software to preprocess brain MRI.
• The paper compares the various evaluation metrics available for the performance

evaluation of synthetic images.

2.3. Research Questions

Authors have performed a systematic review of available literature in two databases
following the directions of the preferred reporting items for systematic reviews and meta-
analyses (PRISMA) methodology [12]. The PRISMA flowchart for the retrieval and selection
of papers is shown in Figure 3. Table 2 indexes the Research Questions (RQ) considered for
this SLR.

Figure 3. Flow diagram of the retrieval and selection process.
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Table 2. Research questions for this SLR.

Number Research Questions Motivation

RQ 1 What are the applications of GAN-synthesized images for
brain MRI?

The question divides the available literature into
more clear categories.

RQ 2 What are the most commonly used loss functions in
GAN-synthesized image applications for brain MRI? Loss function affects the training of GAN.

RQ 3 What are the preprocessing steps performed on ground
truth brain MRI?

Preprocessing steps performed on ground truth
brain MRIs are crucial for the fidelity of the

successive GAN operations.

RQ 4 How to compare the existing evaluation metrics for
GAN-synthesized brain MRI?

This question encourages a comparative study of
available evaluation metrics.

2.4. Search Strategy

The applications of GAN-synthesized images for brain MRI were explored by query-
ing the Web of Science and Scopus databases. The papers containing the following terms
in the title, abstract, and keywords were identified: “(MR Imaging) OR (MRI) OR (mag-
netic resonance imaging)” AND “(Brain Imaging) OR (Brain Images)” AND “GAN OR
Generative Adversarial Network.” A comprehensive screening of the papers published in
the Web of Science (January 2017 to August 2022) and Scopus databases (January 2017 to
August 2022) resulted in 210 and 389 peer-reviewed articles, respectively. The SLR quality
is maintained by only reviewing results from quartile 1 (Q1) or quartile 2 (Q2) journals and
recent conference papers. Q1 shows that a journal’s impact factor lies in the top 25% of
journal impact factor (JIF) distribution for a category, and Q2 indicates the next 25% slot of
JIF [13]. Therefore, we are hopeful that the proposed search terms make up most of GAN’s
work. Table 3 gives details of the search queries applied for both databases.

Table 3. Search query used for paper selection related to MRI brain imaging.

Database Query Initial Result

Web of Science
((MR Imaging) OR (MRI) OR (magnetic resonance imaging)) AND
((Brain Imaging) OR (Brain Images)) AND (GAN OR Generative

Adversarial Network)
210

Scopus
((MR Imaging) OR (MRI) OR (magnetic resonance imaging)) AND
((Brain Imaging) OR (Brain Images)) AND (GAN OR Generative

Adversarial Network)
389

2.5. Inclusion and Exclusion Criteria

A well-defined selection criterion lays out the guidelines for the inclusion or exclusion
of a particular research paper in the systematic review. The selection criterion should
be impartial toward the authors’ names and institutions. This study includes full-length
articles involving GAN for brain MRI. The focus is given to only Q1 or Q2-rated peer-
reviewed journals and recent conferences to have high-quality search results. A search
for full-text availability reduced the volume of papers. The studies in a language other
than English are excluded to obtain a clear perception. We have considered only the MRI
modality as the source image for the review and excluded other modalities such as CT, PET,
or X-ray. Reports based on the non-human brain are excluded. Review papers, editorials,
and book chapters are not included. So, the final count of study papers is n = 145 after
applying the inclusion-exclusion criterion as given in Table 4.
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Table 4. List of inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

� The original and empirical research studies. � Research studies other than the English language.

� The research studies published between 2017 and 2022. � Research studies present in both databases.

� The research studies providing the answer to any of the RQs. � Research studies unavailable in their full-text form.

� Research studies including search keywords in the title, abstract,
or full text. � Research studies with source modality images other than MRI.

� Research studies from the Q1 or Q2 journal or a recent conference. � Research studies with non-human brain images.

� Research studies with no GAN involvement for image generation.

3. Results
3.1. Applications of GAN-Synthesized Images for Brain MRI (RQ 1)

The size of the dataset is usually limited in the case of medical imaging. Therefore,
synthetic images are of great importance in training the networks. GAN-synthesized
images are considered the primary remedy to deep learning implementations’ scarce model
training data. Data augmentation is the apparent application of GAN-synthesized brain
MRI, yet there are other imaging purposes, as shown in Figure 4. The following subsections
describe how the synthetic brain images generated by various GAN models are used for
different brain image purposes.

Figure 4. Applications of GAN-synthesized images for brain MRI.

3.1.1. Image Translation

Deliberation of more than one imaging modality is recommended in finding the
complete picture of the abnormalities. The main task in image-to-image translation is a
reliable mapping from the source image to the synthetic image [14]. The process involves
good adoption of the loss function to inculcate this mapping into a high-quality translated
image [15]. However, acquiring all modalities is impossible due to certain limitations, e.g.,
scanning time, cost, radiation dose, and patients’ age. GAN is extensively used to generate
CT and PET images from source brain MRIs.
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A. MRI-to-CT Translation:

In current radiotherapy, both CT and MRI are used to diagnose brain abnormality
better. On the one hand, CT images give an electron density score required for treatment
planning; on the other hand, MRI is equally contributory with its superior contrast at
soft brain tissues. MRI-only treatment planning can reduce the registration misalignment
between CT and MRI scans, curtail the imaging cost, improve the radiotherapy accuracy,
and lower the patient’s vulnerability towards ionization radiation compared to the CT
process possible with GAN. The GAN model can work on paired or unpaired type training
images as inputs. The unpaired dataset is readily available but is hard to deal with as
the mapping between input and output is unknown. Although challenging to access, the
paired datasets present easy GAN development.

The authors in [16] have generated synthetic CT images by using mutual information
(MI) as the loss function to avoid the issue of misalignment between MRI and CT images.
The study of [17] is the modification of [16], where the ConditionalGAN (CGAN) model
checks the dosimetric accuracy of synthetic CT (SCT) images of patients with brain tumors
with the aim of their use in MRI-only treatment planning for proton therapy. Along with MI,
binary cross entropy is used as the activation/loss function in the discriminator. The study
of [18] compares the similarity between SCT and the original CT, where a CGAN based
on the pix2pix architecture produces an SCT. Radiation dose calculation is a significant
difficulty in MR-only workflow as it is hard to find electron density information from only
MRI scans. The study [19] discusses SCT generation and evaluates dosimetry accuracy.

The MedGAN in [20] uses the fusion of non-adversarial losses from recent image
style transfer techniques to capture the desired target modality’s high- and low-frequency
details. MedGAN works at the image level in an end-to-end manner giving better per-
formance compared to patch-wise training, which suffers from limited modeling capacity.
CasNet, new generator architecture, uses encoder-decoder pairs to raise the acuteness of
the resultant images by gradual refinement. The MR-based attenuation correction (MRAC)
process is extensively used in PET/MR systems for photon attenuation correction. In the
atlas-based MRAC method, CGAN generates photon attenuation maps from SCT. Skip
connections of U-Net and GAN loss restore edge information in images [21]. The dosimet-
ric and image-guided radiation therapy (IGRT) method of SCT generation is discussed
in [22]. GAN with a ResNet generator and a CNN discriminator creates SCT images from
T1-weighted postgadolinium MRI. In [23], a spatial attention-guided generative adversarial
network (Attention-GAN) minimizes the spatial difference in SCTs that can deal with the
atypical anatomies and outliers in a better way. The framework projects the regions of
interest (ROI), and the transformation network performs the domain change. The term
attention is the addition of the absolute values in different layers of the discriminator
across the channel dimension. CycleGAN is the second most commonly used GAN model
in image translation applications. The cycleGAN can work on unpaired data but may
introduce inconsistent anatomical features in the generated images. The unsupervised
attention guided GAN (UAGGAN) model can work with both paired and unpaired images
and be used for bidirectional MR-CT image synthesis. First, the supervised pre-training
fine-tunes the network parameters; then, the unsupervised training improves the medical
image translation. The combination of WGAN adversarial loss with content loss and
L1 assures global consistency in the output image. The UAGGAN achieves satisfactory
performance by producing attention masks [24]. In [25], cycleGAN with dense blocks
performs two transformation mappings (MRI to CT and CT to MRI) simultaneously. A
multi-scale patch-based GAN performs unpaired domain translation and generates 3D
medical images of a high resolution. The approach has a low memory requirement where a
low-resolution version is generated and later converted into a high-resolution version by
patches of constant sizes [26]. Three-dimensional cycleGAN uses inverse transformation
and inverse supervision to learn the mapping between the MRI and CT image pairs for
proton treatment planning of base-of-skull (BoS) tumors. The dense blocks-based generator
explores image patches for textural and structural features [27]. Attenuation correction
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(AC) needed for a PET image is accomplished by a 3D cycle-GAN, where a 3D U-net gener-
ator produces continuous AC maps from Dixon MR Images without MR and CT image
registration. The downsampling and upsampling layers in 3D U-net reduce the memory
requirements [28]. StarGAN performs image translation among more than one pair of
classes. In [29], counterfactual activation generator (CAG) implement image transformation
for seven classes. This setting extracts task-sensitive features from brain activations by
equating ground truth and real and synthetic images. In [30], high dimensional input maps
are translated to high dimensional output maps with the help of Pix2Pix-cGANs to colorize
the tumor region in Intracranial tumor MRI images.

B. MRI-to-PET Translation:

MRI scans also find applications in synthetic PET scan generation similar to SCT
generation. A good-quality PET image requires a full-dose tracer, but the potential health
hazards posed by radioactive exposures raise concerns about PET images’ use. A 3D auto-
context-based locality adaptive multimodality GAN (LAGAN) generates the superior FDG
PET using the same kernel for every input modality. The locality-adaptive fusion network
produces a fused image by learning convolutional kernels at different image locations.
Then, these fused images are used for generator training keeping the number of parameters
low while increasing the number of modalities. Contrary to the multimodality cases where
convolution is performed globally, the method in [31] concentrates on locality adaptive
convolution. In PET imaging, if the tracer dose is lowered, considering its negative effect on
the patient, unnecessary noises and artifacts compromise the quality of the resultant image.
Two networks, convolutional auto-encoder and GAN generate adaptive PET templates
with the help of a C-PIB PET scan and a T1-weighted MRI sequence. These synthetic PET
images are used to spatialize amyloid PET scans during Alzheimer’s disease estimation [32].
In Multiple Sclerosis, demyelination occurs in the brain’s white matter and the spinal cord.
Sketcher-Refiner GAN predicts the PET-derived myelin content map from multimodal MRI
by sketching the anatomy and physiological details and then producing the myelin content
map. The model is an extension of CGAN with a 3D U-Net generator working on four
MRI modalities as inputs [33]. A task-induced pyramid and attention GAN(TPAGAN)
integrates pyramid convolution and attention module to create the absent PET image with
corresponding MR. Three sub-networks perform the whole task: pyramid and attention
generator, standard discriminator, and task-induced discriminator [34].

Bidirectional mapping GAN (BMGAN), a 3D end-to-end network, in [35] makes
use of image contexts and latent vectors to generate PET from brain MRI. The model
employs the generator, the discriminator, and the encoder to fuse the semantic features
of PET scans with the high-dimensional latent space. The forward mapping step during
the model training allows the PET images to become encoded into the latent space. The
backward mapping step enables the generator to produce PET images from the MRI and
sampled latent vectors. Finally, the encoder reconstructs the input latent vector from the
synthetic PET scan. A hybrid GAN (HGAN) employs a hybrid loss function to produce
absent PET images taking a clue from corresponding MRI scans. A spatially-constrained
Fisher representation (SCFR) network is used to derive statistical details from multimodal
neuroimaging data [36]. In [37], cycleGAN generates fake FDG-PET from T1-weighted
MRI in two manners; one is from three adjacent transverse slices, and the other is from 3D
mini patches. Two CNNs, ScaleNet and HighRes3DNet, and one CGAN were trained to
map structural MR to nonspecific (NS) PET images [38]. Table 5 presents the summary of
image translation.
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Table 5. Summary of GAN-synthesized images used for translation.

Ref. No. GAN Model Technique

MRI-to-CT

[16] GAN MI to avoid the issue of unregistered data

[17] CGAN MI and binary cross entropy are the discriminator loss functions to achieve the
task-specific goal

[18] CGAN Pixel loss penalizes pixel-wise differences between the real and SCT scan
[19] CGAN The method calculates dosimetric accuracy by SCT generation

[20] MedGAN Non-adversarial losses (combination of style loss and content loss) to obtain high- and
low-frequency details of image

[21] CGAN Residual blocks are inserted into the CGAN network
[22] GAN Image-guided radiation therapy
[23] AttentionGAN The attention network helps to predict the regions of interest

[24] UAGGAN The model identifies the area of the image and puts in a suitable translation to
that location

[25] CycleGAN A dense block allows better one-to-one mapping
[26] CGAN Constant image patch size. Memory requirement is independent of the image size

MRI-to-PET

[31] LAGAN Locality adaptive convolution where the same kernel for every input modality
[32] GAN Generate adaptive PET templates
[33] Sketcher-Refiner GAN Generates PET-derived myelin content map from four MRI modalities
[34] TPA-GAN Integrates pyramid convolution and attention module
[35] BMGAN Use of image contexts and latent vectors for a generation

3.1.2. Image Registration

The image registration technique processes the images to fuse them to extract more
information. In some cases, moving images are transformed into fixed reference images.
The purpose behind the image registration can be motion correction, pose estimation, spatial
normalization, atlas-based segmentation, and aligning images from multiple subjects [39].

A deep pose estimation network speedily enables slice-to-volume and volume-to-
volume registration of brain anatomy. Transformation variables are adjusted by multi-scale
registrations that initiate the iterative optimization process. CGAN learns region-based
distortions of multimodal registration from T1- to T2-weighted images. Regression-type
CNN predicts the angle-axis depiction of 3D movement. CycleGAN can be used for cases
where paired images are unavailable [40]. The cycleGAN-based model performs symmetric
image registration of unimodal/multimodal images where an inverse consistency performs
bi-directional spatial transformations between images. SymReg-GAN is the extension of
cycleGAN that performs semi-supervised learning with labeled image pairs and neglects
unlabeled pairs. The spatial transformer performs the differentiable operation and warps
the moving image using an estimated transformation [41].

The geometric transformation estimates the association of physically corresponding
points within a pair of images’ fields-of-view (FOVs). This transformation can sometimes
lead to asymmetric and biased mapping where the “fixed” image is unaffected and the
“moving” image experiences an interpolation smoothing the image simultaneously. Most of
the current registration methods are focused on asymmetric directional image registration.
Multi-atlas-based brain image parcellation (MAP) is a technique in which numerous brain
atlases are registered to a new reference map. Manually labeled brain regions are passed
on and combined with the final parcellation result. The generator of multi-atlas-guided
fully convolutional network (FCN) with multi-level feature skip connection (MA-FCN-SC)
structure produces input brain image with parcellation [42]. In the multi-atlas guided
deep learning parcellation (DLP) technique, attributes of the most suitable map led to
the parcellation process of the target brain map. FCN with squeeze-and-excitation (SE)
sections GAN (FCN-SE-GAN) performs better than the MAP technique since this method
avoids nonlinear registration. Improvement in the result is caused by three factors: brain
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atlases, automatic brain atlas selection, and GAN [43]. An unsupervised adversarial
similarity network performs registration without ground-truth deformation images and
specific similarity metrics for the network training. Both mono-modal and multimodal 3D
image registration can apply to the network. A spatial transformation layer connects the
registration and the discrimination networks [44]. Image registration is crucial for brain
atlas building, but it also helps monitor the continuous advancements in multiple patient
visits. A specific dataset can train the deep networks for applications where sufficient
ground truth data is unavailable for training. However, a network trained to register a
pair of chest X-ray images cannot produce the same quality output on a couple of brain
MRI scans. In such cases, the network needs to be retrained. GAN-based registration
of an image pair and segmentation and transfer learning is achieved. Other image pairs
can easily use them without retraining. Two convolutional auto-encoders are used for
encoding and decoding [45]. Table 6 presents the summary of GAN-synthesized images
used for registration.

Table 6. Summary of GAN-synthesized images used for registration.

Ref. No. GAN Model Technique

[40] CGAN Slice-to-volume registration
[41] CycleGAN Symmetric registration
[42] GAN Multi-atlas-based brain image parcellation
[43] GAN Multi-atlas-guided deep learning parcellation
[44] GAN 3D image registration
[45] GAN Transfer learning for registration

3.1.3. Image Super-Resolution

The super-resolution (SR) technique converts low-resolution images to high-resolution
images without compromising the scanner settings and imaging sequences. These SR
methods achieve higher SNR and reduced blurriness at edges compared to conventional
interpolating methods [46]. In the super-resolution process, several low-resolution images
taken from slightly different viewpoints are used to predict the high-resolution version. Suf-
ficient prior information allows better prediction parameters than actual measurements [47].

The single image super-resolution (SISR) method is vital for medical images as it
helps diagnose the disease. A lesion-focused SR (LFSR) method is developed that pro-
duces seemingly more realistic SR images. In the LFSR method, a multi-scan GAN (MS-
GAN) produces multi-scale SR and higher-dimensional images from the lower-dimensional
version [48]. Training the GAN becomes complicated when the inputs are high-resolution
and high-dimensional images; therefore, information learning is divided among several
GANs. First, a shaping network in unconditional super-resolution GAN (SR-GAN) is
employed to pick up the three-dimensional discrepancy in the shape of adult brains. Then,
a texture network is applied in conditional pix2pix GAN to improve image slices with
realistic local contrast patterns. Finally, the shape network is trained with the WGAN with
Gradient Penalty (WGAN-GP) method. It is an unconditional generator that grasps the
brain’s three-dimensional spatial distortions [49].

In [50], authors have used the progressive upscaling method to generate true colors.
The multi-path architecture of the SRGAN model takes out shallow features on multi-
ple scales where the filter sizes are three, five, and seven instead of a single scale. The
upscaled features are matched back to a high-resolution image through a reconstruction
convolutional layer. Enhanced sSRGAN (ESRGAN) implements super-resolution 2D MRI
slice creation where slices from three different latitudes are selected for the 2D super-
resolution and later reconstructed into a three-dimensional form. The first half of the
three-dimensional matrices is reconstructed from high-resolution slices with good texture
features. Then, the three-dimensional slices are repaired through interpolation to obtain
new brain MRI data. The VGG16 [51] is employed before activation to restore the features,
solve over-brightness in SRGAN, and improve performance [52]. The work of [53] is also
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based on ESR-GAN, where two neural networks complete the super-resolution task. The
first network, receiving field block (RFB)-ESRGAN, selects half the number of slices for
super-resolution reconstruction and MRI rebuilding and upholds high-frequency informa-
tion. The second network, the noise-based network (NESRGAN), completes the second
super-resolution reconstruction task with noise and interpolated sampling, repairing the
reconstructed MRI’s absent values. The linear interpolation technique is involved in feature
extraction and up-sampling. The neonatal brain MRI is a low anisotropic resolution scan.
To increase the resolution, medical images SR using GAN (MedSRGAN) uses residual
whole map attention network (RWMAN) first to interpolate and then segment [54].

Existing super-resolution methods are very scale-specific and cannot be generalized
over the magnification scale. The medical image arbitrary-scale super-resolution (MIASSR)
method coupled with GAN executes the super-resolution for modalities such as cardiac
MR scans and chest CTs by exercising transfer learning [55]. Similarly, in [56], simultaneous
super-resolution and segmentation are performed for 3D neonatal brain MRI on the simu-
lated version of low-resolution. The learned model then upgrades and segments the real
clinical low-resolution images. In 2D MR acquisition, the pulse sequence decides the slice
thickness. The exact characteristics of signal excitation are not explicitly known; giving
less information about slice selection profiles (SSP) creates insufficient training data. This
problem can be solved by predicting a relative SSP from the difference between in- and
through-plane image patches. The thicker slices and larger slice distance are maintained to
decrease scan timing and achieve a high signal-to-noise ratio, resulting in a lower through-
plane resolution than in-plane resolution. The GAN-based method focuses on improving
the resolution of the through-plane slices where training data is a degraded version of
in-plane slices to match the through-plane resolution [57]. A high signal-to-noise ratio in
an MRI scan can assist in correctly detecting Alzheimer’s disease. Utilizing the GAN-based
SR technique, image quality equivalent to a 3-T scanner can be achieved without altering
scanner parameters, even if the scans are obtained through 1.5-T scanners. The generator
creates a transformation mask, and the discriminator differentiates the synthetic 3-T image
from the original 3-T image [58].

In [59], fine perceptive generative adversarial networks (FPGANs) adopt the divide-
and-conquer scheme to extract the low-frequency and high-frequency features of MR
images separately and parallelly. The model first decomposes an MR image into low-
frequency global approximation and high-frequency anatomical texture subbands in the
wavelet domain. The subband GAN simultaneously performs a super-resolving process on
each subband image, resulting in finer anatomical structure recovery. Study [60] uses end-
to-end GAN architecture to produce high-resolution 3D images. The training is performed
in a hierarchical manner producing a low-resolution scan and a randomly selected part of
the high-resolution scan simultaneously. It provides two-fold benefits: first, the memory
requirement during training of high-resolution images is divided into small parts. Next,
high-resolution volumes are converted to a single low-resolution image keeping anatomical
consistency intact. Spatial resolution images are produced by direct Fourier encoding from
three short-duration scans [61]. Table 7 presents the summary of GAN-Synthesized images
used for super-resolution.

3.1.4. Contrast Enhancement

In MR imaging, different sequences (or modalities) can be acquired that provide valu-
able and distinct knowledge about brain disease, for example, T1-weighted, T2-weighted,
proton density imaging, diffusion-weighted imaging, diffusion tensor imaging, and func-
tional MRI (fMRI) [62–64]. The imaging process can highlight only one of them. Multiple
scan acquisition processes and long scan times for capturing all contrasts can give rise to
the cost and discomfort of the patient. The enhancement process that generates different
contrasts from the same MRI sequences is helpful for overcoming the data heterogene-
ity [65]. The contrast enhancement methods can be divided into three categories, as shown
in Figure 5.
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Table 7. Summary of GAN-synthesized images used for super-resolution.

Ref. No. GAN Model Technique

[48] MSGAN Lesion-Focused SR method
[49] SRGAN Use of shaping network
[50] SRGAN Progressive upscaling method to generate true colors
[52] ESRGAN Slices from 3 latitudes are used for SR
[53] NESRGAN Noise and interpolated sampling
[54] MedSRGAN Residual whole map attention to interpolate
[55] GAN Medical image arbitrary-scale super-resolution method
[57] GAN Improving resolution of through-plane slices
[58] GAN The image resolution of 1.5-T scanner is made equivalent to 3-T scanner.
[59] FPGAN Use a divide-and-conquer manner with multiple subbands in the wavelet domain
[60] End-to-end GAN Uses a hierarchical structure

Figure 5. Grouping of contrast enhancement methods.

A. Modality Translation:

In the MRI acquisition, discrete imaging protocols result in different intensity distribu-
tions for a single imaging object. The recent data-driven techniques acquire MR images
from multi-center and multi-device with multi-parameters. This fact gives rise to the need
for universal and uniform datasets. All studies discussed in this section generate one or
more MRI modalities from one or more available modalities. The redundant informa-
tion of the multi-echo saturation recovery sequence with different echo time (TE) and
inversion time (TI) generates multiple contrasts generally used as a reference to find a
mutual-correction effect. In [66], the multi-task deep learning model (MTDL) synthesizes
six 2D multi-contrast sequences: axial T1-weighted, T2-weighted, T1 and T2-FLAIR, short
Tau inversion recovery (STIR), and proton density (PD) simultaneously. The registration-
based synthesis approach is based on creating a single atlas responsible for loss in structural
information of dummy multi-contrast images due to a nonlinear intensity transformation.
Whereas the intensity-based method not depending on fixed geometric relationships among
different anatomies and gives better synthesis results. PGAN is used for the generation
when multi-contrast images are spatially registered, and CGAN is used when unregis-
tered [67]. MultiModal GAN (MM-GAN), a variant of Pix2Pix architecture, synthesizes
the absent modality by merging the details from all available modalities [68]. MI-GAN, an
amendment over MM-GAN, is a multi-input generative model that creates the missing
modalities. Commonly acquired modalities are T1-weighted (T1), T1-contrast-enhanced
(T1c), T2-weighted (T2), and T2-fluid-attenuant inversion recovery (FLAIR). The absent one
is created from the other three available modalities [69]. The limitation of earlier methods
of cross-modality generation is that they are not extendible to multiple modalities. The
total M (M − 1) number of different generators will need to be trained to learn all sorts of
mapping among M modalities. In addition to this, each translator can only use two out of
M modalities simultaneously. The modality-agnostic encoder of a cycle-constrained CGAN
draws out modality-invariant anatomical features and generates the desired modality with
a conditioned decoder. A conditional autoencoder and discriminator can complete all
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pair-wise translations. Once the feedforward processing on any modality label is over,
the same autoencoder is reused to make a condition on the modality label of the original
input for the cycle reconstruction [70]. The usual cross-modality image translation methods
involving GAN models are based on paired data. Modular cycleGAN (MCGAN) performs
unsupervised multimodal MRI translation from a single modality and retains the lesion
information. The architecture includes encoders, decoders, and discriminators. MCGAN
uses the combination of deconvolution and resize upsampling methods that avoid the
checkerboard artifacts in the generated images [71]. Edges in a medical image contain
principal details of anatomy such as tissue, organ, and abrasion details. However, the
images produced by a normal GAN have blurred boundaries. A flexible, gradient-prior
integrated, encoder-decoder-based adversarial learning network (FGEAN) is an end-to-end
framework of multiple inputs and multiple outputs that uses gradient-prior to retain tissue
composition type of high-frequency details [72]. Edge-aware GAN (Ea-GAN) is a 3D
method that extracts voxel-wise intensity and image structure information to overcome
slice discontinuity and blurriness problems. The Sobel operator is used to extract the edge
details. The Sobel filter assigns higher weights to its nearer neighbors and lower weights to
the farther neighbors, which is impossible with direct image gradient application [73].

CycleGAN-based unified forward generative adversarial network transforms any
T2-FLAIR images in different groups into a single reference one [74]. In [75], WGAN
generates multi-sequence brain MR images with the advantage of stable learning. The
Earth Mover (EM) distance (a.k.a. the Wasserstein-1 metrics) of WGAN allows minor mode
collapse. In [76], sample-adaptive GAN imitates each sample by learning its correlation
with its neighboring training samples and applying the target-modality features as auxiliary
information for synthesis. The self-attention GAN (SAGAN) of [77] attends to various
organ anatomical structures via attention maps which showcase spatial semantic details
with the help of an attention module. In [78], the GAN framework learns shared content
encoding and domain-specific style encoding across multiple domains. CGAN in image
modality translation (IMT) network employs nonlinear atlas-based registration to register
a moving image to the fixed image. The PatchGAN classifier with no constraints on each
patch’s size acts as the discriminator generating acute results with lesser parameters and a
low running time [15]. In [79], GAN provides a solution for the detection of Small Vessel
Disease (SVD) by estimating the advancement of White Matter Hyper-intensities (WMH)
during a year. Disease Evolution Predictor (DEP) model notices WMH in T2-weighted and
T2- FLAIR MRIs. DEP-GAN (Disease Evolution Predictor GAN), an extension of visual
attribution GAN (VA-GAN), uses an irregularity map (IM) or probability map (PM) for both
input and output modalities to represent WMH. This generated image is called Disease
Evolution Map (DEM), which classifies brain tissue voxel among progressing, regressing,
or stable WMH groups.

B. Quality Improvement:

High-resolution images are generated from down-sampled data during the MRI
analysis to save the scan time. High-resolution images in one contrast improve the quality
of down-sampled images in another contrast. The anatomical details of different contrast
images refine the reconstruction quality of the image. This increase in image contrast is
used for the classification of brain tumors [80]. The intensity distributions of pixels in
brain MR images overlap in regions of interest (ROIs) that cause low tissue contrast and
create problems in accurate tissue segmentation. The cycleGAN-based model increases
the contrast within the tissue by using an attention mechanism. A multistage architecture
focuses on a single tissue preliminary and filters out the irrelevant context in every stage to
increase high tissue contrast (HTC) images’ resolution [81]. CycleGAN for unpaired data
usually encodes the deformations and noises of various domains during synthetic image
generation. The deformation invariant cycleGAN (DiCycleGAN) uses image alignment
loss based on normalized mutual information (NMI) to strengthen the alignment between
source and target domain data [82]. Generation of high-resolution MRI hippocampus
region images from low-resolution MRI is arduous. Difficulty-aware GAN (da-GAN) is
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designed with dual discriminators and attention mechanisms in hippocampus regions for
creating multimodality images. These HR images are deployed to improve hippocampal
subfields classification accuracy compared to LR images [83]. In [84], Sequential GAN, a
combination of two GANs, generates bi-modality images from common low-dimensional
vectors. Sequential multimodal image production first creates images of one modality from
low-dimensional vectors. These synthetic images are mapped to their counterparts in the
other modality through image-to-image translation. The synthetic FLAIR images are not
as realistic in terms of quality as synthetic T1-weighted and T2-weighted images. In [85],
CGAN and the two parallel FCNs improve the quality of fake FLAIR images by retaining
the contrast information of original FLAIR images. In [86], the proposed method discovers
and learns global contrast from the label images to embed this information in the generated
images. The capability of 2-way GAN coupled with global features in U-Net bypasses the
need for paired ground truth. The multimodal images with a better perceptual quality
improve the learning capability of the model.

C. Single Network Generation:

Unified GAN, the improved version of starGAN [87], generates multiple contrasts of
MR images from a single modality. StarGAN can perform image translations among multi-
ple domains with one generator and one discriminator. The single-input multiple-output
(SIMO) model is trained on four different modalities. The network learns the details from
the multimodal MR images and analogous modality markers. The generator takes an image
of one modality producing a target modality image, and then performs the second task of
recreating the original modality image through a synthesized one [88]. The available meth-
ods of multimodal image generation target only the missing image production between
two modalities. CycleGAN and pix2pixGAN can only create images from one modality
to another; the former is used for unpaired images and the latter for paired images. Mul-
timodality GAN (MGAN) simultaneously synthesizes three high-quality MR modalities
(FLAIR, T1, and T1ce) from one MR modality-T2. Complementary information provided by
these modalities boosts tumor segmentation accuracy. The architecture extends starGAN
for paired multimodality MR images, adding modality labels to pix2pix. StarGAN brings
the domain labels to cycleGAN and thus empowers a single network to translate an input
image to any desired target domain for unpaired multidomain training images. Thus a
single network translates a single modality T2 to any desired target modalities [89].

3.1.5. Image Denoising

The visual quality of MRI is vital for down-the-line operations on acquired scans,
and the existing noise in the scans can alter the diagnosis result. Denoising is mostly
a preprocessing step for image analysis similarly to segmentation and registration [90].
Image denoising and synthesis are utilized to study the complete manifold learning of
brain MRI. The higher SNR value improves segmentation and registration tasks. A low-
dimensional manifold is preferred for statistical comparisons and the generation of group
representatives. T1-weighted brain MR images are generated by learning from 2D axial
slices of brain MRI. Skip-connected auto-encoders are used for image denoising to traverse
the manifold description of regular brains [91]. The Rician noise of MRI is the magnitude
of the complex image data distribution. Structure-preserved denoising of 3D MRI images
allows for exploring the similarity between neighboring slices. The Rician noise in MR
images is removed by the residual encoder-decoder Wasserstein generative adversarial
network (RED-GAN), where a 3D-CNN operates on 3D volume data. The generator is
an auto-encoder proportionally containing convolutional and de-convolutional layers
supported by a residual block [92]. Residual encoder-decoder up-sampling non-similar
WGAN (REDUPNSWGAN) uses a filter-based method to remove Rician noise, preserving
the structural association between the neighborhood slices in 3D MRI. WGAN measures
Wasserstein distance to differentiate between ground-truth and dummy images using
residual encoder-decoder. GNET removes Rician noise with the help of Huber loss. DNET
calculates the loss of discriminated samples, and the feature extractor in AVGNET calculates
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the perceptual loss [93]. A hybrid denoising GAN removes noise from highly accelerated
wave-controlled aliasing in parallel imaging (Wave-CAIPI) images with the help of a 3D
generator and a 2D discriminator [94].

3.1.6. Segmentation

Brain tissue segmentation in an MRI scan provides vital biomarkers such as quantifi-
cation of tissue atrophy, structural changes, and localization of abnormality are crucial in
disease diagnosis. DL-based segmentation methods are finding success in the automatic
mode of segmentation. The segmentation methods that use GAN-synthesized MR images
for atrophy detection can be grouped into three categories, as shown in Figure 6 [95].

Figure 6. Grouping of segmentation methods.

A. Brain Tumor Segmentation:

Two standard techniques in brain tumor segmentation are patch-based and end-to-end
methods. A multi-angle GAN-based framework fuses the synthetic images with the proba-
bility maps. The PatchGAN generator focuses on local image patches, randomly selects
many fixed-size patches from an image, and normalizes all responses that improve the
resultant image. The multichannel structure in the discriminator averages the responses to
provide the output [96]. A 3D GAN performs brain tumor segmentation by combining label
correction and sample reweighting, where the dual inference network works as a revised
label mask generator [97]. The current glioma growth prediction is achieved by mathe-
matical models based on complicated mathematical formulations of partial differential
equations with few parameters resulting in insufficient patterns and other characteristics of
gliomas. On the contrary, GANs prove the upper hand on mathematical models as they
need not directly convert the probability density function to generate data. Plus, GANs can
withstand overfitting by providing structured training. A 3D GAN stacks two GANs with
conditional initialization of segmented feature maps for glioma growth prediction [98].
Tumor growth prediction needs multiple time points of the same patient’s single or mul-
timodal medical images. Again a stacked 3D GAN, GP-GAN, is used for glioma growth
prediction [99]. Deep convolutional GAN (DCGAN) first performs data augmentation by
generating synthetic images to create a large data set. The image noise is also removed
with the help of an adaptive median filter so that the resultant images are of superior
features. After this preprocessing step, faster R-CNN uses this synthetic data for training,
identifying, and locating tumors. The classification result is tumor placement under three
types: meningioma, glioma, pituitary, and primary type [100]. Manual delineation of
lesions such as glioma, Ischemic lesions, and Multiple Sclerosis from MR sequences is
tedious. Discriminative machine learning techniques such as Random Forest, Support
Vector Machines, and DL techniques such as CNN and autoencoders detect and segment
lesions from MR scans. However, generative methods such as GANs can also employ
convolution operators to learn the distribution parameters [101].

The class-conditional densities of lesions overlap because the pixel values of ROIs
are distributed over the entire intensity range in MR scans. The existence of four major
overlapping ROIs (non-enhancing tumor, enhancing, normal, and edema) of intensity
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distribution poses a challenge in the segmentation process. Enhancement and segmentation
GAN (Enh-Seg-GAN) refines lesion contrast by including the classifier loss in model
training, which estimates the central pixel labels of the sliding input patches. The CGAN
generator modifies each pixel in the input image patch. It then forwards this to the
Markovian discriminator. The synthetic image is concatenated with other fundamental
modalities (FLAIR, T1c, and T2) to improve segmentation [102]. Feature concatenation-
based squeeze and excitation-GAN (FCSE-GAN) appends the feature concatenation block
to the generator network to reduce noise from the image and the squeeze and excitation
block to the discriminator network to segment the brain tumor [103].

B. Annotation:

The second group describes the methods used to perform segmentation without
manual data labeling and how annotation tasks are necessary for DL models. The annota-
tion of medical images is a tedious task requiring good medical prowess. The annotated
datasets are an essential requirement for supervised machine learning. The supervised
transfer learning (STL) method for domain adaptation trains the GAN model on a source
domain dataset and then fine-tuned it on a target domain dataset. The inductive transfer
learning (ITL) method extracts annotation labels of the target domain dataset from the
trained source domain model using cycleGAN-based unsupervised domain adaptation
(UDA) [104]. DCNN-based image segmentation methods are hard to generalize. A syn-
thetic segmentation network (SynSeg-Net) trains a DCNN by unpaired source and target
modality images without having manual labels on the target imaging modality. In [105], cy-
cleGAN performs multi-atlas segmentation with a cycle synthesis subnet and segmentation
subnet. GANs are designed to generate properly anonymized synthetic images to safeguard
the patients’ privacy information. In [106], three GANs are trained on time-of-flight (TOF)
magnetic resonance angiography (MRA) patches to create image labels for arterial brain
vessel segmentation. Image labels created from deep convolutional GAN, Wasserstein-
GAN with gradient penalty (WGAN-GP), and WGAN-GP with spectral normalization
(WGAN-GP-SN) are applied to a second dataset using the transfer learning approach. The
results of WGAN-GP and WGAN-GP-SN are superior to that of DCGAN. The structure of
triple-GAN, which works on the principle of a three-player cooperative game, is modified
to incorporate 3D transposed convolution in the generator. It performs tensor-train decom-
position on all the classifier and discriminator layers and uses a high-order pooling module
to take advantage of association within feature maps. The tensor-train decomposition,
high-order pooling, and semi-supervised learning-based GAN (THS-GAN) classify MR
images for AD diagnosis [107]. In normal conditions, human brains are relatively symmet-
ric. However, the presence of any mass lesion generates asymmetry in the brain structure
because it displaces normal brain tissue. The symmetric driven GAN (SD-GAN) learns
a nonlinear mapping between the left and right brain images in unsupervised manifold
learning to detect tumors from scans that do not require symmetry [108]. Segmentation
tasks on medical images suffer the issues of generalization, overfitting, and insufficient
annotated datasets. Guided GAN (GGAN) decimates the data points of an input image,
due to which the size of the network is reduced, operating on only a few parameters [109].

C. Multimodal Segmentation:

The shape or appearance model called Shape Constraint (SC-GAN) uses a Fully Con-
volutional Residual Network (FC-ResNet) fused with a shape representation model (SRM)
for segmentation tasks on multimodal images in H&N cancer diagnosis. A pre-trained 3D
convolutional auto-encoder is utilized for SRM as a regularizer in the training stage [110].
Multimodal segmentation should have acceptable results in both source and target do-
mains. However, the domain shifts between multiple modalities make the learning task of
divergent image features through a single model challenging. Three-dimensional unified
GAN executes the auxiliary translation task by extracting the modality-invariant features
and upgrading low-level information representations [111]. Hippocampal subfields seg-
mentation based on SVM combined 3D CNN and GAN. Three-dimensional GAN-SVM
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acts as a generator and 3D CNN-SVM discriminator [112]. One2One CycleGAN is used
in survival estimation extracting features from MRI multimodal images. A single ResNet-
based generator creates the T1 image from the T2 samples and the T2 image from the T1
samples reducing overfitting and providing augmentation to create virtual samples [113].
MRIs are used to locate the abrasion of disease or to understand the fMRI-based effective
connectivity (EC) within a set of brain regions. The task of locating the abrasion caused due
to Multiple Sclerosis (MS) in brain images is a real challenge as there is much inconstancy
in the intensity, size, shape, and location of these abrasions. In [114], GAN uses a single
generator with multiple modalities and multiple discriminators, one for each modality, to
identify the NxN patch as real or fake.

3.1.7. Reconstruction

Although MRI is one of the very sought-after imaging methods for physical and phys-
iological reasons, scanning time causes concern for patients [115]. MRIs are reconstructed
due to various reasons cited in Figure 7.

Figure 7. Grouping of reconstruction methods.

A. MRI Acceleration:

The lengthy scanning process in which the samples are collected line-by-line in k-
space (frequency domain and Fourier image space) is uncomfortable for the patients
and becomes a reason for motion artifacts. The concept of accelerated MRI is crucial to
tackling this issue. MRI is reconstructed from highly under-sampled (up to 20%) k-space
data, especially in fetal, cardiac, functional MRI, multimodal acquisitions, and dynamic
contrast enhancements. The acquisition time is lowered by less slice selection, reducing the
spatial resolution. The sweep time can also be lessened by selecting a partial k-space and
approximating the absent k-space points. A k-space and an image-space U-Net reconstruct
the whole k-space matrix from under-sampled data [116]. The compressed sensing (CS)
MRI scheme reduces the sweep time by considering a minor set of samples for image
construction. Refine-GAN, the adapting fully-residual convolutional auto-encoder, and
general GAN, is the base for fast and precise CS-MRI reconstruction. A chained network
enhances the reconstruction quality [117]. Traditional CS-MRI is affected by slow iterations
and noise-induced artifacts during the high acceleration factor. The RSCA-GAN uses
spatial and channel-wise attention with long skip connections to improve the quality at
each stage, accelerating the reconstruction process and removing the artifacts brought
by fast-paced under-sampling [118]. Parallel imaging integrated with the GAN model
(PI-GAN) and transfer learning accelerates MRI imaging with under-sampling in the k-
space. The transfer learning removes the artifacts and yields smoother brain edges [119].
Reforming multi-contrast brain MR images from down-sampled data points can save
scanning time [120].

B. MR Slice Reconstruction:

MR slice reconstruction is performed to examine brain anatomy and surgery maneu-
verings as the modality provides high resolution. Thin-section images are 1 mm wide with
a spacing gap of zero, while thick-section images are 4 mm to 6 mm wide with a spacing gap
of 0.4 mm to 1 mm. The higher value of thickness leads to low resolution. The GAN and
CNN are combined to reconstruct thin-section brain scans of newborns from thick-section
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ones. The first stage of the network is a Least-Square GAN (LS-GAN) with a 3D-Y-Net
generator. This stage fuses the images of the axial and sagittal planes and maps them onto
thin-section image space. The cascade of 3D-DenseU-Net and a stack of enhanced residual
structures removes image artifacts and provides recalibrations and structural improve-
ments in the sagittal plane [121]. Unsupervised medical anomaly detection (MAD)-GAN
uses multiple adjacent brain MRI slice reconstructions to locate brain anomalies at different
stages of multi-sequence structural MRI [122]. The edge generator of Edge-guided GAN
(EG-GAN) joins the missing edges of low-resolution images and masks produced from
missing slices in the through-plane as input. A contrast completion network employs these
connected edges to predict the voxel intensities in the missing rows [123]. Conditional deep
convolutional generative adversarial neural networks (CDCGANs) are used to forecast the
advancement of AD by producing dummy MR images in the series arrangement. The atro-
phy is measured using the cortical ribbon (CR) fractal dimension (box-counting method).
The method uses only one coronal slice of a patient’s baseline T1- image. A reducing fractal
dimension ensures the progressing illness [124]. The brain multiplex image represents
the brain connectivity status extracted from MRI scans. The association between the two
brain regions of interest is quantified based on function, structure, and morphology. A
single network, adversarial brain multiplex translator (ABMT), performs brain multiplex
estimation and classification for the vision of gender-related distinction linkages. Brain
multiplexes are constructed from a source network intra-layer, a target intra-layer, and a
convolutional interlayer. The ABMT is the improved version of GT-GAN [125], which has
pioneered graph or network translation. Contrary to conventional GAN, the generator
(translator) of GT-GAN picks up the generic translation mapping from the source network
to the target network simultaneously [126]. 3D CGAN and a local adaptive fusion method
are used for quality FLAIR image synthesis. They synthesize each slice separately along the
axial direction and concatenate them into a 3D image. This synthesis predicts the coronal
and the sagittal direction by analyzing complete images or large image patches [127].

C. Enhancement of Scan Efficiency:

CGAN enhances the scan efficiency of under-sampled and multi-contrast procured
images. The shared high-frequency-prior present in the source contrast is used to maintain
high-spatial-frequency features. The low-frequency-prior in the under-sampled target
contrast is used to avert feature leakage or quality loss. The perceptual prior is used to
upgrade the retrieval of high-level attributes. Reconstructing-synthesizing GAN (RS-GAN)
generator estimates the target-contrast image from either fully sampled or partially under-
sampled source-contrast image [128]. The tissue susceptibility in various brain diseases
is measured via the quantitative susceptibility mapping (QSM) technique. The inherent
issue of dipole inversion can affect the reliability of the susceptibility map. QSM-GAN
is a 3D U-Net that solves the dipole inversion problem in QSM reconstruction [129]. A
directed graph represents a brain-effective connectivity network where nodes denote brain
regions. EC-RGAN is a recurrent GAN that applies effective connectivity generators to
acquire the temporal information from the fMRI time series and refine the quality [130].
Double inversion recovery (DIR) improves FLAIR images acquired with a higher sensitivity
for lesion diagnosis than conventional or fluid-attenuated T2-weighted scans. They are
beneficial for detecting cortical plaques in MS. DiamondGAN can increase image details via
multi-to-one mapping where various input modalities (in this case, T1, T2, and FLAIR) are
utilized to produce one output modality (in this case, DIR) [131]. Three-dimensional multi-
information GAN uses structural MRI to find cortical atrophy to predict disease progression.
First, a 3D GAN model generates 3D MRI images at future-time points; then, a 3D-densenet-
based multiclass classification identifies the stages of produced MRI [132]. Visual scenes
can be reconstructed from human brain activity measured with fMRI. Dual-Variational
Autoencoder/Generative Adversarial Network (DVAE/GAN) learns the mapping from
fMRI signals to their corresponding visual stimuli (images). Cognitive Encoder, Visual
Encoder, and GAN transform the high-dimensional and noisy brain signals (fMRI) into
low-dimensional latent representation [133].
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D. Bias-free MRI Scan:

MRI scanners inherently produce bias, resulting in soft intensity changes across the
scans. Two GANs were simultaneously trained to reconstruct the plain bias field and a
bias-free MRI scan [134]. Ultrahigh-field MRI introduces high signal inhomogeneity in the
scanned images, giving rise to different non-uniform power concentrations in the tissues.
The regional Specific Absorption Rate (SAR) varies spatially and temporally with possible
hubs in several hard-to-predict positions. A CGAN model can assess the subject-specific
local SAR, otherwise hard to compute, and is rated by offline numerical simulations using
generic body models. A CNN learns to portray the connection between subject-specific
complex B1+ maps and the corresponding local SAR [135].

3.1.8. Motion Correction

MRI acquisition is a time consuming process, and keeping the head still in the scanner
for the whole duration is challenging for patients. Subject motion in MRI scanning can
introduce blurring and artifacts in the resultant images that severely deteriorate the image
quality. Motion correction is the one crucial application during the preprocessing phase of
the diagnosis [136,137] CGAN generates images devoid of artifacts from images distorted
by motion. Combining a deep CNNs (DCNN) generator with a classifier discriminator
introduces sharpness in the output of the DCNN [138]. Different acquisition protocols of
motion-free and motion-corrupted MR data give alignment deformity. Cycle-MedGAN
is free from dependency on co-registered datasets since unpaired images are used for
training without prior co-registration or alignment. It employs the cycle-style and the
cycle-perceptual losses functions to supervise the generator network and the self-attention
architecture with convolutional layers and several residual blocks to improve the long-range
spatial dependency for the motion correction task [139]. The supervised adversarial mode
of correcting the motion artifacts raises the alignment imperfections that result from two
distinct acquisition processes; one is motion-free, and the other is motion-corrupted. On
the contrary, a co-registered dataset does not affect the unsupervised mode. A framework
consisting of cycle-MedGAN [140–142] utilizes any paired datasets during training and a
smaller subset of paired data for validation with its self-attention characteristic and a new
loss function.

3.1.9. Data Augmentation

The success of DL models depends on large data samples, which is precisely the
constraint of brain MRI. The data augmentation method is used to enlarge the training
dataset to improve synthetic image quality without adding new samples to the set. The
actions such as translating, rotating, flipping, stretching, and shearing the existing images
in the dataset can augment the set; however, these methods lack diversity in the newly gen-
erated image samples. The training can become affected towards suboptimal results [143].
Generative modeling maintains similar features to the actual data set while developing the
dummy version of the existing images. Deep convolutional GAN generates dummy images
using strided convolutions to carry out upsampling in place of max-pooling layers [144].
A timely examination of the brain’s status is crucial in preventing Parkinson’s disease
(PD) and hindering its spread. Automatic diagnosis methods use either single-view or
multi-view scans to execute the classification or prediction of PD. A WGAN operates on
multi-view samples from the MRI dataset containing the cross-sectional view (AXI) and
the longitudinal view (SAG). The prodromal class with fewer AXI/SAG MRI data samples
causes the problem of over-fitting or under-fitting in an application. Two ResNet networks
are trained jointly on the two-view data to create more samples for the prodromal class in
AXI and SAG [145].

Class imbalance is a significant issue in abnormal tissue identification and classifica-
tion in medical analysis. In the case of imbalanced data, a predominant class is filled with
usual vital samples, while a subsidiary class is with ailing samples. When a model is trained
with a dataset with visible disparity, it generates biased results towards healthy data giving
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rise to predictable outputs by the network and low sensitivities. The class distribution can
be balanced by re-sampling the data space, similarly to oversampling of the predominant
class and under-sampling of the subsidiary class, construction of a new compact dataset in
an iterative sampling manner by bypassing unessential details, ensemble sampling, and
hybrid sampling. A pair-wise GAN architecture uses a cross-modality input to increase
heterogeneity in the augmented images. GAN-augmented images are utilized in the pre-
training phase, and then real brain MRIs complete advanced training leading to synthetic
MR images from one modality to another [146]. Brain tumors are segregated into menin-
gioma, glioma, and pituitary tumors. The direct resemblance in the three classes results in a
complex classification procedure in MRI images. A multi-scale gradient GAN (MSG-GAN)
synthesizes MRI images with meningioma disease and uses transfer learning to improve
classification performance [147]. Noise-to-image and image-to-image GANs enhance the
data augmentation (DA) effect. Progressive growing of GAN (PGGAN) is a multistage
noise-to-image GAN used for high-resolution MR image generation. Refinement methods
such as multimodal unsupervised image-to-image translation (MUNIT) or SimGAN rectify
the texture and shape of the images produced by PGGAN close to the originals [148]. A
moderate-sized glioma dataset can affect the precise brain tumor categorization using
several MRI modalities such as T1-weighted, T1-weighted with contrast-enhanced, T2-
weighted, and FLAIR. Pair-wise, GAN trained on two input channels, unlike the normal
GAN with only one input channel, augments the brain images to the compact dataset [149].
Two types of perfusion modalities, dynamic susceptibility contrast (DSC) and dynamic
contrast-enhanced (DCE), are used to generate realistic relative cerebral blood volume
(RCBV). The CGAN is trained on brain tumor perfusion images to learn DSC and DCE
parameters with a single gadolinium-based contrast agent administration [150]. AGGrGAN
in [151] is a collection of three base GAN models—two variants of deep convolutional
GAN (DCGAN) and a WGAN that generate synthetic MRI images of brain tumors. The
model uses the style transfer technique, selects distributed features across the multiple
latent spaces, and captures the local patterns to enhance the image resemblance.

In a stroke disease, the brain cells start dying due to insufficient blood to the brain
(cerebral ischemia) or moments of internal bleeding (intracranial hemorrhage). CGAN gen-
erator is trained on specially altered lesion masks to create synthetic brain images to enlarge
the training dataset. CNN segmentation network includes depth-wise-convolution-based
X-blocks and feature similarity module (FSM) [152]. IsoData (Iterative Self-Organizing
Data Analysis Technique) is an unsupervised segregation method measuring the means of
the classes uniformly dispersed within data space and clusters the rest of them iteratively
based on the minimum distance methods. Every iteration computes the new mean and
classifies pixels. The WGAN-based process depends upon the image histogram by general-
izing more than two classes and splitting, merging, and deleting the class depending on
the input threshold parameters [153]. Functional connectivity GAN (FC-GAN) generates
the functional brain connectivity (FC) patterns obtained from fMRI data amplifying the
efficiency of the neural network classifier. VAE and WGAN-based network contains three
parts, the encoder, the generator, and the discriminator [154].

The connectome-based sample generation is another approach for data augmenta-
tion. A generative adversarial neural network auto-encoder (AAE) framework produces
synthetic structural brain connectivity instances of MS patients even for an unbalanced
dataset [155]. The number of samples in the regular fMRI datasets is insufficient for training.
Multiple GAN architecture generates new multi-subject fMRI points. The multiple GAN
architectures used in this method are cycleGAN, starGAN, and RadialGAN and do not
need label details to determine the relation matrix. The cycle-GAN is not expandable to
multiple domains because of the N (N-1) mappings to be learned for N domains. StarGAN
is expandable to multiple domains using a single generator for multidomain translation
tasks. RadialGAN can successfully extend the target dataset by employing multiple source
datasets [156]. Dual-encoder BiGAN architecture duplicates abnormal samples within a
normal distribution. Anomaly detection in BiGAN reduces bad cycle consistency loss due
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to insufficient sample data information [157]. The approach in [158] generates annotated
diffusion-weighted images (DWIs) of brains showing an ischemic stroke (IS). Realistic
DWIs are generated from axial slices of these 3D segmentation maps with the help of three
generative models: Pix2Pix, SPADE, and cycleGAN.

3.2. Loss Functions (RQ 2)

The structure of losses is crucial in the supervised training of GAN models for gener-
ating quality images. The discriminator loss is an attribute of the images produced by the
generator and possesses a high value when the discriminator is incapable of discriminating
between source and dummy images. Similarly, generator loss is a function of the perfor-
mance of the discriminator and has a high value when it cannot generate images close to
the authentic images. Both networks’ productivity improves when the model’s training is
executed sequentially. Then suitable weights must be identified for the network to create
more realistic images [144]. Loss functions used in the SLR are listed in Table 8. Adversarial
loss, cycle consistency loss, L1 loss, L2 loss, perceptual loss, and WGAN loss are the primary
loss functions and predominantly used in SLR. Figure 8 shows the distribution of these
commonly used loss functions in the SLR.

Table 8. Summary of loss functions used in applications of GAN-synthesized brain MRI.

Loss Function Description Probability—
Based (Yes/No) Ref. No.

Commonly used loss functions

Adversarial loss

The adversarial loss function is created in the repeated
production and classification cycle. The generator minimizes

the loss function, and the discriminator maximizes it.
LGAN (G,D) = Ex,y [log (D(x,y)] + Ex,y [log(1 − D(x,G(x,z))]

where y is the ground truth image, G is the generator
network, G (x,z) is generated image, D is the

discriminator network.

Yes
[20,25,35,41,45,

53–55,57,59,67,72,
74,77,81,83]

Cycle consistency loss
A cycle consistency loss allows the generator to learn a

one-to-one mapping from the input image field to the target
image field. L
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Yes [24,28,45,67,71,74,

81,82,88]

L1 loss

The L1 loss also called mean absolute error (MAE), is a
pixel-wise error that shows over-smoothing in resultant

images. LL1(G) = 1
n [‖y−G(xz)‖1] where n is the number

of voxels in an image, ||.||1 is the sum of
voxel-wise residuals

No
[19–

21,23,25,26,33–
35,37,52,55]

L2 loss

The L2 loss also called Mean Squared Distance (MSD)
indicates the error between generated and original images
and gives faint images.LL2(G) = 1

n [‖y−G(xz)‖2] where
||.||2 is the sum of squared voxel-wise residuals of

intensity value.

No [50,51,68,69,80]

Perceptual loss

Pixel-reconstruction losses give blurry effects in the final
outputs and cannot express the image’s perceptual quality.

The perceptual loss is the Euclidean distance in feature space
to extract semantic features from target images.

LPerceptual(G) = 1
whd ‖∅(G(x))−∅(y)‖2

F where ∅ is a
feature extractor, and w, h, and d represent the dimensions of

feature maps.

No [20,35,37,52,53,
55,56,66,67,92]

Wasserstein loss

WGAN evaluates the Earth Mover’s distance by training the
discriminator network and is bounded by a

Lipschitz constraint.
LWGAN(D) = −Ey∼Pr [D(y)] + Ex∼Pn[D(G(x))] +

λEx̂∼Px̂ [(‖∇x̂ D(x̂)‖2 − 1)2] where x is sampled from real
image ‘r’ and noise ‘n’ is the hyperparameter.

Yes [29,48,49,56,86,
92,93,103]

Other loss functions
Attention regularization loss It ensures learning orthogonal attention maps. No [77]

Binary cross entropy (BCE) loss The negative of the logarithm function is used for predicting
the probability during binary classification. Yes [34,42,43,50,58,

65,69]

Classification loss It is the average cross-entropy value and the discriminator’s
logistic sigmoid result. Yes [58,102]

Cycle-perceptual loss This loss captures the high-level perceptual errors between
original and dummy images. No [142]
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Table 8. Cont.

Loss Function Description Probability—
Based (Yes/No) Ref. No.

Fidelity loss
The fidelity loss factor indicates the dissimilarity between the

fake and the spatial normalized image and is generally
added to the discriminator loss function.

No [115,116]

Gradient difference (GD) loss
The GD loss is the gradient difference between the original

and dummy images that retain the sharpness in the
synthetic images.

No [86,88,89]

Identity Loss This loss is responsible for colors and
intensities conservation. Yes [77]

Image alignment loss It is based on normalized mutual information (NMI) and
used for information fusion. Yes [82]

Mean p distance (MPD) The lp-norm or mean p distance (MPD) measures the
distance between synthetic and original images. No [25,27]

Mutual information loss
Mutual Information (MI) finds the “information content” in

one variable when another variable is fully observed and
used as the loss function.

Yes [16,17,103]

Multi-scale L1 loss Multi-scale features variance between the predicted
multi-channel probability map and the actual image. No [42,43]

Registration loss This loss penalizes the variance between the translated &
transformed image and stimulates local smoothness. No [41]

Self-adaptive Charbonnier loss It is the pixel-wise differences between real and fake images. No [140]

Style-transfer loss Style-transfer loss enhances the texture and fine structure of
the desired target images. Yes [140,142]

Supervision loss This loss, denoted by cumulative squared error, measures
pixel shifts between original and synthetic images. No [41]

Symmetry loss It stresses inverse consistency in the
predicted transformations. No [41]

Synthetic consistency loss
This loss balances the mean absolute error (MAE) and

gradient difference (GD), indicating how the generated
image lags behind the target image.

No [72]

Voxel-wise loss
This loss can be imposed as a pixel-level penalty between the

translated and the original image applicable to only
paired datasets.

Yes [66,77,83]

Figure 8. Distribution of commonly used loss functions in the SLR.

3.3. Preprocessing of Ground Truth Brain MRI (RQ 3)

The training dataset for GAN contains brain MRIs that act as ground truth images
to generate GAN-synthesized images. Preprocessing operations on these ground truth
brain MRIs are crucial for the fidelity of the successive GAN performance. These tasks
sharpens the image and removes the noise to enhance the qualitative and quantitative
estimation [159]. Compared to machine learning techniques, the preprocessing is not
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exhaustive in the case of DL; still, the input image needs to undergo some treatments
before feeding to the neural networks. Some regular image preprocessing steps [18,150] are
discussed below:

• Intensity Normalization:

MRIs from multiple centers acquired with scanners from distinct vendors and magnetic
strengths show discrepancies in brightness and some induced noise [160]. To lessen these
effects, intensity normalization is implemented by measuring the MR image’s intensity
values variability [154]. The non-uniform voxel intensities of all volumes are standardized,
and then each volume is normalized to obtain the zero mean and unit standard deviation.
The patient-wise batch normalization can control the overfitting. Each patient scan is
normalized by dividing each sequence by its mean intensity value. The task ensures that
the distribution of intensity values is preserved [149].

• Skull Stripping:

Skull stripping is removing the skull from images to focus on intracranial tissues [95].

• Registration:

All input images are registered to the same imaging space during the registration phase.
Registration is the spatial alignment of the images to a common anatomical space [46].
Various datasets come with different statuses of registration among training images. For
example, MIDAS and IXI datasets carry unregistered images, while BRATS dataset carries
already registered images [161].

• Bias Field Correction:

This operation corrects the image contrast variations due to diverse magnetic field
strengths [95].

• Center Cropping:

In this operation, outer parts of each brain image volume The outer parts of each brain
image volume are removed, reserving the central region along each dimension [88].

• Data Augmentation:

Data augmentation is achieved through operations such as translation, flipping, re-sizing,
scaling, rotation between −10 and 10 degrees, and Gaussian noise application [87,98].

• Motion Correction:

Keeping the patient’s head stationary in the scanner during the MRI acquisition is
challenging, especially for small and elderly age groups. This operation is performed to
reduce the noise that arises in the scan due to subject motion.

The number and order of these steps may vary from case to case, depending on the
application requirement. Figure 9 shows the percentage-wise use of these preprocessing
operations in the SLR. Preprocessing software packages are available to perform above
listed tasks (Table 9). The format conversion is applied to scanned MRI images. The source
images are in digital imaging and communications in medicine (DICOM) format, which are
converted to 3D images in neuroimaging informatics technology initiative (NIFTI) format,
then sliced in the axial direction, and saved as joint photographic expert group (JPG) or
portable network graphics PNG format (Figure 10).
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Figure 9. Distribution of preprocessing operations performed on ground truth brain MRI.

Table 9. Summary of preprocessing software packages commonly used for brain MRI.

Preprocessing Software URL Use Ref. No.

Freesurfer http://surfer.nmr.mgh.harvard.edu
(accessed on 26 August 2022)

Skull-stripping, Registration,
fMRI Analysis [114,162]

Functional magnetic resonance imaging
of the Brain Software Library (FSL)

http://fsl.fmrib.ox.ac.uk/ (accessed on
26 August 2022)

Registration, alignment,
Skull-stripping [115,162]

Advanced Normalization Tool (ANT) http://stnava.github.io/ANTs/ (accessed
on 26 August 2022) Registration [5,49,136,163,164]

Statistical Parameter Mapping (SPM) http://www.fil.ion.ucl.ac.uk/spm (accessed
on 26 August 2022) Skull-stripping [74,121]

Velocity (Varian) https://www.varian.com/ (accessed on
26 August 2022) Registration [25,27,165]

Data Processing Assistant for
Resting-State fMRI (DPARSF)

http://www.restfmri.net (accessed on
26 August 2022) Data processing of fMRI [166]

Elastix https://elastix.lumc.nl/ (accessed on
26 August 2022) Registration [68,167]

BrainSuite http://brainsuite.org/ (accessed on
26 August 2022) Skull-stripping [162]

Figure 10. Format conversion of ground truth brain MRI.

3.4. Comparative Study of Evaluation Metric (RQ 4)

The success of a GAN depends upon the quality of the synthesized image. The
evaluation metric that can quantitatively characterize the synthesis accuracy is necessary to
comment on the quality of the synthetic image. There are two types of metrics; the first is
Full-Reference (FR) Quality Metrics, where the quality of a synthetic image is measured
to the quality of a ground-truth image. The second is No-Reference (NR) Quality Metrics,
where the quality scores of the synthetic image are based on expected image statistics. Two
commonly used evaluation metrics are discussed below. Table 10 presents the comparative
study of existing evaluation metrics. Some of the metrics from the table assess the quality
of the synthesized image as a whole, while others asses the image on patch-wise and are
thus suitable for the segmentation task [69].

http://surfer.nmr.mgh.harvard.edu
http://fsl.fmrib.ox.ac.uk/
http://stnava.github.io/ANTs/
http://www.fil.ion.ucl.ac.uk/spm
https://www.varian.com/
http://www.restfmri.net
https://elastix.lumc.nl/
http://brainsuite.org/
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Table 10. Comparative study of evaluation metrics used in this SLR.

Evaluation Metric FR/NR Description Assessment Method Ref. No.

Average symmetric
surface distance (ASSD) FR ASSD measures the average of all Euclidean

distances between two image volumes. Segmented image [53,77,168]

Blind/ Reference-less
Image Spatial Quality
Evaluator (BRISQUE)

NR

BRISQUE focuses natural scene statistics (NSS)
such as ringing, blur, and blocking. It quantifies

the reduction of naturalness by locally
normalizing the luminance coefficients.

Whole image [33,58,86]

Dice Similarity Coefficient
(DSC) FR

DSC measures the spatial overlap and provides
a reproducibility validation score for

image segmentation.
Segmented image [70,77,79,83,96,99,144]

Frechet Inception Distance
(FID) FR

The distance between Gaussian distributions of
synthetic and real images is FID or the

Wasserstein-2 distance.
Whole image [35,59,84,99,120]

Hausdorff Distance
(HD)95 FR

HD measures the maximum Euclidean distance
between all surface points of two

image volumes.
Segmented image [115]

Jaccard similarity
coefficient (JSC) FR

It is a value used to compare the similarity and
diversity of images recognized as Intersection

over Union.
Segmented image [98,99,159]

Maximum Mean
Discrepancy (MMD) FR

MMD measures the dissimilarity between the
probability distribution of real images over the

space of natural images and parameterized
distribution of the generated images.

Whole image [32]

Mutual Information
Distance (MID) FR

MID measures the association between
corresponding synthetic images in

different modalities. It first evaluates the
mutual information of synthetic image pairs
and real image pairs and then computes their

absolute difference.

Whole image [84,99]

Normalized Mean
Absolute Error (NMAE) FR

NMAE measures the estimation errors of a
specific color component between the original

and synthetic images.
Whole image [33,74,88]

Normalized Mutual
Information (NMI) NR

NMI expresses the amount of information
synthetic images carry regarding

the original image.
Whole image [140,148]

Normalized
Cross-Correlation (NCC) FR

NCC evaluates the degree to which the
synthetic and original image signals are similar.

It is an elementary approach to match two
image patch positions.

Segmented image [25]

Naturalness Image
Quality Evaluator (NIQE) NR

NIQE is a distance-based measure of natural
images’ divergence from statistical consistency.
The metric quantifies image quality according

to the level of distortions.

Whole image [33,41,58,88]

Peak Signal-to-Noise Ratio
(PSNR) FR

It is an expression for the ratio between the
maximum possible power of the original image

and the power of the generated image.
Whole image [48,56,59,73–75,85,88]

Structural Similarity Index
Measure (SSIM) FR

SSIM score indicates the perceptual difference
between original and synthetic images. It

compares the visible structures in the image
such as Luminance, Contrast, and Structure.

Whole image [38,59,73–75,88]

Root-Mean-Square Error
(RMSE) FR

It measures the differences between the
predicted value by an estimator and the actual

value of a definite variable.
Whole image [68,72,75,99,140]

Universal Quality Index
(UQI) FR Image distortion is the product of loss of

correlation, luminance, and contrast distortion. Whole image [14]

4. Discussion

A substantial amount of data samples is the primary requirement to implement deep
learning algorithms. However, procuring adequate data is always a challenge in medical
applications. This fact can restrict the wide and acceptable use of DL methods. The GAN
models provide a reasonable solution to this problem. A substantial amount of data samples
is the primary requirement to implement deep learning algorithms. The architecture of
traditional GAN consists of two neural networks, the generator and the discriminator,
working in tandem to create a fake source version. The generator updates its creation
based on the feedback of the error function from the discriminator. The architecture utilizes
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Unsupervised learning to produce an image from the features of the real image. This SLR
shows that GAN-synthesized images have potential use in data augmentation, yet they
have also been immensely used for other image applications. In addition, GAN can speed
up the whole analysis step in radiology [11]. This SLR includes papers published in Q1or
Q2 journals and conferences in the Web of Science and Scopus databases. Future researchers
can confirm the findings by exploring some other databases as well. However, to the best of
our belief, the main conclusions drawn in this study would not change significantly. Some
significant findings of the review are listed here:

4.1. GAN Variants

The conventional GAN model suffers from mode collapse, where the optimal dis-
criminator does not provide enough information for the generator, leading to poor image
generation by the generator. Many modifications are suggested and implemented in the
basic GAN structure. The most popular models, such as CGAN, WGAN, cycleGAN,
starGAN, and SRGAN are more robust and are used in image synthesis, translation, and
super-resolution applications.

IN CGAN, a condition is set for the generator and the discriminator that acts as the
controlling mode, giving a better presentation for image synthesis [163,164]. WGAN [164]
provides stable training in conventional GAN by solving the network coverage problem and
accelerating the training speed. The loss function is the distance between the two probability
distributions known as the Wasserstein distance or Earth Mover’s (EM distance) [11].
CycleGAN is suitable for unpaired image translation and training stabilization. It has two
generator networks mastering the two different mappings- source to target and target to
source. It also has two discriminators that differentiate the synthesized image from the
original image belonging to each domain. Evaluation of the resultant image is based on
cycle-consistent losses to find the similarity between synthetic and original images [165].
StarGAN is suitable for cross-domain image translation using a single model. Multiple
generators are not required to produce images from different domains. The mask vector
method allows image translation between multiple datasets [87]. Figure 11 shows major
GAN variants and their extensions.

Figure 11. Major GAN variants and their extensions.

4.2. Multimodal Image Generation

MR images often have several complementary modalities regarding anatomical infor-
mation. In the last two years, the trend of research is more towards information extraction
from multimodality images for better diagnosis. CycleGAN works on unpaired images,
and Pix2pixGAN is suitable for paired image datasets. However, both architectures can
only generate images from one modality to another and fail for multiple domains sample
generation. Since it can learn only 1-to-1 mapping between two domains, N (N-1) struc-
tures would require finishing the learning for N domains. StarGAN provides a better
solution for a single network working on unpaired multi-domain datasets. It presents
domain labels to cycleGAN and selects the desired domain through a mask vector during
translation [98,114]. RadialGAN is another technique suitable for multiple source datasets,
works well for data augmentation when the data labels are continuous, and has a common
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latent space for all domains [166]. To study the information available in various domains,
CollaGAN suggests a collaborative model including the details of multiple domains to
generate images from an absent domain. CollaGAN secures the features in synthetic im-
ages through cycle consistency, similarly to starGAN. It executes n-to-1 translation using a
one-hot mask vector in input that defines the target domain. Each N domain incorporates
style and content code for shared latent representation [96].

5. Conclusions

AI researchers have adopted GAN for various image applications in recent years.
Medical imaging is one prominent area where GAN-synthesized images can be helpful
in multiple ways. This SLR presents a comprehensive study of applications of GAN-
synthesized images for brain MRI. Over the years, the architecture of conventional GAN
has been modified, and its versions, such as CGAN, WGAN, cycleGAN, and starGAN,
show promising results in classifying and predicting brain diseases. It is speculated that
GAN handles the scarce dataset problem of medical images in the best way possible.
GAN-synthesized images have moved further from their obvious application in data
augmentation. These images are being explored for image translation, registration, super-
resolution, contrast enhancement, denoising, segmentation, reconstruction, and motion
correction. Though many tasks are achievable with GAN implementation, there are still
challenges in adopting GAN in real time. More works need to be performed regarding
stability in GAN training, 3D GAN, and unsupervised learning modes.
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